
Quality Time: A Simple Online Technique for
Quantifying Multicore Execution Efficiency

Anshuman Gupta
University of California, San Diego

Jack Sampson
Pennsylvania State University

Michael Bedford Taylor
University of California, San Diego

Abstract—In order to increase utilization, multicore pro-

cessors share memory resources among an increasing number

of cores. This sharing leads to memory interference, which

in turn leads to a non-uniform degradation in the execution

of concurrent applications, even in the presence of fairness

mechanisms. Many utilities rely on application CPU Time both

for measuring resource usage and inferring application progress.

These utilities are therefore directly affected by the distorting

effects of multicore interference on the representativeness of CPU

Time as a proxy for progress. This makes reasoning about myriad

properties from fairness, to QoS, to throughput optimality very

difficult in consolidated environments, such as IaaS.

We introduce the notion of Quality Time, which provides

a measure of application progress analogous to CPU Time’s

measure of resource usage, and we propose a simple online

sampling-based technique to approximate Quality Time with high

accuracy. We have implemented three user-space tools called

Qtime, Qtop, and Qplacer. Qtime can attach to an application

to calculate its Quality Time online, Qtop is a dashboard that

monitors the Quality Times of all applications on the system,

and Qplacer leverages Quality Time information to find better

application placements and improve overall system quality. With

Quality Time, we are able to reduce the error in inferring

execution efficiency from 150.3% to 25.1% in the worst case and

from 30.0% to 7.5% on average. Qplacer can increase average

system throughput by 3.2% when compared to static application

placement.

I. INTRODUCTION

Multicore processors are already commonplace in desktop,
server and mobile computing domains, and, with Moore’s Law,
the number of cores on commercial processors is constantly
increasing. While this increase in the number of processing
elements leads to increased aggregate throughput with every
processor generation, it also means that there is an increasing
potential for contention over uncore and off-chip resources,
such as on-chip networks, coherence directories, memory
controllers and DRAM.

The dynamic sharing of architectural resources among con-
current applications leads to interference that manifests itself
through widely varying and unpredictable slowdowns that arise
from the time-varying interaction of system components and
the workload. Figure 1 shows the execution slowdown of
a variety of benchmarks when they are co-scheduled with
various combinations of background applications (0-3) on a
4-core 2.4 GHz Core 2 Duo machine. The slowdowns reach
2.7⇥, average 1.4⇥, and the standard deviation is very high
relative to the execution time. Thus, an application’s CPU
Time, while still indicative of resource occupancy, has become
a poor indicator of application progress, since total progress

Benchmarks (with 0−3 Background Applications)

164.gzip

168.wupwise

175.vpr

181.mcf

183.equake

197.parser

256.bzip2

300.twolf

401.bzip2

429.mcf

462.libquantum

470.lbmEx
ec

ut
io

n
Ti

m
e

N
or

m
al

iz
ed

 to

 S
ta

nd
al

on
e

Ex
ec

ut
io

n
Ti

m
e

0
0.5

1
1.5

2
2.5

3

Fig. 1. Execution time of applications under varying co-schedules Despite
the existence of both software and hardware mechanisms to improve fairness
across concurrent applications, the range of execution times varies widely with
different co-schedules due to interference.

now also depends on the net impact of the other concurrently
scheduled applications. Unfortunately, many existing codes,
ranging from “fair” thread scheduling heuristics, to the user
commands ps and top, implicitly employ CPU Time as a proxy
for application progress.

This magnitude of variation will only increase with greater
core counts and degrees of resource sharing, and will result
in this heuristic being less and less accurate. Going into the
future, with increasing use of multicores and the advent of IaaS
clouds, mechanisms that improve transparency about applica-
tion progress will become increasingly useful; for instance,
for improving metering and improving resource allocation to
reduce interference.

We propose a metric, Quality Time, which improves on
CPU Time as a measure of application thread progress. Quality
Time is the amount of time that it would have taken the
thread to reach its current execution progress had it had
exclusive use of the machine. Using Quality Time, we can
also compute %Quality, analogous to the %CPU field ps or
top displays. Quality is reported on a per-application basis,
not for the whole system, so ideally the sum of quality across
applications is higher than 100%, reflecting that you are getting
net throughput improvements over running a single application
on the system. Intuitively, summing %Quality helps you assess
the marginal throughput change of adding new applications.

