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Abstract
Planet-scale applications are driving the exponential growth 
of the Cloud, and datacenter specialization is the key enabler 
of this trend. GPU- and FPGA-based clouds have already 
been deployed to accelerate compute-intensive workloads. 
ASIC-based clouds are a natural evolution as cloud services 
expand across the planet. ASIC Clouds are purpose-built 
datacenters comprised of large arrays of ASIC accelerators 
that optimize the total cost of ownership (TCO) of large, 
high-volume scale-out computations. On the surface, ASIC 
Clouds may seem improbable due to high NREs and ASIC 
inflexibility, but large-scale ASIC Clouds have already been 
deployed for the Bitcoin cryptocurrency system. This paper 
distills lessons from these Bitcoin ASIC Clouds and applies 
them to other large scale workloads such as YouTube-style 
video-transcoding and Deep Learning, showing superior 
TCO versus CPU and GPU. It derives Pareto-optimal ASIC 
Cloud servers based on accelerator properties, by jointly 
optimizing ASIC architecture, DRAM, motherboard, power 
delivery, cooling, and operating voltage. Finally, the authors 
examine the impact of ASIC NRE and when it makes sense to 
build an ASIC Cloud.

1. INTRODUCTION
In the last decade, two parallel trends in the computational 
landscape have emerged. The first is the bifurcation of com-
putation into two sectors: cloud and mobile. The second is 
the rise of dark silicon15, 3, 4, 2 and dark silicon aware design 
techniques13, 14, 10, 16, 11 such as specialization and near-threshold 
computation. Specialized hardware has existed in mobile 
computing for a while due to extreme power constraints; 
however, recently there has been an increase in the amount 
of specialized hardware showing up in cloud datacenters. 
Examples include Baidu’s GPU-based cloud for distributed 
neural network acceleration, Microsoft’s FPGA-based cloud 
for Bing Search,9 and by JP Morgan Chase for hedgefund 
portfolio evaluation.12

At the level of a single node, we know that ASICs can offer 
order-of-magnitude improvements in energy-efficiency and 
cost-performance over CPU, GPU, and FPGA.

Our recent papers8, 6, 7, 17 explore the concept of ASIC Clouds 
which are purpose-built datacenters comprised of large 
arrays of ASIC accelerators. ASIC Clouds are not ASIC super-
computers that scale up problem sizes for a single tightly 
coupled computation; rather, ASIC Clouds target scale-out 
workloads consisting of many independent but similar jobs, 
often on behalf of millions or billions of end-users.

The content of this paper draws from “ASIC Clouds: 
Specializing the Data Center,” published in Proceedings 
of  the IEEE Int. Symp. Computer Architecture, June 2016,  and 
from “Specializing the Planet’s Computation: ASIC 
Clouds” published in IEEE Micro, June 2017. 

As more and more services are built around the Cloud 
model, we see the emergence of planet-scale workloads 
(think Facebook’s face recognition of uploaded pictures, 
or Apple’s Siri voice recognition, or the IRS performing tax 
audits with neural nets) where datacenters are performing 
the same computation across many users. These scale-out 
workloads can easily leverage racks of ASIC servers contain-
ing arrays of chips that in turn connect arrays of replicated 
compute accelerators (RCAs) on an on-chip network. The 
large scale of these workloads creates the economical jus-
tification to pay the nonrecurring engineering (NRE) costs 
of ASIC development and deployment. As a workload grows, 
the ASIC Cloud can be scaled in the datacenter by add-
ing more ASIC servers, unlike accelerators in say a mobile 
phone population,3 where the accelerator-to-processor ratio 
is fixed at tapeout.

Our research examined ASIC Clouds in the context of four 
key applications that show great potential for ASIC Clouds, 
such as YouTube-style video transcoding, Bitcoin and 
Litecoin mining, and Deep Learning. ASICs achieve large 
reductions in silicon area and energy consumption versus 
CPUs, GPUs, and FPGAs. We show how to specialize the ASIC 
server to maximize efficiency, employing optimized ASICs, a 
customized printed circuit board (PCB), custom-designed 
cooling systems and specialized power delivery systems, and 
tailored DRAM and I/O subsystems. ASIC voltages are cus-
tomized in order to tweak energy efficiency and minimize 
total cost of ownership (TCO). The datacenter itself can also 
be specialized, optimizing rack-level and datacenter-level 
thermals and power delivery to exploit the knowledge of the 
computation. We developed tools that consider all aspects 
of ASIC Cloud design in a bottom-up way, and methodolo-
gies that reveal how the designers of these novel systems 
can optimize TCO in real-world ASIC Clouds. Finally, we 
proposed a new rule that explains when it makes sense to 
design and deploy an ASIC Cloud, considering the engineer-
ing expense (NRE) of designing the machines.

