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Abstract—Multicore processors have become ubiquitous
across many domains, such as datacenters and smartphones.
As the number of processing elements increases within these
processors, so does the pressure to share the critical on-chip
cache resources, but this must be done energy-efficiently and
without sacrificing resource guarantees. We propose a scalable
dynamic cache-partitioning scheme, DR-SNUCA, which provides
an energy-efficient way to reduce resource interference over
caches shared among many processing elements. Our results show
that DR-SNUCA reduces system energy consumption by 16.3%
compared to associatively partitioned caches, such as DNUCA.

I. INTRODUCTION

Multicore processors are ubiquitous today in domains such
as datacenters and embedded systems and are witnessing an
increasing concurrency, which will soon move us into an era of
scalable manycore designs [2]. These domains need processors
to satisfy some key requirements: Energy-efficiency, high
utilization, and performance guarantees. As a result, manycore
processors are under pressures to share critical resources,
expecially the on-chip NUCA caches [2], as it allows higher
utilization than fixed cache partitioning [6]. However, sharing
also leads to resource contention, or interference, which causes
difficulties in maintaining performance guarantees, and in
monitoring and managing resource usage [3].

Previously, cache partitioning designs such as Virtual
Private Caches [11] have been proposed, which can be
used to create a dynamically partitioned Dynamic NUCA
(DNUCA) [8] cache and reduce interference; however, these
associatively partitioned caches can place a cache line on any
associative way, which is energy-inefficient due to excessive
tag-matching, as shown in Figure 1. Mechanisms such as
XOR-based way-prediction [12], partial-tag match [7], and
cache-block migration [5] reduce the number of ways checked
per cache access. However, even with these mechanisms, cache
accesses in an associatively partitioned DNUCA consume a
progressively larger portion of processor energy as cache size
increases. This makes DNUCA based dynamically partitioned
caches energy-inefficient as aggregate cache size grows.

On the other hand, Static NUCA (SNUCA) [8] architec-
tures use a fixed indexing function and access a constant
number of associative ways for every cache request, which
keeps the energy consumption low, as shown in Figure 1. By
configuring these index functions, SNUCA cache sets can be
partitioned among applications; however, due to fixed hashing,
SNUCA cache allocations cannot be dynamically changed,
which leads to reduced cache utilization.

Insight: While working sets change, necessitating dy-
namism in partitioning, they do not change rapidly.
Thus, the frequency with which we need to reparti-
tion can be low and we should optimize performance
and energy for the time between allocations.
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Fig. 1. Associatively partitioned DNUCA caches are not energy scalable.
The portion of energy spent in L2 caches increases with cache size when using
DNUCA, even with XOR-based way-prediction [12], partial-tag match [7] and
cache migration [5] (with varying aggression levels as depicted by the shaded
region). For every cache size, we chose the partial tag size that minimized
the overall energy consumption. For SNUCA, the portion of energy spent in
caches remains low, but SNUCA is not dynamically repartitionable.

We introduce Dynamically Repartitionable Static NUCA, or
DR-SNUCA, a dynamically-repartitionable shared cache with
static-mapping during steady-state. DR-SNUCA provides en-
ergy efficiency and high cache utilization as well as resource
guarantees. DR-SNUCA uses set partitioning i.e. growing or
shrinking cache allocations by changing the number of sets al-
located to an application while keeping associativity constant.
It uses indirect cache addressing to reduce reconfiguration
overheads introduced during changes to cache allocations,
to enable online reconfiguration. We also introduce Tag-
Duplication to avoid execution stalls during reconfiguration
and keep DR-SNUCA performance comparable to DNUCA.

We evaluate DR-SNUCA against a DNUCA cache on a 32-
core manycore processor (similar to Tilera [2]). Our evaluation
shows that DR-SNUCA reduces overall system energy by
16.3% on average, while performing within 0.5% of DNUCA.
Furthermore, we show that the area and energy overheads of
reconfiguration in DR-SNUCA are small.