In this paper, we show a simple sampling-based technique
that enables low-cost online estimation of each application
thread’s Quality Time and %Quality. The technique is highly
portable because it runs entirely in user-space and employs
existing hardware mechanisms that are prevalent across most
general purpose processors: an event counter that counts in-

169978-1-4799-3606-9/14/$31.00 ©2014 IEEE

structions issued, or alternatively, a counter that counts L1 data
cache accesses. The technique allows measurement accuracy
and overhead to be traded off, with typical settings of < 1%
overhead yielding accurate estimations. We develop a user-
space library, Qlib, that facilitates the measurement of Quality
Time by concurrent applications, and introduce three tools
using Qlib: Qtime, Qtop, and Qplacer. Qtime and Qtop are
analogous to the Unix utilities time and top, respectively, and
Qplacer uses Quality Time information to discover preferable
affinities among co-scheduled applications and exploit them
through remapping. All three of these applications run in user-
space and require only that an environment variable be set to
enable our QLib library; no recompilation is required.

The contributions of this paper include:

• The QLib library for estimating Quality Time

We develop a library that coordinates the sampling
of hardware counters to estimate Quality Time within
7.5%. On publication, we will release the source for
both QLib and the three utilities that rely on it.

• Efficient user-space estimation of Quality Time

We demonstrate that by merely setting an environment
variable to pre-load QLib when an application runs,
we can estimate Quality Time for unmodified binaries
entirely in user-space.

• Qtime We have developed Qtime, a utility that pro-
vides real-time, online estimation of a given ap-
plication’s Quality Time for profiling and metering
purposes. Compared to using CPU-time to estimate
progress, Qtime drops worst case errors from 150.3%
to 25.1%, and reduces average case error from 30.0%
to 7.5% with an overhead of less than 1%.

• Qtop We have developed Qtop, a dashboard utility
that provides visibility of execution quality across an
entire system.

• Qplacer We have developed Qplacer, a user-space
affinity mapping tool that actively monitors inter-
application interference using Quality Time met-
rics, and moves application threads among cores to
achieve 3.2% higher average throughput over a ran-
dom scheduling, and provides up to a 105.0% maxi-
mum throughput improvement.

The remainder of the paper proceeds as follows. Section II
describes our insights and methods for inferring Quality Time
from hardware counters. Section III describes the implemen-
tation of QLib and the Qtime utility, and Sections IV and V
describe our implementations of Qtop and Qplacer, respec-
tively. Section VI showcases our results for Qtime accuracy
and Qplacer throughput improvements. Section VII reviews
related work, and Section VIII concludes.

II. ARCHITECTURAL INTERFERENCE
AND PERFORMANCE MEASUREMENT

In modern processors, interference is difficult to predict
and manage because of three factors. First, microarchitectural
resources, such as cache occupancy and bandwidth, are of-
ten shared in a free-for-all fashion and resource allocation
decisions occur at very fine temporal granularity. Since main

memory is vastly slower than on-chip memory, every memory
access from any thread could have potentially detrimental
effects on the execution of its cohorts if servicing the memory
request forces the eviction of a more useful cache line. Second,
applications running on out-of-order superscalars differ greatly
in both their demand for resources and in their sensitivity to not
having their demands met. Third, threads frequently transition
through execution phases [1], which results in many possible
phase combinations when different threads are run together.
Thus, the space of all possible combinations of co-scheduled
resource demands is large, frequently changing, and effects
depend on interactions of address streams at run-time.

In the rest of this section, we explore the challenges
in providing an interference-agnostic metric for application
progress. We begin by examining the limitations of CPU Time,
discuss alternative proxy metrics, and investigate how best to
map from these new metrics to notions of application progress
and execution quality in the presence of interference.

