
Taming the Zoo: The Unified GraphIt Compiler
Framework for Novel Architectures

Ajay Brahmakshatriya
MIT CSAIL

ajaybr@mit.edu

Emily Furst
University of Washington

eafurst@cs.washington.edu

Victor A. Ying
MIT CSAIL

victory@csail.mit.edu

Claire Hsu
MIT CSAIL

clhsu@mit.edu

Changwan Hong
MIT CSAIL

changwan@mit.edu

Max Ruttenberg
University of Washington
mrutt@cs.washington.edu

Yunming Zhang
MIT CSAIL

yunming@mit.edu

Dai Cheol Jung
University of Washington

dcjung@uw.edu

Dustin Richmond
University of Washington

dustinar@uw.edu

Michael B. Taylor
University of Washington

prof.taylor@gmail.com

Julian Shun
MIT CSAIL

jshun@mit.edu

Mark Oskin
University of Washington
oskin@cs.washington.edu

Daniel Sanchez
MIT CSAIL

sanchez@csail.mit.edu

Saman Amarasinghe
MIT CSAIL

saman@csail.mit.edu

Abstract—We live in a new Cambrian Explosion of hardware
devices. The end of conventional processor scaling has driven
research and industry practice to explore a new generation of
approaches. The old DNA of architecture design, including vec-
tors, threads, shared or private memories, coherence or message
passing, dataflow or von Neumann execution, are hybridized
together in new and exciting ways. Each new architecture exposes
a unique hardware-level API. Performance and energy efficiency
are critically dependent on how well programs can use these APIs.
One approach is to implement custom libraries for each new
hardware architecture and application domain. A more scalable
approach is to utilize a portable compiler infrastructure tailored
to the application domain that makes it easy to generate efficient
code for a diverse set of architectures with minimal porting effort.

We propose the Unified GraphIt Compiler framework (UGC),
which does exactly this for graph applications. UGC achieves
portability with reasonable effort by decoupling the architecture-
independent algorithm from the architecture-specific schedules
and backends. We introduce a new domain-specific interme-
diate representation, GraphIR, that is key to this decoupling.
GraphIR encodes high-level algorithm and optimization infor-
mation needed for hardware-specific code generation, making
it easy to develop different backends (GraphVMs) for diverse
architectures, including CPUs, GPUs, and next-generation hard-
ware such as Swarm and the HammerBlade manycore. We also
build scheduling language extensions that make it easy to expose
optimization decisions like load balancing strategies, blocking
for locality, and other data structure choices. We evaluate UGC
on five algorithms and 10 input graphs on these 4 distinct archi-
tectures and show that UGC enables implementing optimizations
that can provide up to 53× speedup over programmer-generated
straightforward implementations.

Index Terms—Compilers for Novel Architectures, Domain-Spe-
cific Languages, Graphs, Intermediate Representations

I. INTRODUCTION

As we enter the twilight of Moore’s Law, architectural diversity
is rapidly exploding. New designs from generic parallel
substrates such as manycores and dataflow engines, to highly
domain-specific engines such as machine learning and graph
accelerators are being researched and commercially deployed.
Many of these architectures are programmable and combine
well-understood techniques such as vectorization, threading,
and explicit data movement in novel ways. Oftentimes, the dif-
ference between lackluster performance and dramatic speedup

Generated CUDA

Algorithm
Specification

Architecture-
Specific Schedule

GPU
GraphVM

CPU
GraphVM

CUDA C++

Swarm
GraphVM

T4 C++ HB C++

HB
GraphVM

GPU-Specific Analysis
& Optimizations

CUDA
Codegen

GPU
Runtime
Library

Hardware-Independent Compiler

GraphIR

GPU Graph VM

Fig. 1: The Unified GraphIt Compiler framework (UGC).
GraphIR decouples the hardware-independent part of the
compiler from the hardware-dependent GraphVMs. Grey blocks
denote parts of the compiler, and blue blocks denote code
(inputs, intermediates, libraries, or generated).

hinges on correctly using the particular combination of features
an architecture provides. Yet it is a daunting task to do so for the
wide range of hardware architectures and application domains
targeted by general-purpose systems.

In this paper, we advocate for a novel compiler and software
stack that can support this explosion in architectural diversity.
We pursue a domain-specific approach, focusing on graph
analytics, to enable the compiler to capture programmer intent
and produce optimized implementations. We present a compiler
toolchain, the Unified GraphIt Compiler framework (UGC),
that targets diverse architectures while making it easy to write
and compose optimizations that make use of each architecture’s
unique features. Recent work has developed domain-specific
toolchains for deep learning and image processing [22, 70] that
target CPUs, GPUs, and accelerators, showing the potential of
this approach. But graphs, due to their irregularity, present a
unique set of challenges for both hardware and software.

Graph processing is a crucial application domain that can
benefit from hardware acceleration [6, 23, 34, 43, 87]. Graph
algorithms are at the heart of many applications [16, 29, 68, 75,
90], but are notoriously difficult to optimize [59, 95]. Graph
programs exhibit irregular memory access patterns that often

429

2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA)

978-1-6654-3333-4/21/$31.00 ©2021 IEEE
DOI 10.1109/ISCA52012.2021.00041

saturate memory bandwidth or suffer from poor utilization of
hardware optimized for regular memory accesses. The diversity
of graph applications and input graphs, combined with the
unique features of different architectures, makes it hard to
program high-performance and portable graph applications. For
example, when processing smaller graphs on CPUs, exploiting
the cache hierarchy and out-of-order execution are key. On
GPUs, which have two orders of magnitude more compute
and memory bandwidth [65], structuring the code to exploit
data parallelism and block-oriented memory accesses are key.
On task-based architectures such as Swarm [43], exploiting
speculation and fast inter-task synchronization is critical.
Finally, on manycore architectures such as HammerBlade,
which have hundreds to thousands of small general-purpose
processor tiles [5, 25, 33, 71, 84], it is critical to efficiently
use fast software-managed scratchpad memory.

Choosing the right level of abstraction for the intermediate
representation is critical to simplify code generation for the
above diverse architectures and to expose optimizations oppor-
tunities. To achieve these goals, UGC introduces a new domain-
specific intermediate representation, the Graph Intermediate
Representation (GraphIR), to encode hardware-independent
optimizations and to serve as a high-level interface to different
hardware backends.

UGC is built on top of the GraphIt domain-specific language
(DSL) [15, 93, 95], which decouples the algorithm from the per-
formance optimizations (schedules) for graph programs. UGC
uses a new scheduling language that combines load balancing,
edge traversal direction, active vertex set creation, active vertex
set ordering, kernel fusion, explicit data movement, and fine-
grained task splitting, among other optimizations. Figure 1
depicts the overall compilation flow. First, various analyses and
lowering passes generate GraphIR. Then, GraphIR is lowered
into code for different architectures using an architecture-
specific Graph Virtual Machine (GraphVM), which performs
hardware-specific transformations and code generation.

This paper makes the following contributions:
• A compiler framework with a novel and carefully designed

intermediate representation, GraphIR (Section III-B); hard-
ware-independent passes; and hardware-specific GraphVMs
to generate fast code on diverse architectures.

• A novel extensible scheduling language (Section III-D) that
allows programmers to explore the optimization spaces of
different hardware platforms.

• Implementations of four GraphVMs that can generate effi-
cient code for CPUs, GPUs, Swarm, and the HammerBlade
Manycore (Section III-C).

• Evaluation of code generated by the four GraphVMs, which
shows up to 53× speedup over user-supplied baseline code.

This paper also provides insights on techniques for building
portable compilers targeting very different architectures for a
specific application domain.

II. BACKGROUND

The performance of graph processing depends on optimizations
to mine for locality within sparse data structures, to minimize

high-cost memory accesses and synchronization, and to balance
load across parallel threads [11, 59, 86]. Unfortunately, the
structure of graphs varies widely, as does the work across
iterations of an algorithm. As a result, the optimal approach can
change not only across graphs, but also across iterations [10, 60].
This makes graph programs notoriously difficult to optimize
on any architecture.

To make matters worse, modern architectures employ a
wide range of hardware features to exploit parallelism and
achieve high throughput: threads, vectors and warps, tasks,
task or instruction speculation, memory consistency models,
cache coherence, variants of atomic operations, data movement
engines, and scratchpads (to name a few). Combinations
of these features produce exponentially many architectural
variations, each with different performance characteristics. Each
architecture has a different low-level language, compiler, and
runtime that exposes these features, and implementations must
be cognizant of these features and their implications.

Domain-specific languages (DSLs) for graph processing
abstract the complexity of modern architectures [95] and
the dynamic challenges of graph structure. DSLs have been
used to abstract hardware in domains like machine learning
[22, 53], image processing [70], networking [14, 51], tensor
algebra [50], and bioinformatics [74], or sometimes combining a
few domains [18, 72]. An ideal DSL for graph processing would
facilitate algorithm expression and abstract away architectural
details to provide good performance on a wide range of
applications and architectures.

A. GraphIt Domain-Specific Language (DSL)
GraphIt [15, 93, 95] is a domain-specific language for graph
applications that decouples the algorithm specification and
computation schedule. This enables GraphIt to generate high-
performance code with optimizations tailored for diverse graph
inputs from a single portable algorithm specification.

1 ...
2 func toFilter(v : Vertex) -> output : bool
3 output = (parent[v] == -1);
4 end
5 func updateEdge(src : Vertex, dst : Vertex)
6 parent[dst] = src;
7 end
8 func main()
9 ...