In summary, the paper makes the following contributions -

• We propose DR-SNUCA, a novel energy-scalable
design for dynamically partitioning the shared on-
chip caches. It uses indirect cache addressing and set
partitioning to provide energy-efficiency.

• We introduce tag-duplication in DR-SNUCA to pro-
vide uninterrupted execution during reconfiguration
with small area and energy cost.

• We provide a detailed manycore evaluation that shows
using DR-SNUCA cache reduces energy consumption
by 16.3% while performing within 0.5% when com-
pared to existing DNUCA caches.



II. DYNAMICALLY REPARTITIONABLE STATIC NUCA
(DR-SNUCA)
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Fig. 2. Layout of Dynamically Repartitionable Static NUCA, or DR-
SNUCA. DR-SNUCA spatially distributes the last-level cache shared by the
cores (C) into cache-arrays(T,D) connected using an on-chip network, or OCN.
It also physically separates the tag and data for each cache-array, consolidates
them into tag-arrays (T) and data-arrays (D) respectively, and uses indirect
cache addressing for cache accesses to reduce the online reconfiguration costs.

DR-SNUCA provides a shared cache for manycore proces-
sors that can be dynamically partitioned and is also energy-
scalable. DR-SNUCA dynamically partitions the shared cache
between applications and each application’s cache portion
operates as an SNUCA, except during reconfiguration periods.
DR-SNUCA has physically separated cache-arrays connected
through a point-to-point pipelined on-chip memory network,
as shown in Figure 2, which are dynamically allocated to
applications. We use the cache allocation algorithm presented
in TimeCube [4]. When multiple cache-arrays are allocated
to an application, they are merged by increasing the number
of cache sets allocated to the application while keeping the
number of associative ways constant. DR-SNUCA allocates
cache-arrays to applications in powers of two.

Tag-Data Separation. In DR-SNUCA, when the cache
allocation changes for an application, its number of cache
sets are altered; as a result, its cache hashing changes as
well. Naively moving all cache lines to their corresponding
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Fig. 3. Cache access with Indirect Cache Addressing in DR-SNUCA.
DR-SNUCA uses indirect cache addressing to access the physically separated
tags and data, and maintains a one-to-one correspondence between all tag and
data locations by storing the data location of each tag using dataLoc bits. On
a cache request, DR-SNUCA finds the tag-array using tagLoc bits (1) in the
physical address, sends a request to that array (2), and then uses index bits
to find the set within that tag-array (3). If some tag matches (4), dataLoc bits
in the tag are used to find the data-array location (5). A request is sent to the
data-array (6), the cache line is fetched (7) and is sent back to the core (8).
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Fig. 4. Reconfiguration. If an application’s cache allocation changes, its
tags are copied (A) to their new locations in the duplicate tag-arrays for
the next interval, while maintaining the tag to data location correspondence.
Cache accesses are sent to both the new and old tag-arrays (B) during this
reconfiguration period. If the new cache allocation is smaller, less recently
used lines are evicted, and written back if dirty (C).

new locations would consume excessive energy. Instead, DR-
SNUCA physically separates the tags and data for each cache-
array into tag-arrays (T) and data-arrays (D), as shown in
Figure 2. With this separation, cache reconfiguration moves
only the tag and not the data, which significantly reduces the
reconfiguration costs, since cache tags are significantly smaller
than cache-lines.