Notably, the original version of this paper1, 8 predicted 
Machine Learning ASIC Clouds, before Google announced 
the first Tensor Processing cloud in 2016.5 The same paper 
also predicted video transcoding clouds before Facebook’s 
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Mount Shasta video transcoding ASIC Cloud design was 
announced in March 2019.

2. ASIC CLOUD ARCHITECTURE
At the heart of any ASIC Cloud is an energy-efficient, high-
performance, specialized replicated compute accelerator, or 
RCA, that is multiplied up by having multiple copies per ASICs, 
multiple ASICs per server, multiple servers per rack, and mul-
tiple racks per datacenter as shown Figure 1. Work requests 
from outside the datacenter will be distributed across these 
RCAs in a scale-out fashion. All system components can be 
customized for the application to minimize TCO.

Each ASIC interconnects its RCAs using a customized 
on-chip network. The ASIC’s control plane unit also con-
nects to this network and schedules incoming work from 
the ASIC’s off-chip router onto the RCAs. Next, the packaged 
ASICs are arranged in lanes on a customized PCB, and con-
nected to a controller which bridges to the off-PCB interface 
(1-100 GigE, RDMA, PCI-e, etc). In some cases, DRAMs may 
connect directly to the ASICs. The controller can be imple-
mented by an FPGA, microcontroller, or a Xeon processor 
and schedules remote procedure calls (RPCs) that come 
from the off-PCB interface on to the ASICs. Depending on 
the application, it may implement the nonacceleratable part 
of the workload or perform UDP/TCP-IP offload.

Each lane is enclosed by a duct and has a dedicated fan 
blowing air through it across the ASIC heatsinks. Our sim-
ulations indicate that using ducts results in better cooling 
performance compared to conventional or staggered layout. 
The PCB, fans, and power supply are enclosed in a 1U server, 
which is then assembled into racks in a datacenter. Based on 
ASIC needs, the PSU and DC/DC converters are customized 
for each server.

3. DESIGNING AN ASIC CLOUD
Our ASIC Cloud Server configuration evaluator, as shown 
in Figure 2a, starts with a Verilog implementation of an 
accelerator, or a detailed evaluation of the accelerator’s 

properties from the research literature. In the design of 
an ASIC Server, we must decide how many chips should be 
placed on the PCB and how large, in mm2 of silicon, each 
chip should be. The size of each chip determines how many 
RCAs will be on each chip. In each duct-enclosed lane of 
ASIC chips, each chip receives around the same amount 
of airflow from the intake fans, but the most downstream 
chip receives the hottest air, which includes the waste 
heat from the other chips. Therefore, the thermally bottle-
necking ASIC is the one in the back, shown in our detailed 
Computational Fluid Dynamics (CFD) simulations as 
shown in Figure 2b. Our simulations show that breaking 
a fixed heat source into smaller ones with the same total 
heat output improves the mixing of warm and cold area, 
resulting in lower temperatures. Using thermal optimiza-
tion techniques, we established fundamental connection 
between an RCA’s properties, the number of RCAs placed 
in an ASIC, and how many ASICs go on a PCB in a server. 
Given these properties, our heat sink solver determines the 
optimal heat sink configuration. Results are validated with 
the CFD simulator. In the sidebar entitled “Design Space 
Evaluation,” we show how we apply this evaluation flow 
across the design space in order to determine TCO and 
Pareto optimal points that trade off $ per op/s (an accelera-
tor’s hardware cost efficiency) and W per op/s (an accelera-
tor’s energy efficiency).

4. APPLICATION CASE STUDIES
To explore ASIC Clouds across a range of accelerator prop-
erties, we examined four applications: Bitcoin mining, 
Litecoin mining, Video Transcoding, and Deep Learning 
that span a diverse range of properties, as shown in Figure 3.