10 #s0# while(frontier.getVertexSetSize() != 0)
11 #s1# var output : vertexset{Vertex} =
12 edges.from(frontier).to(toFilter).
13 applyModified(updateEdge, parent, true);
14 ...
15 end
16 delete frontier;
17 end

Fig. 2: Algorithm specification for Breadth-First Search (BFS)
in GraphIt.

To concretely show the benefits of GraphIt’s approach,
Figure 2 shows the algorithm specification for Breadth-
First Search (BFS) in GraphIt. This code only describes
the computation to be performed. Lines 2 and 5 define
functions for filtering vertices and updating edges. Line 13

430

Hardware features CPU Swarm GPU HammerBlade
Parallel Execution Model Threads Ordered Tasks SIMT / SIMD SPMD

Number of Processors ∼ 100 ∼ 100 ∼ 100K (Threads) ∼ 1000
Speculation Instruction-Level Instruction- & Task-Level No No

Memory Latency Hiding OoO execution, SMT OoO execution, SMT Multithreading Non-Blocking Memory Ops.
Synchronization support Atomics Coherence-Enforced Ordering Atomics, Barriers Atomics

Addressable Memory (GB) ∼ 1000 ∼ 1000 ∼ 40 ∼ 50
Shared on-chip Memory Coherent L3 Coherent L3 L2 Globally-Partitioned LLC
Core-local data Memory Coherent L1,L2 Coherent L1,L2 L1 (No Coherence) Scratchpad (SW Coherence)

On-Chip Storage per Thread ∼ 1MB ∼ 1MB ∼ 100B 4KB

TABLE I: Summary of parallel architectures studied in this paper. Two of the four architectures are shown in Figure 3.

calls the edgeset.applyModified operator, which uses these
functions to specify which edges are to be processed and what
computation is to be performed on each edge. The algorithm
specification does not specify the loop nests or the iteration
order; this is specified in the schedule. This separation makes
it possible to generate different implementations suitable to the
algorithm and graph input.

UGC uses exactly the same algorithm language as GraphIt,
enabling us to reuse the source code written for various
applications. The high-level design of the operators also makes
it easy for UGC to target very different architectures. For
example, the edgeset.applyModified operator can be easily
mapped to architectures that have specialized units for traversing
edges in parallel. We extend the scheduling language to fit the
optimizations of different architectures. Examples are shown
in Figure 6.
B. Parallel Architectures
In this work, we target the four parallel architectures shown
in Table I. These architectures are built with a diverse set of
hardware features that expose different forms of parallelism,
latency hiding techniques, and synchronization. These archi-
tectures require significantly different optimization strategies
and pose unique challenges for UGC. We briefly explain each
architecture below, and the challenges that they present when
compiling graph programs.

1) Multicore CPU

A multicore CPU has cores optimized for single-thread
performance, with prefetching and a multi-level cache hierarchy.
To hide latency, each core supports speculative out-of-order
execution as well as simultaneous multithreading. CPU software
exposes explicit parallelism through threads provided by a
multithreaded runtime [13, 19]. CPUs perform well on graph
applications that provide limited parallelism, high locality, or
predictable memory access patterns [11]. The large memory
capacity also means that CPUs outperform other systems on
multi-terabyte graphs [28].

2) GPU

GPUs provide massive parallelism through a SIMT pro-
gramming (SIMD execution) model, where arithmetic units
are vectorized and use predication to handle divergent control
flow. GPUs use multithreading with many hardware thread
contexts to hide memory latency. GPUs are suitable for graph
applications with massive parallelism that exhibit regularity in
graph structure, memory access pattern, and limited control
flow. Applications such as PageRank [66] or less-sparse graph

Memory Controller / IO

Memory controller / IO

M
em

or
y

co
nt

ro
lle

r /
 IO

Core Core Core Core

L1 I/D L1 I/D L1 I/D L1 I/D

L2

L3 Bank
&

Directory Bank
Router

Task Unit

Tile Architecture

(a) Swarm: A multicore CPU with support for fine-grain task parallelism
and task-level speculation.

…
HBM Channel HBM…

LLC

…

…

…

Banked Last Level Cache (LLC)

… … … … …

…

…

…HBM Channel HBM

…

…

Cache Banks

Host

Core

I$ Logic

Router

Scr
atc

h

(b) HammerBlade Manycore Pod: Cores with software-managed
scratchpads operate independently in a partitioned, globally-addressable
memory space.

Fig. 3: Architectural overview of two of the parallel graph
processing architectures studied in this paper.

workloads that map well to existing linear algebra libraries [45,
89] can exploit massive memory bandwidth with coalesced
memory accesses. GPUs perform poorly on applications that
suffer from control divergence [88], load-imbalance [77], or
too many sparse memory accesses [1]. Finally, GPUs function
best on graphs that fit in device global memory.

3) Swarm

Swarm augments a CPU with support for fine-grained task
parallelism [43]. Swarm can achieve order of magnitude

431

improvements in scalability over conventional CPUs and GPUs
on some graph algorithms by using dedicated hardware task
queues and speculative execution to distribute tasks across
hundreds of cores [42, 44, 81].

Swarm’s execution model uses order as the main synchro-
nization primitive. Swarm programs consist of tasks. Each task
can read and write arbitrary memory and spawn children tasks.
Each task is given a timestamp when it is spawned, which
must be greater than or equal to its parent’s timestamp. Swarm
guarantees that tasks appear to run atomically and in timestamp
order, hiding the effects of concurrency from software. Under
the hood, Swarm hardware executes tasks in parallel and
out of order. To preserve ordered semantics, tasks execute
speculatively and the coherence protocol is extended to detect
order violations. Upon a violation, the offending task is aborted
and re-executed. Fig. 3a shows how Swarm adds a task unit near
the cores of each chip tile. These distributed task units perform
asynchronous, high-throughput task dispatch and task commit,
efficiently supporting tasks as short as a few instructions. These
tiny tasks can be selectively aborted or serialized with compiler-
generated hints, exposing unique tradeoffs as optimizations must
balance task overheads, parallelism, and the costs of aborts and
re-executions.

This execution model is a natural fit for priority-based
or iterative algorithms, where each task can be assigned a
timestamp based on its priority or iteration number. Swarm’s
speculative execution uncovers more parallelism than CPUs
and GPUs by executing tasks with different timestamps in
parallel. Swarm can be programmed in C++ using the T4
compiler [91], but the key challenge is in appropriately dividing
the computation into tiny tasks to exploit parallelism and
minimize abort costs.

4) HammerBlade Manycore

Manycore architectures provide thread-level parallelism and
flexibility with hundreds to thousands of general-purpose
cores [5, 25, 33, 71, 84]. We target the HammerBlade Manycore
with hundreds of independent cores. The cores have a scalar
pipeline, low-latency software-managed scratchpad memory,
and support integer, floating-point, and atomic instructions.
The cores communicate over the memory-mapped 2-D mesh
Network-on-Chip. Cores can issue many non-blocking memory
requests to exploit pipeline parallelism and hide memory
latency. In addition to the scalar cores, there is an on-network
host processor that manages execution. Figure 3b presents an
architectural diagram of the HammerBlade Manycore.

The HammerBlade Manycore memory hierarchy requires
software to make choices to efficiently exploit memory par-
allelism and trade off between latency and capacity. The
memory hierarchy has four levels: core-local scratchpad, inter-
core scratchpad(s), banked Last Level Cache (LLC), and High-
Bandwidth Memory (HBM) [41, 56]. Core-local scratchpad,
remote scratchpads, cache, and other network locations are
mapped to non-intersecting regions of a core’s address space to
give software explicit control over data movement. Scratchpads
offer low-latency storage and are explicitly managed by software

threads on the cores. Multiple independent HBM channels
service pipelined memory requests from the LLC. Cache banks
map to exclusive memory ranges of the HBM address space.
Consequently, the HammerBlade Manycore exposes a PGAS-
like memory model that is coherent by construction.

The HammerBlade Manycore provides a kernel-centric
programming abstraction, similar to CUDA. Kernel code is
written from the perspective of a single thread executing on
a core. Multiple cores are aggregated into rectangular groups
to execute kernels. Cores in a group communicate explicitly
through global memory or operations on remote and local
scratchpads. Cores executing within a group synchronize using
explicit barrier primitives. Kernel execution and scheduling is
managed through runtime software on the tightly-coupled host
processor. This provides a SPMD-like execution model.

Manycore architectures are well suited for graph applications
with high parallelism, and random memory access patterns.
Unlike GPUs, the independent cores are not slowed by control-
flow divergence. Independent HBM channels can service
multiple memory accesses simultaneously. The key challenges
are to use non-blocking loads to hide latency, to exploit
thread-level and memory level parallelism, and to balance work
between independent threads of execution.