Indirect Cache Addressing. DR-SNUCA uses indirect
cache addressing [1] to find the cache line corresponding to
any physical address on the physically separated tag and data-
arrays. The location of the tag-array holding the corresponding
cache-line’s tag is fixed and is determined based on a hash-map
that uses the tagLoc bits in the physical address located just
above the index bits, as shown in Figure 3. Width of tagLoc
equals log2 of the number of cache-arrays allocated to the
application. DR-SNUCA then uses the index bits to determine
the appropriate cache set within the tag-array, and looks for
a matching tag within that set. However, the corresponding
data can be placed on any of the data-arrays. Thus, we store
the location of data in each tag using the dataLoc bits. The
cache set for an address in both tag-arrays and data-arrays is
determined based on the index bits. The associative way for
both tag and data-arrays is also the same for every cache line.
Therefore, DR-SNUCA needs to store the location of only the
data-array in dataLoc bits. On determining the data location,
cache-line is retrieved for the requesting core. DR-SNUCA
maintains a one-to-one correspondence between all tag and
data locations in the cache at all times. This correspondence
is useful in avoiding dead dataLoc references or unreachable
data locations, as well as improving the indirect cache access
and reconfiguration performance, and can change only during
cache reconfiguration.

Reconfiguration. Cache allocations can dynamically change
during application execution on interval boundaries, triggered
by timer interrupts, typically every 25 million cycles. During
this online reconfiguration, a DR-SNUCA controller is respon-
sible for shifting tags and evicting data due to a possible
change in the hashing scheme, while maintaining the one-to-
one correspondence between all tag and data locations. The
controller finds new tag locations for cache lines based on their
tagLoc bits, and if it is not the same as their current locations,
it moves the tags to their new blocks at the same index and
way, as shown in Figure 4. The dataLoc bits in the existing tags
at these new locations are also copied back to the old locations
to maintain the tag and data location correspondence.

If the cache allocation increases, no change is required in
the data blocks. However, if the cache allocation shrinks, the
controller must select which cache lines to preserve and which
to evict. To support this selection, in addition to the associative



Cores 32, x86-64 ISA, 3GHz, superscalar, in-order memory
L1 cache 32KB inclusive, 4 way associative, 8 word line,

1 bank, 3 cycle hit, pipelined, 1 read/write port
L2 cache 16MB: 128 cache-arrays, 1 bank per cache-array,

128KB per bank, 8 word line, 4-way associative
pipelined, 1 read/write port

Network 64-wide, mesh, dynamic router, 1-cycle hop
Prefetcher stream prefetcher, 128 streams, 32 buffers
Memory 4 controllers, bit-interleaved, 4 DIMMs/channel, 4

Ranks/DIMM, 8 Banks/Rank, 64MB/Bank, 16 Banks
and 1GB DDR3 per core, 96Gb/s memory bandwidth

TABLE I. PROCESSOR MODEL USED FOR DR-SNUCA EVALUATION.

LRU within a set, DR-SNUCA maintains an LRU-vector per
application for every equivalent location (same index, way)
across all cache-arrays currently owned by the application.
We call this the Application-LRU, and it is stored on the
application’s core. On allocation reductions, the controller
evicts the application-LRU entries for each equivalent location,
as shown in Figure 4. This provides better cache locality,
and hence performance, compared to a naive selection, such
as preserving all cache lines from a single cache-array. The
controller has to proactively evict these lines because if it
fails to writeback all the dirty lines, the cache will become
incoherent. It writebacks only the dirty lines to save bandwidth.
For the cache lines that are to be evicted, it still maintains the
dataLoc bits in them in order to preserve the correspondence
between tag and data locations.

Tag-Duplication. During cache reconfiguration, it is difficult
to handle memory requests for a cache line whose tag is
in transit. There are three basic approaches to handling this
scenario. First, we could have a protocol to track the tag
during its transit and allow intermediate structures to respond,
but this is complicated and can cost additional time and
energy. Second, we could stall the application execution until
the reconfiguration finishes, but this will reduce application
performance. Third, Tag-Duplication, which maintains two tag
block arrays and copies the tags from the arrays allocated
for the current interval into the arrays allocated for the next
interval, as shown in Figure 4. While the reconfiguration is
going on, all tag lookups for an application are sent to the
tag blocks allocated to the application for both the current
and previous intervals, which guarantees that the tag will
be matched if present in the cache. DR-SNUCA uses tag-
duplication to prevent application stalling and handle memory
requests during cache reconfiguration. Our experiments show
that the reconfiguration period is relatively small compared to
the interval length, which keeps the dual-lookup costs low.