Perhaps the most mature of these applications is Bitcoin 
mining. Our inspiration for ASIC Clouds came from our inten-
sive study of Bitcoin mining clouds,4 which are one of the first 
known instances of a real life ASIC Cloud. Figure 4 shows the 
massive scale out of the Bitcoin mining workload, which in 
2015 operated at the performance of 3.2 billion GPUs. Bitcoin 
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Figure 1. High-level abstract architecture of an ASIC Cloud. Specialized replicated compute accelerators (RCA) are multiplied up by having 
multiple copies per ASICs, multiple ASICs per server, multiple servers per rack, and multiple racks per datacenter. Server controller can be 
an FPGA, microcontroller, or a Xeon processor. Power delivery and cooling system are customized based on ASIC needs. If required, there 
would be DRAMs on the PCB as well.
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Figure 2. Evaluating an ASIC configuration. (a) The server cost, per server hash rate, and energy efficiency are evaluated using RCA 
properties and a flow that optimizes server heatsinks, die size, voltage, and power density. (b) Thermal verification of an ASIC Cloud server 
using CFD tools to validate the flow results. The farthest ASIC from the fan has the highest temperature and is the bottleneck for power per 
ASIC at a fixed voltage and energy efficiency.

Figure 3. Accelerator properties. We explored applications with 
diverse requirements.
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clouds have undergone a rapid ramp from CPU to GPU to 
FPGA to the most advanced ASIC technology available today. 
Bitcoin is a very logic intensive design which has high power 
density and no need for SRAM or external DRAM.

Litecoin is another popular cryptocurrency mining sys-
tem that has been deployed into clouds. Unlike Bitcoin, 
it is an SRAM-intensive application which has low power 
density.

Video Transcoding, which converts from one video for-
mat to another, currently takes almost 30 high-end Xeon 
servers to do in real-time. As every cell phone can easily be 
a video source, as well as every Internet-of-Things device, it 
has the potential to be an unimaginably large planet-scale 
computation. Video Transcoding is an external memory-
intensive application that needs DRAMs next to each ASIC 
and also high off-PCB bandwidth.

Finally, Deep Learning is extremely compute-intensive 
and is likely to be used by every human on the planet. Deep 
Learning is often latency-sensitive so our Deep Learning 
neural net accelerator has a tight low-latency SLA.

For our Bitcoin and Litecoin studies, we developed the 
RCA and got the required parameters such as gate count 
from placed and routed designs in UMC 28nm using 
Synopsys IC compiler and analysis tools (e.g., PrimeTime). 
For Deep Learning and Video Transcoding, we extract 
properties from accelerators designed in the research 
literature.

Design space exploration is application-dependent, 
and there are frequently additional constraints. For exam-
ple, for video transcode application, we model the PCB 
real estate occupied by these DRAMs, which are placed on 
either side of the ASIC they connect to, perpendicular to 
airflow. As the number of DRAMs increases, the number 
of ASICs placed in a lane decreases for space reasons. We 
model the more expensive PCBs required by DRAM, with 
more layers and better signal/power integrity. We employ 
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Figure 5. Pareto curve example for Video Transcode. Exploring different 
number of DRAMs per ASIC and logic voltage for optimal TCO per 
performance point. Voltage increases from left to right. Diagonal lines 
show equal TCO per performance values and the closer to the origin the 
lower the TCO per performance. This plot is for 5 ASICs per lane.

two 10-GigE ports as the off-PCB interface for network-
intensive clouds, and model the area and power of the 
memory controllers.

After having all thermal constraints in place, we opti-
mized ASIC server design targeting two conventional key 
metrics, namely cost per op/s and power per op/s, and 
then apply TCO analysis. TCO analysis incorporates the 
datacenter- level constraints such as the cost of power deliv-
ery inside the datacenter, land, depreciation, interest, and 
the cost of energy itself. With these tools, we can correctly 
weight these two metrics and find the overall optimal point 
(TCO-optimal) for the ASIC Cloud.