CPU Time As a Proxy for Application Thread Progress

Implicitly, CPU Time is computed by the OS using either
a timer circuit that asserts a periodic interrupt, or a cycle
counter, which counts the number of clock cycles that have
elapsed. Relying upon these hardware mechanisms for measur-
ing thread progress works poorly in a multicore environment
because these measures are oblivious to any external effects
from other threads that may slow execution. In the context-
switched uniprocessor domain, it was sensible to rely on CPU
Time as a metric for thread progress. With interference, we
are driven to cast about for potential hardware mechanisms
that might be more effective substitutes.

Alternative Proxies Hardware metrics that are more closely
tied to program progress are more promising. Of particular
interest are hardware event counters, which count events in
a processor’s execution, and have become increasingly ubiq-
uitous in modern processors. Such event counters provide a
plausible proxy for execution progress because they are highly
correlated to real-program progress. For example, in a simple
loop accessing an array, the number of L1 data cache accesses,
or even simply the number of instructions executed, correlate
directly with the number of iterations/progress through the
loop. Among the many event counters that are often available,
most architectures provide one or more that are not particularly
sensitive to interference, i.e. both isolated and concurrent
runs generate similar event counts, making their measurement
more strongly tied to program fundamentals than the current
execution environment.

Deriving Time From Measuring Events However, there
is one key challenge in using counters that are essentially
counting program properties – normal, interference-free values
may vary between different programs or different inputs,
leaving us with no sense of the expected value for that run.
In order to convert from “event” units to “time” units, we
need to estimate the expected rate that those events occur at in
interference-free execution. Because of program phases, event
rates are likely to change with time even within a single thread,
so static conversion ratios are insufficient. Simply reading the
hardware counters in concurrent mode alone is insufficient as
standalone performance estimate is required as well to measure
slowdown.

170

We employ a sampling based approach in order to discern
the expected event rate. To estimate an application’s Quality
Time, we repeatedly measure event counter statistics over both
a very short sample period, where other application threads
have been temporarily suspended, and then over a much longer
execution phase, wherein it is co-scheduled. The short sample
period is used to establish the event rate under interference-free
execution. Then, we use that rate to convert the total number
of events into a interference-free time value, Quality Time.

Quality-Time focuses on single-threaded multi-
programmed workloads, which are present in most IaaS
environments. For systems where multiple multithreaded
applications are running, it would work poorly to stop
individual threads in an application because they might
synchronize with each other. Instead, we could compute a
Ganged Quality-Time for each application, by simultaneously
sampling, suspending, and resuming all the threads in that
application.

Choosing a Sampling-Compatible Counter Using this
sampling-based approach to sample the interference-free event
rate relies upon the hypothesis that the sampled event-rate of
a small execution period of the application can be used to
extrapolate the behavior of a much larger period of execution.
The choice of event counter greatly affects the quality of that
extrapolation. Ideally, we would have an event that is 1) high
frequency, to avoid aliasing errors due to integer precision
counters; 2) oblivious to interference, in the sense that the
number of counted events in a fixed sequence of instructions
should not vary when other programs are run and 3) low
variability in measured event-rates (e.g. events/progress) within
the current program phase.

Every architecture provides a number of hardware event
counters for insight and debugging purposes. To choose among
the many such options, we examined the events exposed by the
PAPI [2] library over all the benchmarks from Figure 1, each
running interference-free, to select the events with minimal
extrapolation error. We used the cycles/event ratio present in a
single interval of 1 ms to predict the cycles for the next 99 ms
using the event count for those 99 intervals (1% sampling).
As shown in Figure 2, the extrapolation error varies widely
depending on the event selected. L1 data cache access (L1-
DCA) and instructions committed (TOT-INS) ended up being
among the best metrics, because they were strong on all three
requirements for events. First, they have low aliasing error
compared to low frequency events such as L2 cache misses
(L2-TCM). Second, they are interference-oblivious, unlike
for instance, L2 cache misses. Third, and finally, they have
relatively low variability (with L1-DCA having the lowest)
across programs. For the remainder of the paper, we will focus
on L1 data cache access and instructions committed as the two
hardware events to track.