III. DR-SNUCA EVALUATION

We evaluate DR-SNUCA using a simulated 32-core proces-
sor model (Table I) similar to commercial tiled manycores, e.g.
Tile64 [2], and a reconfiguration interval of 25 million cycles.
25 million cycles was found to be the interval duration yielding
highest performance in our experiments. We use PTLsim [15]
and a memory-system emulator to simulate execution of multi-
ple applications on a single many-core chip while sharing last-
level cache and off-chip memory accessed through memory
controllers, as shown in Figure 2. The emulator internally
uses DRAMsim2 [14] for modeling details of the DRAM
memory system. We analytically model the area and power
consumption using area and energy numbers, static as well as
dynamic, obtained from RAW [10] and McPAT [9] scaled to
45nm. To reduce simulation times, we extract application rep-
resentative phases using SimPoint [13] and then concurrently

Benchmark Type Benchmark Type
IaaS-IO/webCrwl slope IaaS-IO/faceDet strm
IaaS-IO/fotoBlur slope IaaS-IO/dskBkp slope
FP2000/wupwise cliff FP2000/ammp slope
FP2000/swim cliff FP2000/lucas strm
FP2000/mgrid cliff FP2000/fma3d cliff
FP2000/applu strm INT2000/parser slope
INT2000/vpr slope INT2000/bzip2 slope
FP2000/art strm INT2000/twolf slope
FP2006/equake strm FP2000/apsi strm
INT2006/astar slope FP2006/namd slope
INT2006/bwaves cliff INT2006/sjeng slope
FP2006/h264ref slope FP2006/soplex slope
INT2006/hmmer cliff INT2006/specrnd strm

TABLE II. BENCHMARK CHARACTERISTICS. WE USE BENCHMARKS
THAT PROVIDE A DIVERSE MIX OF MEMORY CHARACTERISTICS SUCH AS

MISS RATES IN L1, HIT RATE IN L2, AND CACHE MISS PROFILES [6].

run SimPoint combinations.

Benchmarks and their Classification We run com-
binations drawn from 26 benchmarks that span SPEC2K,
SPEC2K6, and an internally-developed I/O intensive bench-
mark suite, as shown in Table II. This selection provides a
rich spectrum of cache and memory characteristics [6].

The space of all possible benchmark combinations is very
large. Moreover, it provides no intuition about the benchmarks
that we have not included in our evaluation. In order to
limit the evaluation space as well as incorporate a structure
into our evaluation, we classify our benchmarks by memory
characteristics into a three-type taxonomy [4], and then exam-
ine runs that include different ratios of the three types. The
taxonomy is as follows: An application which sees no drop in
miss rate with increasing cache size is a stream application,
an application which sees a sudden drop in miss rate with
cache size is a cliff application, and an application whose
miss rate drops gradually with increasing cache size is a slope
application. In the applications examined, cache sensitivity was
a strong classifier that predicted other characteristics, such as
stream applications having good prefetching behavior and high
bandwidth requirements. For a workload with high variance
within cache sensitivity categories, additional classification
axes would be beneficial. We run representatives of these
classes to refine our manycore evaluation space and can
estimate behavior of similar applications.
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Fig. 5. DR-SNUCA reduces overall execution energy by 16.3% on
an average when compared to DNUCA even with aggressive migration.
This graph shows the energy reduction across 15 benchmark compositions
represented as a tuple (streams %, slopes %, cliffs %). They are: (100,0,0);
(75,0,25); (75,25,0); (50,0,50); (50,25,25); (50,50,0); (25,0,75); (25,25,50);
(25,50,25); (25,75,0); (0,0,100); (0,25,75); (0,50,50); (0,75,25); (0,100,0);