III. COMPILER DESIGN

Choosing the right abstraction for the intermediate repre-
sentation is critical to simplify code generation for diverse
architectures and to expose optimization opportunities. To
achieve these goals, we designed GraphIR, a novel intermediate
representation. We studied the features of varied architectures to
identify the right level of abstraction with enough expressiveness
to capture algorithmic details from the graph domain. For
example, instead of low-level loop nests, GraphIR has operators
for iterating over a set of vertices, or edges incident to a
set of vertices. These operators can be directly mapped to
thread hierarchies or manycore tiles on architectures such
as GPUs and the HammerBlade Manycore, without needing
to lift computations from loop nests. GraphIR also avoids
making assumptions about the concrete representation of
data structures. This allows different architectures to choose
various implementations for vertex sets depending on the
available memory, bandwidth, and other tradeoffs. For Swarm,
the compiler can even eliminate the use of software work queues
for vertex sets, instead mapping the operations on vertex sets
to hardware tasks. This section explains how GraphIR enables
building GraphVMs with these specialized optimizations.
A. Hardware-Independent Transformations
GraphIR has a dual goal of offering flexibility while allowing
for maximum code reuse. Even though GraphIR’s main goal
is to support specialization and optimizations unique to each
hardware backend, a large part of the compiler infrastructure,
including analysis and transformation passes, is target-agnostic.
Specifically, UGC adapts the domain-specific transformations
from the GraphIt DSL compiler [15, 93, 95], such as dependence
analysis to insert atomics in the user-defined functions (UDFs),
liveness analysis to find frontier memory reuse opportunities,

432

and other transformations to UDFs for traversal direction, paral-
lelism, and data structure choices. These hardware-independent
transformations and analyses are performed on the GraphIR
before it is passed to the GraphVMs for code generation. These
passes can access scheduling language inputs (Section III-D).
These passes also add metadata to the GraphIR for the
GraphVMs to use during code generation. Section III-C shows
how the bulk of the frontend and the hardware-independent
compiler are reused by all four GraphVMs that we implement.
B. GraphIR
One of the main contributions of this paper is the GraphIR
intermediate representation that decouples the algorithm specifi-
cation and hardware-independent optimizations from hardware-
specific optimizations. Like LLVM IR, GraphIR is an in-
memory representation of a program that allows optimizations
through IR-to-IR transformations before final code generation.
This design enables us to build reusable program analyses,
transformations, and lowering passes shared across different
hardware platforms, reducing the effort needed to support a
new backend (GraphVM) in UGC. However, unlike LLVM IR,
GraphIR uses a high-level domain-specific representation that
facilitates more powerful and flexible optimizations.

GraphIR is composed of variables, functions, and instructions.
Each variable, function, or instruction carries both arguments
and metadata, as shown in Table II. Arguments capture all of
the information derived from the algorithm specification and
is required for correctness of the generated code. Metadata
captures information related to the performance optimizations,
and hardware backends can choose to ignore these or add
new ones specific to their hardware. GraphIR’s metadata
can be manipulated with an API that includes two func-
tions: setMetadata<T>(std::string label, T val) and
T getMetadata<T>(std::string label), where T is any
C++ type (including other GraphIR nodes). Because this API
allows arbitrarily many string labels, metadata can easily stack
without having to change GraphIR base class definitions. This
metadata API is the primary way in which GraphVMs extend
GraphIR nodes for hardware-specific optimizations.

To perform hardware-specific transformations and code
generation, each backend implements an abstract machine
(GraphVM) to optimize and run GraphIR, similar to the Java
VM or LLVM. Section III-C provides details on GraphVMs.

Operators and data types are designed in an implementation-
agnostic way to make it easy for the GraphVM developer to pick
the right data structure and choice of mapping computations to
various hardware units. The two most important instructions in
GraphIR are the EdgeSetIterator and VertexSetIterator
instructions, shown in Table II. EdgeSetIterator iterates
through all or a subset of the edges of a graph and invokes a
function on each edge. The arguments of EdgeSetIterator
specify the graph (input_graph), input frontier vertexset
(input_vset), output frontier vertexset (output_vset), and
the user-defined function that works on the edges (apply_f).
These arguments are derived from the operators in the algorithm
specification. The instruction also has metadata to generate
optimized implementations, such as choosing the input/output

1 Function updateEdge (int32_t src, int32_t dst,
2 VertexSet output_frontier, {
3 bool enqueue = CompareAndSwap<is_atomic=true>(

parent[dst], -1, src),
4 If (enqueue, {
5 EnqueueVertex<format=SPARSE>(output_frontier,

dst)
6 }, {})
7 })
8 Function main (int32_t argc, char* argv[], {
9 ...

10 WhileLoopStmt<needs_fusion=true>(VertexSetSize(
frontier), {

11 EdgeSetIterator<requires_output=true,
12 can_reuse_frontier=true,
13 direction=PUSH,
14 is_edge_parallel=true>(
15 edges, frontier, output, updateEdge,

toFilter),
16 AssignStmt(frontier, output)
17 }),
18 })

Fig. 4: Optimized GraphIR generated by the compiler for the
BFS algorithm given a schedule that enables kernel fusion. This
text representation is generated by pretty printing the GraphIR,
which is an in-memory data structure. A backend developer
can manipulate GraphIR with the UGC API.

frontier representations, edge traversal direction, deduplicating
the output frontiers, or generating specialized code if the edge
set representation is dense. VertexSetIterator iterates over
the vertices in a frontier, and similarly has arguments and
metadata for optimizations. Apart from these key instructions,
GraphIR has instructions for data structure allocation both on
the host and on the device, general arithmetic and reductions,
and program control flow.

Architectures with these features make use of the metadata
attached to the instructions to implement various optimizations.
For example, GPUs, which have a hierarchy of threads, can
implement different load-balancing strategies to efficiently
process vertices with varying degrees. CPUs and GPUs both
have multiple levels of memory, which enables blocking of
edges for better cache utilization.

Figure 4 shows the pretty-printed GraphIR for the BFS
algorithm input from Figure 2. Table II explains each of the
GraphIR operators and types used in this example. Line 11
shows the key EdgeSetIterator GraphIR node. This node
contains arguments such as the graph to iterate on, the input
and output frontiers, the function to apply on each edge, and the
source and destination filters. This operator also has metadata
attached to it (shown in <>). For example, the can_reuse_-
frontiers is the result of the frontier reuse analysis pass.
As shown in Table III, the result of this analysis is used by
the GPU, Swarm, and HammerBlade Manycore GraphVMs.
The EnqueueVertex node is another GraphIR node that has
metadata, in this case for the representation of the frontier to
enqueue to (Line 5). The code in Figure 4 is just the pretty-
printed version of the in-memory GraphIR data structure.

The BFS example also shows the updateEdge user-
defined function (UDF) that EdgeSetIterator applies to
each edge. Line 3 shows that the high-level compiler inserted

433

GraphIR Types
Type Description
Vertex Type to represent an individual vertex in the graph.
Edge Type to represent a single edge in the graph.
EdgeSet Graph data type. Can be weighted or unweighted. Can have COO or CSR representation.
VertexSet Type to hold a set of vertices. Can have SPARSE, BITMAP or BOOLMAP representation.
Function Top level function definition type. Functions can be annotated as DEVICE, HOST or both.
VertexData A property of a basic type (float, int, long...) associated with each vertex in the graph. Can be stored as array

of struct or struct of arrays.
PrioQueue Type to represent queues that hold vertices to be processed based on some priority.
FrontierList Type to hold a list of VertexSets.

GraphIR Instructions
Instruction Arguments Metadata
VertexSetIterator VertexSet in_set

Function apply_f
bool is_all_verts
bool is_parallel

EdgeSetIterator EdgeSet input_graph
VertexSet input_vset
VertexSet output_vset
Function apply_f

bool is_all_edges, requires_output, apply_deduplication
bool can_reuse_frontier, is_edge_parallel
DirectionType direction: PUSH or PULL
VertexSetRepresentation output_representation
VertexSetRepresentation pull_input_frontier
PriorQueue queue_updated

EnqueueVertex VertexSet output
Vertex to_output

VertexSetRepresentation output_format

CompareAndSwap TensorExpr<BasicType> expr
BasicType old_value
BasicType new_value

bool is_atomic

WhileLoopStmt bool condition bool needs_fusion
List<Variables> hoisted_vars

UpdatePriorityMin
/Sum

Vertex to_update
int update
PrioQueue Q

bool needs_atomic

ListAppend FrontierList list
Output to_append

bool to_destroy

ListRetrieve FrontierList list
VertexSet output

bool needs_allocation

VertexSetDedup VertexSet to_process
ReductionOp TensorExpr<BasicType> expr

ReductionType type
BasicType val

bool is_atomic

TABLE II: Key data types and IR nodes in GraphIR. The table also shows the arguments and metadata associated with each IR
node. This metadata is attached by the hardware-independent part of the compiler. GraphVMs can add more metadata as part
of their respective passes. The basic arithmetic and control flow IR nodes are not shown here for brevity.

a CompareAndSwap after dependence analysis with metadata
is_atomic=true, indicating that this operation requires ap-
propriate synchronization after lowering. Different backends
(GraphVMs) implement the CompareAndSwap instruction dif-
ferently: CPUs use compare-and-swap hardware instructions;
GPUs use warp shuffling for cheap communication among
threads; and the Swarm GraphVM ignores is_atomic meta-
data because Swarm hardware always executes tasks atomically.

GraphIR also facilitates hardware-specific optimizations. For
example, the GPU GraphVM can fuse multiple kernel launches
into a single kernel launch, as Section III-C2 will explain.
The GPU GraphVM extends the metadata of WhileLoopStmt
with a needs_fusion flag, and sets it to true in a hardware-
specific pass to indicate that the schedule has prescribed fusing
all of the operator calls inside the loop into a single kernel.

The right level of abstraction and the support for extending
GraphIR with metadata makes GraphIR an ideal representation
for accomodating hardware-specific optimizations in UGC.

C. GraphVM

The Graph Virtual Machine (or GraphVM) is an abstract
machine that executes the target-independent GraphIR. Each
backend developer implements a GraphVM tailored to their

architecture that includes hardware-specific passes and code
generation. The UGC framework provides all of the required
tools to build diverse optimization passes including APIs to
access GraphIR nodes and scheduling objects attached to them,
a set of reusable passes that can be enabled depending on
whether the hardware benefits from it, and common routines to
aid code generation. GraphVMs for different architectures can
be very diverse. Each GraphVM developer can implement it as
an interpreter that directly consumes and executes GraphIR or
as a combination of transformation and code generation passes.
The developer can also choose to move complexity between
the generated code or the runtime library, as we discuss next.
As Figure 1 shows, a typical GraphVM has the following parts:

• Hardware-dependent analyses and transformation on
GraphIR using hardware-specific scheduling information.