Our ASIC Cloud infrastructure explores a comprehen-
sive design space, such as DRAMs per ASIC, logic voltage, 
area per ASIC, and number of chips. DRAM cost and power 
overhead are significant, and so the Pareto-optimal Video 
Transcoder designs ensure DRAM bandwidth is saturated, 
linked chip performance to DRAM count. As voltage and 
frequency are lowered, area increases to meet the perfor-
mance requirement. Figure 5 shows the Video Transcode 
Pareto curve for 5 ASICs per lane and different number of 
DRAMs per ASIC. The tool is composed of two tiers. The top 
tier uses brute force to explore all of the possible configu-
rations in order to find the energy-optimal, cost-optimal, 
and TCO-optimal points are chosen based on the Pareto 
results. The leaf tier consists of a variety of “expert solv-
ers” that compute optimal properties of the server compo-
nents; for example, CFD simulations for heat sinks, DC-DC 

Figure 4. Evolution of Specialization, Bitcoin cryptocurrency mining clouds. Numbers are ASIC nodes, in nm, which annotate the first date 
of release of a miner on that technology. Difficulty is the ratio of the total Bitcoin hash throughput of the world, relative to the initial mining 
network throughput, which was 7.15 MH/s. In the 6-year period preceding Nov 2015, the throughput increased by a factor of 50 billion times, 
corresponding to a world hash rate of approximately 575 million GH/s.
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converter allocation, circuit area/delay/voltage/energy esti-
mators, and DRAM property simulation. In many cases, 
these solvers export their data as large tables of memoized 
numbers for every component to the brute force solver.
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In Figure 7, we compare the performance of CPU 
Clouds versus GPU Clouds versus ASIC Clouds for the 
four applications that we presented. ASIC Clouds outper-
form CPU Cloud TCO per op/s by 6270x; 704x; and 8695x 
for Bitcoin, Litecoin, and Video Transcode, respectively. 
ASIC Clouds outperform GPU Cloud TCO per op/s by 
1057x, 155x, and 199x, for Bitcoin, Litecoin, and Deep 
Learning, respectively. 

6. FEASIBILITY OF ASIC CLOUDS: THE TWO-FOR- 
TWO-RULE
When does it make sense to design and deploy an ASIC 
Cloud? The key barrier is the cost of developing the ASIC 
Server, which includes both the mask costs (about $1.5M 
for the 28 nm node we consider here and much higher for 
the latest 7nm node) and the ASIC design costs, which col-
lectively comprise the nonrecurring engineering expense 
(NRE). To understand this trade-off, we proposed the 

5. RESULTS
Details of optimal server configurations for energy-optimal, 
TCO-optimal, and cost-optimal designs for each of the appli-
cations are shown in Figure 6.

For example, for Video Transcode, the cost-optimal 
server packs the maximum number of DRAMs per lane, 
36, maximizing performance. However, increasing the 
number of DRAMs per ASIC requires higher logic voltage 
(1.34V) and corresponding frequencies to attain perfor-
mance within the max die area constraint, resulting in less 
energy-efficient designs. Hence, the energy-optimal design 
has fewer DRAMs per ASIC and per lane (24), although 
gaining back some performance by increasing ASICs per 
lane, which is possible due to lower power density at 0.54V. 
The TCO-optimal design increases DRAMs per lane, 30, 
to improve performance, but is still close to the optimal 
energy efficiency at 0.75V, resulting in a die size and fre-
quency between the other two optimal points.

Figure 6. ASIC Cloud optimization results for four applications. Each table presents energy-optimal, TCO-optimal, and cost optimal server 
properties. Energy optimal server uses lower voltage to increase the energy efficiency. Cost optimal servers use higher voltage to increase 
silicon efficiency. TCO-optimal has a voltage between these two and balances energy versus silicon cost.
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Figure 8. Two-for-two rule: moderate speed-up with low NRE beats high speed-up at high NRE. The points are break even points for ASIC 
Clouds.
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the absolute speedup of the accelerator. The main barrier for 
ASIC Clouds is to reign in NRE costs so they are appropriate 
for the scale of the computation. In many research accelera-
tors, TCO improvements are extreme (such as in Figure 7),  
but authors often unnecessarily target expensive, latest 
generation process nodes because they are more cutting 
edge. This tendency raises the NRE exponentially, reducing 
economic feasibility. A better strategy is to target the older 
nodes that still attain sufficient TCO improvements.

7. POST-PUBLICATION INSIGHT: YOU WANT TO  
TARGET EIGHT TIMES TCO IMPROVEMENT
The two-for-two rule examines a lower bound for what the 
TCO improvements of an ASIC cloud need to be, based on 
how large the pre-ASIC cloud TCO is compared to the NRE 
of building an accelerator and show that extreme hundred 
times TCO improvements are not needed.