DR-SNUCA is Energy-Scalable. In our experiments with
32 cores using DNUCA associative caches, we observe that
a significant portion of energy is consumed in L2 (20.0% on



average). In contrast, with DR-SNUCA, average L2 energy
consumption is only 2.4%. Figure 5 shows that the greater
energy-scalability of DR-SNUCA results in an average overall
energy reduction of 16.3% compared to DNUCA.
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Fig. 6. DR-SNUCA performance is comparable to the baseline DNUCA.
Without tag-duplication (TD), DR-SNUCA performs 10.3% worse in com-
parison to the baseline due to reconfiguration stalls. However, after adding
tag-duplication, DR-SNUCA is able to perform within 0.5% of the baseline.
This graph shows the same compositions as used in Figure 5, and the average.

The execution times for DNUCA and DR-SNUCA are
comparable, as shown in Figure 6, due to similar cache hit
rates. When running a mix of 32 applications on our prototype
architecture, our results show that without tag-duplication we
can lose 10.3% of performance. However, with tag-duplication,
reconfiguration for DR-SNUCA can be done in parallel with
execution with no timing overhead, and we are able to perform
within 0.5% of the baseline DNUCA, which in turn performs
14.7% better than SNUCA [8], at the expense of just 6.42% of
the overall chip area, as seen in Figure 8. This small penalty
is due to indirect cache addressing in DR-SNUCA.
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Prefetcher (12.51%)

L1 Access (12.96%)

L2 Access (0.50%)
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Fig. 7. Energy distribution with DR-SNUCA. Energy consumed by cache
reconfiguration (0.06%), including tag migration and data eviction, is small.
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Networks (4.46%)
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L2 Duplicate Tag (6.42%)
Memory Controller (0.28%)

L2 Data (54.73%)
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Fig. 8. Area distribution with DR-SNUCA. Area required for reconfigu-
ration mechanisms in DR-SNUCA, such as 6.42% for tag-duplication, is low.

Area and Energy Overheads of DR-SNUCA are small.
For an example 32 application mix, we observe that with
DR-SNUCA we are able to significantly reduce the energy
consumption of L2 accesses; as a result, the portion of total
energy consumed in L2 access when using DR-SNUCA is low
(0.50%), as shown in Figure 7. Most of the energy is consumed
in core execution (47.45% including L1 access) and main

memory operations (45.36% for access and writeback). Energy
consumed for reconfiguration in DR-SNUCA is low: 0.06% of
the total energy. The tag-duplication required to support contin-
uous execution during reconfiguration in DR-SNUCA consume
only 6.42% of the area, as shown in Figure 8. Overall, the
mechanisms used to support reconfiguration in DR-SNUCA
are energy and area efficient, making it as efficient as SNUCA
while also providing the ability to dynamically repartition.

IV. RELATED WORK

Govindan et al. [3] and others have demonstrated the ill-
effects of interference, and dynamic cache partitioning [11]
has emerged as the most transparent solution to tackle this
problem. Kim et al. [5] proposed NUCA architectures that spa-
tially distribute shared cache to reduce access energy and time.
However, the existing NUCA techniques, such as SNUCA and
DNUCA, do not satisfy our three key requirements; SNUCA
is not dynamically repartitionable and DNUCA is not energy-
efficient for large cache sizes required for manycore architec-
tures, even when we use optimization techniques, such as way-
prediction [12], partial-tag matching [7] and data migration [5].
Thus, we extend SNUCA with cache-indirection [1] to create
DR-SNUCA, which is both dynamically reconfigurable as well
as energy-efficient for large cache sizes.

V. CONCLUSION

DR-SNUCA is an energy-scalable dynamically partitioned
cache, which reduces the energy consumption for a 32-core
system by 16.3% while performing within 0.5% when com-
pared to DNUCA caches. The area and energy overhead of
the reconfiguration mechanisms are low, and thus DR-SNUCA
can be used to provide interference-free on-chip caches for
manycore processors.
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