• Code generation for the target device and host (if applicable).
• Runtime library and backend compiler infrastructure to

execute the generated code.

As shown in Table III, UGC provides a library of analysis
and transformation passes that GraphVMs reuse or specialize,
easing the development of new backends. We now discuss our
our GraphVMs and their hardware-specific optimizations.

434

Module Base version CPU GPU Swarm HammerBlade

Frontend Algorithm parser & AST definitions 10,900 0 0 0 0
Schedule language functions 136 306 385 524 89

Hardware-Independent Compiler

Frontier Reuse Analysis 125 Not used 0 0 0
Property analysis/Atomic insertion 536 0 0 Not used 0
Ordered Processing Lowering 386 0 120 0 0
Other Lowering Passes 4,171 0 0 0 0

GraphVM
Ordered Processing Specialization 104 0 Not used 0 Not used
Kernel Fusion 276 Not used 0 Not used Not used
Code Generator - 3,843 1,874 959 2,282
Runtime Library - 10,385 2,470 156 1,127

TABLE III: Lines of code for modules of UGC. Modules reuse code through object-oriented programming patterns, so lines of
code are divided between base modules and lines added in GraphVMs. Each GraphVM may use a base pass as-is, add lines for
hardware-specific optimizations, or simply not use the pass. Lines of code in bold are used by multiple GraphVMs.

1) Multicore CPU GraphVM

The CPU GraphVM has all of the CPU-specific passes
from the original GraphIt compiler to implement optimizations
specific to CPUs, such as edge-based and vertex-based traver-
sals, different representations for priority queue data structures,
cache and NUMA optimizations, vertex data array of struct
and struct of array transformations, among others. The code
generated from our CPU GraphVM is comparable to the code
generated from the original GraphIt compiler, thus maintaining
the state-of-the-art performance demonstrated in GraphIt [93,
95].

2) GPU GraphVM

The GPU GraphVM generates high-performance host and
device CUDA code tuned for different generations of GPUs.
Our implementation of the GPU GraphVM implements all of
the optimizations in the GPU version of GraphIt [15], but in
such a way that they can easily be integrated with the rest of
the infrastructure by means of GraphIR. The GPU GraphVM
makes use code generation as well as a large runtime library to
offload some of the complexity of code generation. We provide
examples of both techniques below.

Load-balancing runtime library. The GPU GraphVM [15]
implements many load-balancing strategies to trade off utiliza-
tion, synchronization costs, and work efficiency. Since the logic
of assigning edges to threads is largely independent of the actual
computation to be performed, load-balancing implementations
can be cleanly moved to a set of template library functions.
This not only simplifies code generation, but also makes it
easier to add more load-balancing techniques.

Code generation for kernel fusion. Kernel fusion is an
important optimization for road graphs because it amortizes
kernel launch overheads for applications where there is very
little work in each iteration [67]. The kernel fusion optimization
is implemented entirely in the GPU GraphVM as a series of
passes. A preliminary pass identifies the loops to be fused
and all of the variables that the body of the loop uses from
the main function. The first pass in the code generation then
generates the actual __global__ kernel to be launched on the
GPU. The code generation pass inserts appropriate CUDA API
calls to copy state between the host and device. Since the fused
kernel has a fixed number of threads, the code generator also
generates some outer loops to simulate the work of more threads

and inserts grid_sync() calls for synchronization. Finally, a
pass generates appropriate calls to launch a single GPU kernel
instead of a separate kernel for each step in each iteration of the
loop. Table III shows how this GPU-specific pass is a very small
fraction of the total lines of code. This demonstrates that the
design choices in GraphIR and GraphVMs significantly reduce
the effort required to support unique hardware optimizations.

The GPU GraphVM also implements other optimizations,
such as EdgeBlocking and fused vs. unfused frontier creation.

3) Swarm GraphVM

The Swarm architecture relies on speculative execution of
tasks to extract parallelism and make applications scale to a
large number of cores. Tasks are executed out of order but are
aborted when memory dependencies are violated, thus ensuring
correctness. However, repeated aborts are undesirable because
they result in wasted work. Therefore, the Swarm GraphVM
focuses a great deal on eliminating false dependencies between
memory accesses. Figure 5 shows the code generated by the
Swarm GraphVM for the BFS algorithm.
From vertex sets to tasks. One of GraphIR’s main data types is
the VertexSet, which holds the current set of active vertices.
This active set is read from on every round and written to
for the next round. Storing the active vertex set in memory
introduces data dependencies (e.g., reuse of memory across
rounds, or between updates to in-memory tail pointers or size
variables) that prevent Swarm from obtaining more parallelism
by speculating across many rounds. These data dependencies
are spurious, because the insertion of distinct vertices should
actually be independent. We solve this problem through a pass
in the Swarm GraphVM that replaces the enqueuing of a vertex
ID to a VertexSet with a task spawn. The body of this task
is the operation that we would perform with the vertex after
dequeuing it. The timestamp of the task is set based on the
round in which the vertex would be dequeued. This way, while
Swarm’s execution model guarantees tasks from one round
appear to execute before any task from the next round, tasks
from different rounds can execute speculatively in parallel
without false dependences arising from storing the VertexSet
in memory.

Figure 5 shows a lambda passed to for_each_prio to
indicate what action should be taken per element in the
frontier. The body of the lambda calls push to spawn tasks
that will execute the lambda on vertices at later timestamps.

435

This approach generalizes to priority-based algorithms like
∆-stepping as well, where task timestamps are set based on
priorities.

From shared to private state. Some applications have shared
variables that are updated periodically. For example, in the
forward pass of BC there is a variable updated once per round
to track the region of the output data structure that visited
vertices are recorded to. If all parallel tasks access this single
variable, data dependencies on the updates to this variable
would prevent speculation across rounds. To address this, the
Swarm GraphVM passes a private copy of this value to each
task that needs it, and updates are performed in a functional style
before passing these values to any task spawned for the next
round. By avoiding updates to any copy of the variable shared
by multiple parallel tasks, this pass eliminates unnecessary
dependences and unlocks more speculative parallelism.

Fine-grained splitting and spatial hints. When a dependence
is violated, the Swarm hardware must roll back and re-execute
the work done by the offending speculative task. It is important
to minimize this wasted work. We add a pass in the Swarm
GraphVM that helps the hardware schedule tasks in a way
that reduces both the number of aborts and the cost of each
abort. Swarm’s T4 compiler tries to assign spatial hints to each
task based on the memory locations that it accesses, but it can
do this only for tasks that do not access disparate memory
addresses [91]. Line 4 in Figure 5 shows how the GraphVM
adds an annotation to instruct T4 to split the subsequent block
of code into a subtask that accesses a single memory address.
This lets T4 dispatch these subtasks to chip tiles according
to the cache line that they access. As a result, accesses to a
given cache line are all executed within one chip tile, where
hardware can selectively serialize tasks that access the same
cache line, reducing the likelihood of aborts [42]. These fine-
grained subtasks are also cheaper to roll back and re-execute if
they are aborted, reducing the cost of aborts. Additionally, the
GraphVM exploits domain knowledge about the loops iterating
over constant edge arrays to strike a balance between the cost of
aborts and the cost of spawning additional tasks, by generating
annotations that help the backend compiler schedule memory
access instructions.

4) HammerBlade Manycore GraphVM

The HammerBlade Manycore GraphVM produces parallel
C++ code targeting the HammerBlade Manycore architec-
ture described in Section II-B4. The code produced by this
GraphVM is separated into sequential host code and parallel
device code. The sequential host code handles initialization and
coordination, while the parallel device code executes the body
of the graph algorithm. The HammerBlade Manycore GraphVM
implements optimizations and GraphIR transformations that
target the manycore architecture and its memory hierarchy.
Similar to the GPU GraphVM, the HammerBlade Manycore
GraphVM also provides extensive host and device runtime
libraries to simplify code generation.

Atomics. Similar to a GPU, atomics on the HammerBlade

1 frontier.for_each_prio([](int round, int src) {
2 for (int edgeID: neighbors(src)) {
3 int dst = edgeDst[edgeID];
4 #pragma task hint(&(parent[dst]))
5 {
6 if (parent[dst] == -1) {
7 parent[dst] = src;
8 push(round + 1, dst);
9 }

10 }
11 }
12 });

Fig. 5: Code generated by the Swarm GraphVM for BFS.