Our subsequent experience post-publication of the 
ASIC cloud suggests another way to look at the question 
of how aggressive an accelerator is necessary. We believe 
in most cases that eight times TCO improvement is usu-
ally a good place to target when developing a new kind of 
ASIC cloud.

In most realistic scenarios, the pre-ASIC cloud TCO can 
be in the hundreds of millions or billions of dollars, far 
out-shadowing the ASIC development costs for all but the 
latest nodes (e.g., 7nm). Practically speaking, the first two 
times will reduce your TCO in half, that is, one billion dol-
lars become 500 million dollars. The second two times will 
only save 250 million dollars, useful but not essential on the 
first ASIC iteration. The second two times is needed to pro-
vide risk margin for the performance and energy efficiency 

Figure 7. CPU Cloud vs. GPU Cloud vs. ASIC Cloud “Deathmatch.” 
ASIC servers greatly outperform the best non-ASIC alternative in 
terms of TCO per op/s.
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two-for-two rule. If the cost per year (i.e., the TCO) for run-
ning the computation on an existing cloud exceeds the NRE 
by 2X, and you can get at least a 2X TCO per operation/sec-
ond improvement, then going ASIC Cloud is likely to save 
money. Figure 8 shows a wider range of breakeven points. 
Essentially, as the TCO exceeds the NRE by more and more, 
the required speedup to break even declines. As a result, 
almost any accelerator proposed in the literature, no mat-
ter how modest the speedup, is a candidate for ASIC Cloud, 
depending on the scale of the computation. Our research 
makes the key contribution of noting that in deployment of 
ASIC Clouds, NRE and scale can be more determinative than 
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uncertainty of the design—will the original software be opti-
mized more making the chip less good relatively, will the 
chip have less than expected TCO improvement, et cetera. 
The final two times addresses the issue that the pre-ASIC 
cloud hardware (e.g., GPU or CPU) will also improve and 
could possibly improve by two times by the time you have 
deployed your ASIC cloud system.

8. CONCLUSION
Our research generalizes primordial Bitcoin ASIC Clouds 
into an architectural template that can apply across a range 
of planet-scale applications. Joint knowledge and control 
over datacenter and hardware design allow for ASIC Cloud 
designers to select the optimal design that optimizes energy 
and cost proportionally to optimize TCO. We demonstrated 
methodologies that can be used to design TCO-optimal 
clouds, answering long-standing questions even in contem-
porary Bitcoin ASIC Clouds. Our work analyses the impact 
of NRE and scale on deployment of ASIC Clouds, tying it to 
the TCO-improvement and in turn the energy and cost effi-
ciency of the cloud.

Our work advances research practice by showing how to 
examine accelerators at a systems level instead of at the level 
of a single chip. We evaluate ASIC Cloud chip design, server 
design, and finally datacenter design in a cross-layer system-
oriented way. This joint knowledge and control over data-
center and hardware design allow for ASIC Cloud designers 
to select the optimal design that optimizes energy and cost 
proportionally. We developed the tools and revealed how the 
designers of these novel systems can optimize the TCO in 
real-world ASIC Clouds.

We developed a rule of thumb for when it makes sense 
to go ASIC Cloud, the two-for-two rule. The main barrier 
for ASIC Clouds is to reign in NRE costs so they are appro-
priate for the scale of the computation. In many research 
accelerators, TCO improvements are extreme, but authors 
also target expensive, latest generation process nodes 
because they are more cutting edge. But this habit raises 
the NRE exponentially, reducing economic feasibility. Our 
most recent work6 suggests that a better strategy is to lower 
NRE cost by targeting older nodes that still have sufficient 
TCO per op/s benefit.

Looking to the future, our work suggests that both 
Cloud providers and silicon foundries would benefit by 
investing in technologies that reduce the NRE of ASIC 
design, such as open source IP such as RISC-V, in new 
labor-saving development methodologies for hardware 
and also in open source backend CAD tools. With time, 
mask costs fall by themselves, but currently older nodes 
such as 65 nm and 40 nm may provide suitable TCO per 
op/s reduction, with half the mask cost and only a small 
difference in performance and energy efficiency from 28, 
16, or 7 nm. Foundries should take interest in ASIC Cloud’s 
low-voltage scale out design patterns because they lead to 
greater silicon wafer consumption than CPUs within fixed 
environmental energy limits.

With the coming explosive growth of planet-scale com-
putation, we must work to contain the exponentially grow-
ing environmental impact of datacenters across the world. 
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