Moonwalk: NRE Optimization in ASIC Clouds

or, accelerators will use old silicon

Moein Khazraee, Lu Zhang, Luis Vega, and Michael Bedford Taylor UC San Diego

Compute trends in 2017

- Bifurcation of computation into Client and Cloud
 - Client is mobile SoC
 - Cloud is implemented by datacenters

Compute trends in 2017

- Bifurcation of computation into Client and Cloud
 - Client is mobile SoC
 - Cloud is implemented by datacenters
- End of Dennard Scaling
 - Rise of Dark Silicon^[1] (power wall)
 - Dark Silicon-aware design techniques^[2]
 - Specialization (accelerators)
 - Low voltage or Near-threshold operation

[1] "Conservation Cores", ASPLOS 2010; GreenDroid, HOTCHIPS 2010.[2] "A Landscape of the Dark Silicon Design Regime", Taylor, IEEE Micro 2013.

Compute trends in 2017

- Bifurcation of computation into Client and Cloud
 - Client is mobile SoC
 - Cloud is implemented by datacenters
- End of Dennard Scaling
 - Rise of Dark Silicon^[1] (power wall)
 - Dark Silicon-aware design techniques^[2]
 - Specialization (accelerators)
 - Low voltage or Near-threshold operation

[1] "Conservation Cores", ASPLOS 2010; GreenDroid, HOTCHIPS 2010.[2] "A Landscape of the Dark Silicon Design Regime", Taylor, IEEE Micro 2013.

- Xeon Processors
 - Xeon-D [Facebook]
 - Customer specialized SKUs [Oracle]

- Xeon Processors
 - Xeon-D [Facebook]
 - Customer specialized SKUs [Oracle]
- GPU-based clouds
 - Deep Neural Networks [Baidu Minwa]

- Xeon Processors
 - Xeon-D [Facebook]
 - Customer specialized SKUs [Oracle]
- GPU-based clouds
 - Deep Neural Networks [Baidu Minwa]
- FPGA-based clouds
 - Catapult [Microsoft]
 - High Frequency Trading [Most Wall Street firms]

- Xeon Processors
 - Xeon-D [Facebook]
 - Customer specialized SKUs [Oracle]
- GPU-based clouds
 - Deep Neural Networks [Baidu Minwa]
- FPGA-based clouds
 - Catapult [Microsoft]
 - High Frequency Trading [Most Wall Street firms]
- What about ASIC-based clouds?

ASIC Clouds: Key Motivation

- The Cloud model leads to growing classes of planet-scale computations
 - Facebook runs face recognition on 2B pics/day
 - Siri recognizes speech for ~1 Billion iOS user
 - YouTube Video Transcodes to Google VP9 for the 500 hours uploads per minute
- These computations incur high Total Cost of Ownership (TCO) for the provider

ASIC Clouds: Key Motivation

- These cloud computations are scale-out: we are doing the same computation across millions or billions of users
- As these computations become sufficiently large, we can specialize the hardware for that particular computation to reduce TCO.
- Lowering Non-Recurring Engineering cost (NRE) is a key factor for ASIC cloud feasibility.
 - Our paper makes a key contribution by showing how to calculate NRE for an ASIC Clouds.

Accelerator

It all starts with an accelerator for a planet-scale computation. Maybe it's a commercial IP core, or custom designed widget in Verilog.

Replicate this accelerator multiple times inside an ASIC die. We'll now call it a "replicate compute accelerator", or "RCA".

Then we add a control processor to distribute work and schedule computation onto the RCAs.

Work is distributed over a very simple on-chip network, the **On-ASIC Network**, which is provisioned according to the needs of the RCAs. RCA's usually do not talk to each other.

The control processor receives work from off-chip via the On-PCB router.

For those accelerators that need off-chip DRAM, we add shared DRAM controllers. Finally bake it into an ASIC: PLL, Clock Tree, Power Grid, Flip Chip BGA Packaging...

Then build the PCB by replicating ASICs across the PCB

Connect their on-PCB routers via PCB traces

Connect the on-PCB network to an FPGA that routes data from off-PCB interface (e.g. GigE, PCI-E)

Then we add the plumbing: DC/DC, Fans, Heatsinks and PSU. The PCB goes inside the chassis and we have an ASIC cloud server.

- 1U servers are packed into standard 42U racks.
- Racks are integrated into machine room.

Our Four ASIC Cloud Designs

We design ASIC Clouds for 4 application domains:

- Bitcoin Mining
- Litecoin Mining
 - These ASIC Clouds already exist "in the wild"!
- Video Transcoding (e.g. YouTube)
 We do H.265 transcoding.
- Deep Neural Networks (face/voice recognition)
 Scaling up DaDianNao into an ASIC cloud.

ASIC Cloud Design: Key Metrics

- Accelerator Metrics:
 - Energy efficiency (W per op/s) (=energy/op)
 - Performance (\$ per op/s)
- Conventional trivial weighing:
 Energy-Delay product or Energy-Delay squared
- Datacenter Total Cost of Ownership as the new metric
 - Barroso et al Datacenter analysis
 - Conservative assumption: 1.5 year lifetime of ASIC

Barroso et al, "The datacenter as a computer: An introduction to the design of warehouse-scale machines," Synthesis lectures on computer architecture, vol. 8, 2013

Complete Design Methodology from Verilog to TCO-Optimized Datacenter

- We can jointly specialize server and ASIC to optimize TCO.
- Thermal optimization based on RCA properties: ASIC placement (DUCT layout), heat sink optimization (# fins, width, materials and depth), die size

(For time constraints, we highlight just a few items in the talk.. See the paper!)