Manycore are expensive operations. On the manycore, atomic
operations in global memory are implemented using lock data
structures. The HammerBlade Manycore GraphVM leverages
the atomics pass from the GPU GraphVM to determine where
atomics are necessary. If an atomic operation is determined
to be necessary within a kernel, initialization code for the
necessary locks is also inserted into the host code.
Blocked access optimization. The HammerBlade Manycore
GraphVM implements an optimization that utilizes the software
managed scratchpads on each core. We call this optimization
the blocked access method. This method aims to reschedule
long-latency requests to main memory in parallel by formatting
work items into blocks. Cores iterate over their assigned blocks,
prefetching the entire block at once. Block data is stored in
the core’s scratchpad memory, repurposing it as a software-
managed L1 cache. The HammerBlade Manycore GraphVM
determines which elements can be safely read into scratchpad
memory without requiring synchronization between cores at
the end of processing.
Alignment-based partitioning. Memory-level parallelism and
workload partitioning are very important to achieve high
performance on the HammerBlade Manycore. We propose
an alignment-based partitioning method that aims to improve
memory system performance. In this method, cores work on
smaller work blocks of vertices that better align with cache lines
in the LLC, increasing effective memory access bandwidth.
This optimization utilizes a similar partitioning scheme to the
blocked access method, but does not use the core’s scratchpad
memory. This is due to the observation that, for some graph
workloads, the cost of loading data into scratchpads outweighs
the benefit of low-latency scratchpad accesses. Graph vertices
are split into V/b work blocks, where b is the number of vertices
contained in each work block, and V is the total number of
vertices in the graph. We select b to be a multiple of the cache
line size. Cores work on these blocks until all work blocks have
been processed. Because this reduces the size of the active
vertex set that each core is working on, we are able to increase
the cache hit rate and reduce cache line contention.
D. Extensible Scheduling
One of the main features of UGC is that it decouples the
algorithm input from the optimization schedules. This way, the
programmer or an autotuner [7] can generate different variants
of the same algorithm tailored to specific graph inputs simply
by supplying different schedules. Since different GraphVMs
support different optimizations, we build a new scheduling

436

Abstract Class Description
SimpleSchedule Hardware-independent abstract class for Sim-

ple schedule objects.
Function Description
getParallelization Get the parallelization scheme of the sched-

ule (VERTEX_BASED or EDGE_BASED).
getDirection Get the direction of traversal of edges. Can

be PUSH or PULL.
getPullFrontier Get how the next frontier will be created.

Can be BOOLMAP or BITMAP.
getDeduplication Get whether explicit deduplication should be

performed on the output frontier.
getDelta Get the delta value to use when creating

buckets in PriorityQueue.

TABLE IV: Description of the SimpleSchedule type and some
associated virtual functions.

Abstract Class Description
CompositeSchedule Hardware-independent abstract class for hy-

brid schedule objects (schedule that changes
based on runtime value).

Function Description
getFirstSchedule Get the first schedule object within this

hybrid schedule.
getSecondSchedule Get the second schedule object within this

hybrid schedule.

TABLE V: Description of the CompositeSchedule type and
some associated virtual functions.

language for each target. These scheduling languages have
essential features for optimizations on their respective targets.

One of the challenges with this approach is that the hardware-
independent part of UGC now has to deal with different
scheduling languages for the parameters that it needs. For
example, the dependence analysis to insert atomics in the
UDFs at least needs to know if the parallelization is vertex
based or edge based and if the traversal direction is PUSH or
PULL.

To address this problem, we use object-oriented programming
techniques to enable the hardware-independent part of UGC
to query the information that it needs from various scheduling
representations. The scheduling language input is stored
internally as scheduling objects attached to program nodes.
UGC creates an abstract interface with virtual functions for
all of the information that the hardware-independent compiler
needs. We implement new scheduling object classes for each
GraphVM by inheriting from this abstract interface. These
new classes have members and functions to configure various
scheduling options specific to optimizations supported for their
GraphVMs. These classes implement the virtual functions
to provide the hardware-independent part of UGC with the
information that it needs. Tables IV and V describe these
abstract scheduling classes with the virtual functions to query
information, such as direction and parallelization type.

Figure 6 shows example scheduling inputs for the BFS
algorithm for different GraphVMs. The HammerBlade sched-
ule example shows hybrid traversal with cache-aligned load
balancing, while the Swarm example enables transformations
for consecutive frontiers into a priority queue and breaks down
updates into smaller tasks.

Figure 6a shows a use of the CompositeGPUSchedule class,

SimpleGPUSchedule sched1;
sched1.configDirection(PUSH);
sched1.configFrontierCreation(FUSED)

SimpleGPUSchedule sched2;
sched2.configDirection(PULL, BITMAP);
sched2.configFrontierCreation(UNFUSED_BITMAP);

CompositeGPUSchedule comp1 (INPUT_SET_SIZE, 0.15, sched1, sched2);
program->applyGPUSchdule("s0:s1", comp1);

(a) GPU schedule for BFS.

SimpleHBSchedule sched1;
sched1.configLoadBalance(ALIGNED);
sched1.configDirection(HYBRID);

program->applyHBSchedule("s0:s1", sched1);

(b) HammerBlade Manycore schedule for BFS.

SimpleSwarmSchedule sched1;
sched1.configDirection(PUSH);
sched1.taskGranularity(FINE_GRAINED);
sched1.configFrontiers(VERTEXSET_TO_TASKS);

program->applySwarmSchedule("s0:s1", sched1);

(c) Swarm schedule for BFS.

Fig. 6: Example schedules for statements s0 and s1 in Figure 2.

1 if (frontier.size < frontier.max_num_elems * 0.15) {
2 PUSH_edgeset<... // EdgeSetIterator with sched1
3 } else {
4 PULL_edgeset<... // EdgeSetIterator with sched2
5 }

Fig. 7: Host-side code with runtime condition generated based
on the CompositeGPUSchedule in Figure 6a.

which inherits from the CompositeSchedule class shown
in Table V. The CompositeGPUSchedule object is a hybrid
schedule combining two AbstractSchedule objects (which
could be other CompositeSchedule objects). The user also
specifies the runtime criteria and its associated parameters.
Here, the INPUT_SET_SIZE criteria is used with 0.15 as
the criteria. This tells the compiler to generate code that
chooses between sched1 and sched2, based on whether the
input vertex set is above 15% of the total vertices in the
graph. Figure 7 shows the generated code. The conditions
and copies of the EdgeSetIterator with schedules sched1
and sched2 attached are created by the hardware-independent
compiler and GraphVMs need not be aware of it. The com-
piler generates a nested if-then-else statement if multiple
CompositeSchedule objects are combined.

IV. EVALUATION

In this section, we demonstrate that UGC supports imple-
menting optimizations that are critical for performance on
the four architectures we target: CPUs, GPUs, Swarm, and
the HammerBlade Manycore. We compare the performance
of optimized code generated by the GraphVMs for each of
the architectures with baseline, unoptimized code on 5 graph
algorithms and up to 10 different graph inputs. Baseline code is
generated by applying the default schedule for each GraphVM
to the algorithm. For the optimized version, we tune the
schedules for each application and graph pair, but always
compile from exactly the same algorithm specification.

437

Cores 64 cores in 16 tiles (4 cores/tile), 3.5 GHz, x86-64 ISA,
Haswell-like 4-wide OoO cores [35], 2 threads/core [4]

L1 Cache 32 KB, per-core, split D/I, 8-way, 2-cycle latency
L2 Cache 1 MB, per-tile, 8-way, inclusive, 9-cycle latency

L3 Cache 64 MB, shared, static NUCA [48] (4 MB bank/tile),
16-way, inclusive, 12-cycle bank latency

Coherence MESI, 64 B lines, in-cache directories

NoC Four 4×4 bidirectional meshes, 192-bit links, X-Y routing,
1 cycle/hop when going straight, 2 cycles on turns

Memory 8 controllers, 24 GB/s each, 120-cycle minimum latency

Queues 128 task queue entries/core (8192 total),
32 commit queue entries/core (2048 total)

Conflicts
2 Kbit 8-way Bloom filters, H3 hash functions [17]
Tile checks take 5 cycles (Bloom filters) + 1 cycle per
timestamp compared in the commit queue

Commit Tiles send updates to virtual time arbiter every 120 cycles

TABLE VI: Configuration of the 64-core Swarm system.
A. Methodology

CPU and GPU. We evaluate the GPU GraphVM on a system
with an NVIDIA Tesla V100 GPU with 32 GB of GDDR5
main memory, 6 MB of L2 cache, and 128 KB of L1 cache per
SM, with a total of 80 SMs. This is a Volta-generation GPU.
We evaluate the CPU GraphVM on a dual-socket system with
Intel Xeon E5-2695 v3 12-core CPUs, for a total of 24 cores
and 48 hardware thread contexts. The machine has 128 GB of
DDR3-1600 main memory and a 30 MB last-level cache per
socket, and has Transparent Huge Pages (THP) enabled.
Swarm Simulation. We evaluate the Swarm GraphVM by
running each algorithm’s compiled code in full on the open-
source Swarm architectural simulator [62, 91]. We model a
64-core Swarm CPU with parameters shown in Table VI, similar
to prior work [4, 91]. We model wide out-of-order cores similar
to the Haswell cores in the Xeon E5-2695 v3 used for the
CPU GraphVM. We perform cycle-level simulation of Swarm
with detailed core, network, and memory system models, and
model task and speculation overheads in detail [4, 91].
HammerBlade Manycore Simulation. We model a Ham-
merBlade Manycore system running at 1GHz with 16 columns
and 8 rows of core tiles, with parameters shown in Table VII.
We use detailed, cycle-accurate RTL simulation to model the
RISC-V cores, network on chip, and LLC. The RTL for this
manycore has been validated in silicon, and this configuration
occupies approximately 3.5 mm2 of die area. We model
the HBM2 memory system with DRAMSim3 [56], a timing
accurate simulator. Generated host code runs natively on an
Intel Xeon Gold 6254 CPU, and host libraries interface directly
with the simulator environment using SystemVerilog DPI.
Datasets. Table VIII lists the input graphs used in the eval-
uation, along with their sizes in vertices and edges. Out of
the 10 graphs, Orkut (OK), Twitter (TW), LiveJournal (LJ),
SinaWeibo (SW), Hollywood (HW), Pokec (PK), and Indochina
(IC) have power-law degree distributions, while RoadUSA (RU),
RoadNetCA (RN), and RoadCentral (RC) have bounded degree
distributions. These datasets include social graphs, web graphs,
and road graphs.
Algorithms. We evaluate all GraphVMs on five algorithms:
PageRank, BFS, SSSP with ∆-stepping, connected components
(CC) and betweenness centrality (BC). PageRank [66] and

Cores 128 cores in 16×8 grid
RISC-V 32-bit IMAF ISA
4KB Instruction Cache
4KB Data Scratchpad

Cache 128KB Total Capacity
32 Independent Banks
8-way Set Associative

NoC Bidirectional 2D Mesh
(32-bit data, 64-bit addr)

Memory 2 HBM2 channels
32 GB/s per channel
512 MB per channel

TABLE VII: HammerBlade
Manycore configuration.

Graph Vertex count Edge count

RN [54] 1,971,281 5,533,214
RC [27] 14,081,816 33,866,826
RU [27] 23,947,347 57,708,624

PK [54] 1,632,803 30,622,564
HW [26] 1,139,905 112,751,422
LJ [54] 4,847,571 85,702,474
OK [73] 2,997,166 212,698,418
IC [26] 7,414,865 301,969,638
TW [73] 21,297,772 530,051,090
SW [73] 58,655,849 522,642,066

TABLE VIII: Graph inputs
used for evaluation. Each
undirected edge is counted
twice, once per direction.

CC [8, 80] are topology-driven algorithms where all the
edges are traversed in each iteration. These applications have
massive parallelism each round. BC [9] and BFS are data-
driven algorithms where only a set of active vertices are
processed each round. SSSP with ∆-stepping is a priority-based
algorithm where the vertices are processed in a priority order
for greater work efficiency. UGC compiles a single source code
specification for each algorithm, reusing the same application
code for all different architectures. In real-world applications,
these algorithms could be run many times on one graph or class
of graph (e.g., one runs many iterations of PageRank, while BFS,
BC, and SSSP may be rerun from different starting vertices),
necessitating tuning the implementation to the characteristics
of the graph and architecture for high efficiency.

Schedules. The performance of the GraphVMs heavily depends
on the schedules specified. We manually wrote schedules to
tune the implementation of each algorithm to the graph type
(e.g., road graphs vs. social graphs). Schedule parameters were
further tuned by sweeping the parameter space. Prior work [15,
93, 95] has also shown that techniques like autotuning can find
high-performance schedules in relatively little time.
B. Performance of Optimized Code
Figure 8 shows the performance improvements produced by
optimization passes in each of our four GraphVMs. The
speedups reported here are over the baseline code generated by
applying the default schedule. Both the baseline and optimized
code are parallel, and all generated C++ is compiled with
optimizations enabled in the backend compiler.

We now discuss how the hardware-specific optimizations in
the GraphVMs produce these speedups.
C. CPU and GPU
The baseline schedule for CPUs and GPUs uses push-based
traversal with vertex-based parallelism. UGC achieves large
speedups (up to 53×) on both of the architectures on BFS
and BC by using Hybrid (Push+Pull) traversals and tuning
the input frontier representation. PageRank greatly benefits
from EdgeBlocking and NUMA optimizations, which improve
locality of random accesses by tiling for the last-level cache.
SSSP on CPUs benefits from the bucket fusion optimization
for road graphs. This is consistent with the speedups of the
GraphIt compiler [93]. Finally, CC benefits from better load
balancing techniques (ETWC) on GPUs, and from edge-aware

438

Fig. 8: Heatmap of speedups for the four evaluated architectures. Each cell reports the speedup of the optimized code over the
baseline unoptimized version, with larger speedups in darker green. Columns correspond to algorithms, and rows correspond to
graph inputs. Some graphs were not run on HammerBlade Manycore due to simulation time constraints.

Fig. 9: Speedups of the GPU GraphVM over the next-best
framework from Gunrock, GSwitch, or SEP-Graph.

vertex-based parallelism on CPUs.
Figure 9 compares the performance of the GPU GraphVM

with three state-of-the-art graph libraries that specifically target
GPUs: Gunrock [87], GSwitch [60], and SEP-Graph [86].
These speedups are consistent with those of the GPU code
generated from GraphIt [15]. UGC is consistently outperformed
by SEP-Graph on SSSP when run on road graphs. SEP-Graph
implements asynchronous execution to remove barriers between
successive rounds of SSSP. UGC does not currently implement
this optimization because it is very algorithm specific and
cannot be generalized.

D. HammerBlade Manycore

Due to the costs of RTL simulation, we evaluate the Ham-
merBlade Manycore GraphVM on 6 of the 10 input graphs
and a subset of the total iterations for each application. For PR
we simulate one iteration, and for the remaining applications,
we simulate five representative iterations that cover a range
of frontier densities and execution behavior. We use hybrid
traversal in the baseline code of BFS, BC, and SSSP to decrease
simulation times. The speedups reported in Figure 8 come from

32 64 128 256

Number of Cores

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

S
p
e
e
d
u
p

RN
RC
PK

HW
LJ

(a) HammerBlade Manycore

1 4 16 64
Number of Cores

1

20

40

60

80

100

(b) Swarm

Fig. 10: Scalability of BFS on five graphs, shown across four
sizes of HammerBlade Manycore and Swarm machines.

Graph DRAM Stalls Bandwidth Speedup

LJ 0.78 3.03 1.19
HW 0.79 2.17 1.53
PC 0.83 3.02 1.49

TABLE IX: Impact of the HammerBlade blocked access
optimization on SSSP. Reduction in DRAM stalls, improvement
in memory bandwidth utilization, and overall speedup.

applying the HammerBlade Manycore-specific optimizations
described in Section III-C4. BC, CC, and BFS benefit from
alignment-based partitioning, while PR and SSSP use the
blocking optimization due to their more compute-intensive
nature. These optimizations better utilize the memory hierarchy
and provide up to 4.97× speedup over unoptimized code.

Figure 10a shows how performance scales on the Ham-
merBlade Manycore. We ran our optimized BFS code on four
different machine configurations: we hold the LLC capacity
and number of columns (16) constant and vary the number
of rows (2, 4, 8, and 16) to vary the total number of cores.
The strong scaling indicates that the HammerBlade Manycore
GraphVM can successfully exploit parallelism. We highlight
BFS for this scaling study due to its high memory access to

439

Fig. 11: Breakdown of how cores spend time for Swarm.

compute ratio.
Table IX demonstrates performance improvements for SSSP

with ∆-stepping when the blocked-access optimization is ap-
plied on three selected input graphs. This optimization exploits
memory parallelism to hide DRAM access latency in exchange
for loading unused data and reducing effective bandwidth. For
SSSP, we observe that this optimization decreases DRAM
stalls, increases memory bandwidth utilization, and improves
overall application performance.
E. Swarm
Figure 8 shows the speedup achieved by choosing an appropri-
ate schedule for each algorithm and graph input, compared the
Swarm GraphVM’s default schedule. Swarm’s T4 compiler [91]
already applies many optimizations to uncover parallelism in
serial code, and achieves good baseline performance in many
cases. However, the Swarm GraphVM improves performance
further by exploiting domain knowledge to choose optimiza-
tions.

On BFS and SSSP, converting VertexSets to tasks is
responsible for the majority of the improvement on road graphs.
This optimization avoids synchronization overheads between
distance levels, by allowing tasks from different levels to
execute speculatively in parallel. Additionally, all algorithms
benefit from the Swarm GraphVM’s diverse schedule options
for task granularity and spatial hints. Fine-grained splitting
with spatial hints allows trading increased task overheads for
reduced cache line ping-ponging and abort costs. Finally, on
CC and PageRank, some graphs featuring many high in-degree
nodes benefit from a schedule that shuffles the order in which
edges are processed, thus trading off locality to reduce aborts.
This reordering is enabled by the Swarm GraphVM’s domain
knowledge that a valid result will still be produced if edges
are visited in a different order within one round.

Graph SSSP BFS

RN 1.57 2.59
RC 2.04 2.56
RU 1.90 2.39

TABLE X: The
Swarm GraphVM’s
speedup over the CPU
GraphVM’s best code
on 64-core Swarm.

Table X compares the perfor-
mance of optimized code generated
by the CPU and Swarm GraphVMs.
Since Swarm offers a superset of a
CPU’s features, the CPU code runs
on the same Swarm hardware. On
road graphs, the Swarm GraphVM
consistently outperforms the CPU
GraphVM using Swarm’s specula-
tive parallel execution of fine-grained
tasks.

Fig. 12: Speedups of Swarm GraphVM optimized code and
manually optimized assembly-level code from prior work, all
relative to the Swarm GraphVM’s default baseline code.

Figure 11 breaks down how cores spend time with the
optimized schedules, averaged across the 64 cores: cores may
spend time executing tasks that commit or abort; or idle
due to the speculation-throttling heuristic [91], exhaustion of
the commit queue, or lack of tasks to run. In some cases,
cores also spend time spilling contents of overfull task queues
to memory. We see that across all five algorithms, cores
spend most of their time executing useful work that commits,
demonstrating that the Swarm GraphVM exposes enough fine-
grained parallelism through task spawns to utilize tens of cores.
This is reflected in Swarm’s strong scalability in Figure 10b.
(Adding tiles to Swarm increases aggregate cache and queue
capacity, sometimes yielding superlinear speedups.)

Prior work on Swarm has developed hand-tuned versions
of BFS and SSSP [42, 43]. Figure 12 shows that the Swarm
GraphVM versions are competitive with the manually tuned
ones, especially on larger social graphs like TW and SW
where the algorithms are memory-bound. The hand-tuned
versions were tailored to work well on road graphs, which
have low vertex degrees. As a result, the hand-tuned code
for SSSP performs poorly on social graphs, where the Swarm
GraphVM achieves much better performance by being selective
in spawning tasks for the possibly many neighbors of each
visited node. UGC makes it easy to bring a wide set of
algorithms to developers of new graph processing architectures,
and enables us to easily explore algorithm implementations
that weren’t obvious to the architecture’s designers.