Complete Thermal Analysis using CFD (Ansys ICEpak)

A flow that converts ASIC properties to Server properties and TCO

Design Space Exploration

- Observation: Voltage scaling is a first-class optimization for TCO.
 Core voltage increases from left to right
- Pareto curve for Performance and energy efficiency
- Diagonal lines show equal TCO
- Exploring different # of DRAMs
 per ASIC, # of ASICs per lane, and
 Logic Voltage, as well as thermal
 optimizations

This plot is for 5 ASICs per lane.

Deathmatch

• ASIC Servers greatly outperform the best non-ASIC alternative in terms of TCO per op/s.

GPU:

- AMD 7970 for BC and LC
- NVIDIA Tesla K20X for Deep Learning

CPU:

- Core i7 3930K for BC and LC
- Core i7 4790K for Video
 Transcode

CPU Cloud vs. GPU Cloud vs. 28nm ASIC Cloud Deathmatch.

When do we go ASIC Cloud?

- TCO improvement vs. TCO/NRE
 - TCO improvement: determined by accelerator improvements versus best alternative
 - TCO: determined by scale of computation (higher is better)
 - NRE: determined by ASIC development and deployment costs (lower is better)
- "Two-for-two" rule: Moderate speed-up with low NRE beats high speed-up at high NRE

Building a model for NRE

- Mask cost
- IP licensing cost
- Labor cost (Frontend, Backend and system NRE)
- Tools cost (Frontend and Backend)
- Package NRE

NRE: Mask and Packaging

• Mask costs rise exponentially (total 89x range)

- Package NRE is fixed among process technologies.
 - Flip-chip BGA package NRE is \$105K

NRE: IP Licensing Cost

NRE: Backend Labor Cost

- Cost of pushing Verilog netlist through backend flow is fairly steady among nodes
 - But increases dramatically in double-patterned technologies like 16nm.

Tech	250nm	180nm	130nm	90nm	65nm	40nm	28nm	16nm
Backend labor cost per gate (\$) [30]	0.127	0.127	0.127	0.127	0.127	0.129	0.131	0.263

H. Jones. Strategies in Optimizing Market Positions for Semiconductor Vendors Based on IP Leverage. IBS White Paper, 2014.

NRE: Labor and Tool Costs

 Backend labor time is calculated based on backend labor cost per gate model

Frontend Labor Salary [19]	\$/yr	115K
Frontend CAD Licenses	\$/Mm	4K
Backend Labor Salary [19]	\$/yr	95K
Backend CAD Licenses	\$/month	20K
Overhead on Salary		65%

Values are for San Diego, 2016

NRE: App dependent components

PCB design costs are for late 2016

NRE breakdown for Benchmarks

Marginal Cost: Wafer and Package cost

 Wafer costs rise exponentially after 65nm; jump on transition to bigger wafers

Wafer Diameter is 200 mm until 180nm and 300 mm afterwards

Process Node as a Knob

- ASIC process technology nodes from 250 nm to 16 nm give us a range of:
 - 256x in maximum accelerator size
 - 15.5x in max transistor frequency
 - 152x in energy per op
 - 28x in cost per op/s
 - 89x in mask costs

Process Node as a Knob (cont'd)

- Energy per op improvement
 - But flatte of Dennar

ard Scaling.							Energy/OP Relative to 250	0.2 0.1 0.05 0.02 0.01	♥. -■. -▲. -♦. -●.	180nm 130nm 90nm 65nm 40nm 28nm 16nm		2.08)	38)
180	130	90	65	40	28	16		(0.8	1	2	3		4
1.8	1.2	1.0	1.0	0.9	0.9	0.8								

E

2.0

1.0

2.68

3.12

Cost per op/s improvement

250

2.5

Tech Node (nm)

Nom. V_{dd} (V)

 But flattens because of post-Dennard power density limitations and increase in wafer cost

2.01

6

7 8 9 10

2.21

20

Pareto Frontiers across technology nodes

Video Transcode Pareto frontiers improve in both energy and cost efficiency for newer technologies.

Two-for-Two rule in Practice

 Post-40nm has dramatic increase in NRE vs. Marginal Benefit

Picking the Optimal Node

• Bitcoin example:

Picking the Optimal Node (cont'd)

Apps with modest TCO improvement

- Each set of lines represent an app with baseline TCO equal to that ASIC node
- /N means 250 nm reduces TCO by N times
- For time constraints, see the paper how to use it!

Video Transcode Tech Parity Node

Summary

- ASIC Clouds are a promising direction for deploying new kinds of accelerators targeting large, chronic workloads.
- We present a model for computing NRE.
- We present a model for modeling TCO across nodes, and show that old nodes can have optimal NRE+TCO.
- We show an end-to-end methodology for selecting NRE+TCO-optimal ASIC Clouds across technology nodes.

Thank You