V. RELATED WORK

There has been a large amount of work on both graph
processing frameworks and on leveraging of common IRs
to port applications to different architectures.

Common IRs for diverse architectures. Delite [18] intro-
duces a new IR for parallel programs to target heterogenous
architectures. However, Delite’s IR is generic rather than spe-
cific to a particular domain. By customizing the IR specifically
for the graph domain, UGC can perform optimizations that are
otherwise infeasible in general C++ programs. Furthermore,
Delite does not have an extensible scheduling language that
allows users to specify optimizations for different targets.
MLIR [53] is another proposed IR that is generic and not
specific to a domain. Tensorflow [2] and TVM [22] have shown
how a common IR can be used to apply machine learning
optimizations across different architectures.

440

Graph processing frameworks. There has been a large body
of work on graph processing for shared-memory [3, 31, 32, 39,
52, 69, 78, 79, 82, 83, 85, 92, 94], GPUs [12, 20, 24, 30, 36, 37,
38, 40, 46, 47, 49, 57, 58, 61, 63, 64, 67, 76, 80, 86, 87], and
manycore architectures [21, 55, 69]. These frameworks support
a limited set of optimizations, do not achieve consistently high
performance across algorithms and graphs [15, 93, 95]and do
not offer portability across architectures.

Abelian [31] uses the Galois framework as an interface
for shared-memory CPU, distributed-memory CPU, and GPU
platforms. However Abelian is not extensible enough to support
new architectures. In contrast, UGC demonstrates state-of-the-
art performance across different platforms.

Compilers for graph applications. IrGL [67] is a compiler
framework that creates an intermediate representation specifi-
cally for graph applications on GPUs. IrGL introduces several
optimizations for GPUs, but does not achieve state-of-the-
art GPU performance [15, 86]. GraphIt [15, 93, 95] is a
domain-specific language that expands the optimization space
to outperform other CPU and GPU frameworks by decoupling
algorithm from optimizations. UGC extends GraphIt by decou-
pling algorithms, optimizations, and hardware banckends to
enable efficient implementations across different platforms.

VI. CONCLUSION

This paper has presented UGC, a novel graph processing
framework that makes it easy to create compiler backends
across diverse architectures. We introduced a new IR for
graph processing, GraphIR, and showed how it can be used
to implement GraphVMs for four different architectures. We
demonstrated how UGC can reason about algorithmic and
hardware-specific optimizations to generate high-performance
code on all four architectures, and find that these optimizations
can provide up to 53× speedup over programmer-generated
baseline implementations.

ACKNOWLEDGEMENTS

We thank Mark C. Jeffrey, Quan M. Nguyen, Hyun Ryong
Lee and the anonymous reviewers for helpful discussions
and feedback. This work was partially supported by Air
Force Research Laboratory (AFRL) and Defense Advanced
Research Projects Agency (DARPA) under agreement numbers
FA8650-18-2-7863, FA8650-18-2-7856; DARPA SDH under
contract HR0011-18-3-0007; NSF grants SaTC-1563767, SaTC-
1565446, SHF-1814969, and CAREER-1845763; DOE Early
Career Award DE-SC0018947; a Sony research grant; and the
DARPA/SRC JUMP ADA Center. This research was, in part,
funded by the U.S. Government. The views and conclusions
contained in this document are those of the authors and should
not be interpreted as representing the official policies, either
expressed or implied, of the U.S. Government.

REFERENCES

[1] T. M. Aamodt, W. W. L. Fung, and T. G. Rogers, “General-purpose
graphics processor architectures,” Synthesis Lectures on Computer
Architecture, 2018.

[2] M. Abadi et al., “TensorFlow: A system for large-scale machine learning,”
in Proc. OSDI-12, 2016.

[3] C. R. Aberger, S. Tu, K. Olukotun, and C. Ré, “EmptyHeaded: A relational
engine for graph processing,” in Proc. SIGMOD, 2016.

[4] M. Abeydeera, S. Subramanian, M. C. Jeffrey, J. Emer, and D. Sanchez,
“SAM: Optimizing multithreaded cores for speculative parallelism,” in
Proc. PACT-26, 2017.

[5] S. N. Agathos, A. Papadogiannakis, and V. V. Dimakopoulos, “Targeting
the Parallella,” in Proc. Euro-Par, 2015.

[6] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-
in-memory accelerator for parallel graph processing,” in Proc. ISCA,
2015.

[7] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom, U.-
M. O’Reilly, and S. Amarasinghe, “Opentuner: An extensible framework
for program autotuning,” in Proc. PACT, 2014.

[8] D. A. Bader, G. Cong, and J. Feo, “On the architectural requirements
for efficient execution of graph algorithms,” in Proc. ICPP, 2005.

[9] D. A. Bader and K. Madduri, “Parallel algorithms for evaluating centrality
indices in real-world networks,” in Proc. ICPP, 2006.

[10] S. Beamer, K. Asanović, and D. Patterson, “Direction-optimizing breadth-
first search,” in Proc. SC12, 2012.

[11] S. Beamer, K. Asanović, and D. Patterson, “Locality exists in graph
processing: Workload characterization on an Ivy Bridge server,” in Proc.
IISWC, 2015.

[12] T. Ben-Nun, M. Sutton, S. Pai, and K. Pingali, “Groute: An asynchronous
multi-GPU programming model for irregular computations,” in Proc.
PPoPP, 2017.

[13] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: An efficient multithreaded runtime system,”
in Proc. PPoPP, 1995.

[14] P. Bosshart et al., “P4: Programming protocol-independent packet
processors,” in Proc. SIGCOMM, 2014.

[15] A. Brahmakshatriya, Y. Zhang, C. Hong, S. Kamil, J. Shun, and S. Ama-
rasinghe, “Compiling graph applications for GPUs with GraphIt,” in Proc.
CGO, 2021.

[16] N. Bronson et al., “TAO: Facebook’s distributed data store for the social
graph,” in Proc. USENIX ATC, 2013.

[17] J. L. Carter and M. Wegman, “Universal classes of hash functions
(extended abstract),” in Proc. STOC-9, 1977.

[18] H. Chafi, A. K. Sujeeth, K. J. Brown, H. Lee, A. R. Atreya, and
K. Olukotun, “A domain-specific approach to heterogeneous parallelism,”
in Proc. PPoPP, 2011.

[19] R. Chandra, L. Dagum, D. Kohr, R. Menon, D. Maydan, and J. McDonald,
Parallel programming in OpenMP, 2001.

[20] S. Che, “GasCL: A vertex-centric graph model for GPUs,” in Proc.
HPEC, 2014.

[21] L. Chen, X. Huo, B. Ren, S. Jain, and G. Agrawal, “Efficient and simplified
parallel graph processing over CPU and MIC,” in Proc. IPDPS, 2015.

[22] T. Chen et al., “TVM: An automated end-to-end optimizing compiler
for deep learning,” in Proc. OSDI-13, 2018.

[23] G. Dai, Y. Chi, Y. Wang, and H. Yang, “FPGP: Graph processing
framework on FPGA a case study of breadth-first search,” in Proc.
FPGA, 2016.

[24] A. Davidson, S. Baxter, M. Garland, and J. D. Owens, “Work-efficient
parallel GPU methods for single-source shortest paths,” in Proc. IPDPS,
2014.

[25] S. Davidson et al., “The Celerity open-source 511-core RISC-V tiered
accelerator fabric: Fast architectures and design methodologies for fast
chips,” IEEE Micro, 2018.

[26] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix
Collection,” ACM TOMS, 2011.

[27] C. Demetrescu, A. Goldberg, and D. Johnson, “9th DIMACS implemen-
tation challenge - shortest paths,” http://www.dis.uniroma1.it/challenge9/.

[28] L. Dhulipala, G. E. Blelloch, and J. Shun, “Theoretically efficient parallel
graph algorithms can be fast and scalable,” in Proc. SPAA, 2018.

[29] C. Eksombatchai, P. Jindal, J. Z. Liu, Y. Liu, R. Sharma, C. Sugnet,
M. Ulrich, and J. Leskovec, “Pixie: A system for recommending 3+
billion items to 200+ million users in real-time,” in Proc. WWW, 2018.

[30] A. Gaihre, Z. Wu, F. Yao, and H. Liu, “XBFS: eXploring runtime
optimizations for breadth-first search on GPUs,” in Proc. HPDC, 2019.

[31] G. Gill, R. Dathathri, L. Hoang, A. Lenharth, and K. Pingali, “Abelian:
A compiler for graph analytics on distributed, heterogeneous platforms,”
in Proc. Euro-Par, 2018.

[32] S. Grossman, H. Litz, and C. Kozyrakis, “Making pull-based graph
processing performant,” in Proc. PPoPP, 2018.

441

[33] L. Gwennap, “Adapteva: More flops, less watts,” Microprocessor Report,
2011.

[34] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi, “Graphi-
cionado: A high-performance and energy-efficient accelerator for graph
analytics,” in Proc. MICRO, 2016.

[35] P. Hammarlund et al., “Haswell: The fourth-generation Intel core
processor,” IEEE Micro, 2014.

[36] W. Han, D. Mawhirter, B. Wu, and M. Buland, “Graphie: Large-scale
asynchronous graph traversals on just a gpu,” in Proc. PACT-26, 2017.

[37] P. Harish and P. Narayanan, “Accelerating large graph algorithms on the
GPU using CUDA,” in Proc. HIPC, 2007.

[38] C. Hong, A. Sukumaran-Rajam, J. Kim, and P. Sadayappan, “MultiGraph:
Efficient graph processing on GPUs,” in Proc. PACT-26, 2017.

[39] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun, “Green-Marl: A DSL
for easy and efficient graph analysis,” in Proc. ASPLOS-XVII, 2012.

[40] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun, “Accelerating CUDA
graph algorithms at maximum warp,” in Proc. PPoPP, 2011.

[41] JEDEC, 2020. [Online]. Available: https://www.jedec.org/standards-
documents/docs/jesd235a

[42] M. C. Jeffrey, S. Subramanian, M. Abeydeera, J. Emer, and D. Sanchez,
“Data-Centric execution of speculative parallel programs,” in Proc.
MICRO, 2016.

[43] M. C. Jeffrey, S. Subramanian, C. Yan, J. Emer, and D. Sanchez, “A
scalable architecture for ordered parallelism,” in Proc. MICRO-48, 2015.

[44] M. C. Jeffrey, V. A. Ying, S. Subramanian, H. R. Lee, J. Emer, and
D. Sanchez, “Harmonizing speculative and non-speculative execution in
architectures for ordered parallelism,” in Proc. MICRO-51, 2018.

[45] J. Kepner et al., “Mathematical foundations of the GraphBLAS,” in Proc.
HPEC, 2016.

[46] F. Khorasani, R. Gupta, and L. N. Bhuyan, “Scalable SIMD-Efficient
graph processing on GPUs,” in Proc. PACT-24, 2015.

[47] F. Khorasani, K. Vora, R. Gupta, and L. N. Bhuyan, “CuSha: vertex-
centric graph processing on GPUs,” in Proc. HPDC, 2014.

[48] C. Kim, D. Burger, and S. W. Keckler, “An adaptive, non-uniform cache
structure for wire-delay dominated on-chip caches,” in Proc. ASPLOS-X,
2002.

[49] M.-S. Kim, K. An, H. Park, H. Seo, and J. Kim, “GTS: A fast and
scalable graph processing method based on streaming topology to GPUs,”
in Proc. SIGMOD, 2016.

[50] F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe, “The
tensor algebra compiler,” in Proc. OOPSLA, 2017.

[51] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
Click modular router,” TOCS, 2000.

[52] M. S. Lam, S. Guo, and J. Seo, “SociaLite: Datalog extensions for
efficient social network analysis,” in Proc. ICDE, 2013.

[53] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar,
R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko, “MLIR: A
compiler infrastructure for the end of Moore’s law,” 2020.

[54] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data.

[55] D. Li, S. Chakradhar, and M. Becchi, “GRapid: A compilation and runtime
framework for rapid prototyping of graph applications on many-core
processors,” in Proc. ICPADS, 2014.

[56] S. Li, R. S. Verdejo, P. Radojković, and B. Jacob, “Rethinking cycle
accurate DRAM simulation,” in Proc. MEMSYS, 2019.

[57] H. Liu and H. H. Huang, “Enterprise: breadth-first graph traversal on
GPUs,” in Proc. CC, 2016.

[58] H. Liu and H. H. Huang, “SIMD-X: Programming and processing of
graph algorithms on GPUs,” in Proc. USENIX ATC, 2019.

[59] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry, “Challenges in
parallel graph processing,” Parallel Processing Letters, 2007.

[60] K. Meng, J. Li, G. Tan, and N. Sun, “A pattern based algorithmic autotuner
for graph processing on GPUs,” in Proc. PPoPP, 2019.

[61] D. Merrill, M. Garland, and A. Grimshaw, “Scalable GPU graph traversal,”
in Proc. PPoPP, 2012.

[62] MIT CSAIL, “The Swarm architecture.” [Online]. Available: http:
//swarm.csail.mit.edu/

[63] R. Nasre, M. Burtscher, and K. Pingali, “Data-driven versus topology-
driven irregular computations on GPUs,” in Proc. IPDPS, 2013.

[64] A. H. Nodehi Sabet, J. Qiu, and Z. Zhao, “Tigr: Transforming irregular
graphs for GPU-friendly graph processing,” in Proc. ASPLOS-XXIII,
2018.

[65] NVIDIA, “CUDA C++ programming guide,” https://docs.nvidia.com/
cuda/cuda-c-programming-guide/index.html, 2019.

[66] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank citation
ranking: Bringing order to the web.” Stanford, Technical Report, 1999.

[67] S. Pai and K. Pingali, “A compiler for throughput optimization of graph
algorithms on GPUs,” in Proc. OOPSLA, 2016.

[68] S. Pallottino and M. G. Scutellà, Shortest Path Algorithms In Transporta-
tion Models: Classical and Innovative Aspects, 1998.

[69] Z. Peng, A. Powell, B. Wu, T. Bicer, and B. Ren, “GraphPhi: efficient
parallel graph processing on emerging throughput-oriented architectures,”
in Proc. PACT-26, 2018.

[70] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Ama-
rasinghe, “Halide: a language and compiler for optimizing parallelism,
locality, and recomputation in image processing pipelines,” in Proc. PLDI,
2013.

[71] C. Ramey, “TILE-Gx100 ManyCore processor: Acceleration interfaces
and architecture,” in Proc. HotChips, 2011.

[72] D. Richmond, A. Althoff, and R. Kastner, “Synthesizable higher-order
functions for C++,” IEEE TCAD, 2018.

[73] R. A. Rossi and N. K. Ahmed, “The network data repository with
interactive graph analytics and visualization,” in Proc. AAAI-29, 2015.

[74] A. Shajii, I. Numanagić, R. Baghdadi, B. Berger, and S. Amarasinghe,
“Seq: a high-performance language for bioinformatics,” in Proc. OOPSLA,
2019.

[75] A. Sharma, J. Jiang, P. Bommannavar, B. Larson, and J. Lin, “GraphJet:
Real-time content recommendations at Twitter,” VLDB Endow., 2016.

[76] X. Shi, X. Luo, J. Liang, P. Zhao, S. Di, B. He, and H. Jin, “Frog:
Asynchronous graph processing on GPU with hybrid coloring model,”
TKDE, 2017.

[77] X. Shi, Z. Zheng, Y. Zhou, H. Jin, L. He, B. Liu, and Q.-S. Hua, “Graph
processing on GPUs: A survey,” ACM Computing Surveys (CSUR), 2018.

[78] J. Shun and G. E. Blelloch, “Ligra: A lightweight graph processing
framework for shared memory,” in Proc. PPoPP, 2013.

[79] J. Shun, L. Dhulipala, and G. E. Blelloch, “Smaller and faster: Parallel
processing of compressed graphs with Ligra+,” in Proc. DCC, 2015.

[80] J. Soman, K. Kishore, and P. J. Narayanan, “A fast GPU algorithm for
graph connectivity,” in Proc. IPDPSW, 2010.

[81] S. Subramanian, M. C. Jeffrey, M. Abeydeera, H. R. Lee, V. A. Ying,
J. Emer, and D. Sanchez, “Fractal: An execution model for fine-grain
nested speculative parallelism,” in Proc. ISCA-44, 2017.

[82] J. Sun, H. Vandierendonck, and D. S. Nikolopoulos, “GraphGrind:
Addressing load imbalance of graph partitioning,” in Proc. ICS, 2017.

[83] N. Sundaram, N. Satish, M. M. A. Patwary, S. R. Dulloor, M. J. Anderson,
S. G. Vadlamudi, D. Das, and P. Dubey, “GraphMat: High performance
graph analytics made productive,” VLDB Endow., 2015.

[84] M. B. Taylor et al., “Evaluation of the Raw microprocessor: An exposed-
wire-delay architecture for ILP and streams,” in Proc. ISCA-31, 2004.

[85] K. Vora, R. Gupta, and G. Xu, “KickStarter: Fast and accurate com-
putations on streaming graphs via trimmed approximations,” in Proc.
ASPLOS-XXII, 2017.

[86] H. Wang, L. Geng, R. Lee, K. Hou, Y. Zhang, and X. Zhang, “SEP-Graph:
finding shortest execution paths for graph processing under a hybrid
framework on GPU,” in Proc. PPoPP, 2019.

[87] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens,
“Gunrock: A high-performance graph processing library on the GPU,” in
Proc. PPoPP, 2016.

[88] Q. Xu, H. Jeon, and M. Annavaram, “Graph processing on GPUs: Where
are the bottlenecks?” in Proc. IISWC, 2014.

[89] C. Yang, A. Buluc, and J. D. Owens, “GraphBLAST: A high-performance
linear algebra-based graph framework on the GPU,” arXiv preprint
arXiv:1908.01407, 2019.

[90] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale recom-
mender systems,” in Proc. KDD, 2018.

[91] V. A. Ying, M. C. Jeffrey, and D. Sanchez, “T4: Compiling sequential
code for effective speculative parallelization in hardware,” in Proc. ISCA-
47, 2020.

[92] K. Zhang, R. Chen, and H. Chen, “NUMA-aware graph-structured
analytics,” in Proc. PPoPP, 2015.

[93] Y. Zhang, A. Brahmakshatriya, X. Chen, L. Dhulipala, S. Kamil, S. Ama-
rasinghe, and J. Shun, “Optimizing ordered graph algorithms with GraphIt,”
in Proc. CGO, 2020.

[94] Y. Zhang, V. Kiriansky, C. Mendis, S. Amarasinghe, and M. Zaharia,
“Making caches work for graph analytics,” in Proc. BigData, 2017.

[95] Y. Zhang, M. Yang, R. Baghdadi, S. Kamil, J. Shun, and S. Amarasinghe,
“GraphIt: A high-performance graph DSL,” in Proc. OOPSLA, 2018.

442