Choosing a Sampling Interval We explored the impact of
sampling overhead and duration on Quality Time estimation
accuracy. Ideally, the sampling duration should be long enough
to absorb micro-variations in the application execution. At
the same time, increasing the sampling duration increases
the disruption to other threads during sampling, and, given a
fixed sampling overhead, may negatively impact the dynamism
of our predictions and our coverage of different application
phases. Figure 3 shows the results of our sweep over sampling

Hardware Events

L1
 D

at
a

C
ac

he
 A

cc
es

s
In

st
ru

ct
io

ns
 C

om
m

itt
ed

L1
 In

st
 C

ac
he

 R
ea

d
L2

 In
st

 C
ac

he
 H

it
L1

 In
st

 C
ac

he
 M

is
s

In
st

 Is
su

e
St

al
l C

yc
le

Br
an

ch
 T

ak
en

L2
 In

st
 C

ac
he

 A
cc

es
s

FP
U

 Id
le

 C
yc

le
L1

 In
st

 C
ac

he
 A

cc
es

s
L2

 T
ot

al
 C

ac
he

 A
cc

es
s

L2
 D

at
a

C
ac

he
 A

cc
es

s
Br

an
ch

 In
st

ru
ct

io
ns

L1
 D

at
a

C
ac

he
 M

is
s

Br
an

ch
 M

is
pr

ed
ic

ts
L2

 T
ot

al
 C

ac
he

 M
is

s
FP

 M
ul

t I
ns

tru
ct

io
ns

L2
 D

at
a

C
ac

he
 M

is
s

Ve
ct

or
 In

st
ru

ct
io

ns
FP

 O
pe

ra
tio

ns
FP

 A
dd

 In
st

ru
ct

io
ns

FP
 In

st
ru

ct
io

ns

Ex
tra

po
la

tio
n

Er
ro

r (
%

)

10 4

10 3

10 2

10
1

AVERAGE MAX

Fig. 2. Choosing hardware events that have low extrapolation error.

Quality Time estimation samples a small region of execution and acquires
an event rate that is then applied to estimate the behavior of a larger region
of code. Event counters that generate good event rates have low aliasing
errors, are interference-agnostic, and have low variability. The top counters
were Instructions Committed and L1 Data Cache Access, and are used for the
remainder of the paper.

Es
tim

at
io

n
Er

ro
r (

%
)

1000

100

10

1

Sampling Overhead (%)
10.03.01.00.3

100,000 1,000,000 10,000,000 100,000,000

Sampling Duration (ns)

Fig. 3. Quality Time estimation accuracy increases with increasing

sampling overhead. We can estimate Quality Time with less than 10%
inaccuracy using sampling with an overhead of 1%. In this paper, we employ
1 millisecond sampling durations.

duration and frequency for the L1DCA event using the same
experimental setup as in Figure 2. The accuracy increases with
higher sampling rates, as expected, but this also leads to a
higher overhead. On the other hand, the impact of sampling
duration was not as direct, since different applications have
different phase durations and behave differently for varying
sampling durations. For this paper, we use a 1 ms sampling
duration.

III. QLIB AND QTIME: MEASURING ONLINE
APPLICATION EXECUTION QUALITY

There are two paths toward implementing counter-based
approaches for estimating Quality Time. Namely, the approach
can be implemented either in the kernel or in user-space. The
former would provide a system-wide view of the effects of
interference and allows for the greatest variety of responses to

171

the incoming data. A user-space approach is also desirable
because any user can portably reason about the quality of
execution of their jobs on any system they may find themselves
executing those jobs on. However, since a user-space approach
can only control that user’s applications, there is the potential
for lost accuracy due to interference from other concurrent
users.

In this section, we describe the design of Qtime, a user-
space tool for estimating an application’s Quality Time, and
Qlib, the user-space library it relies on. Qlib requires mea-
surements of hardware event counters to indicate application
progress when running alone as well as concurrently. It uses
the PAPI library [2] to provide access to the hardware event
counters and read them out periodically. The PAPI library
itself relies on the perfCtr module in linux kernel whose
lighter-weight access to counters reduces complexity and over-
heads; moreover, PAPI is generally useful because it improves
portability, and swaps in/out counters if the OS schedules
in background threads. Due to PAPI’s virtualization of these
hardware event counters, Qtime can continue to get meaningful
statistics even in the face of context switches.

Stat Collection

Suspended Sampling

Application C

Application D

Execution

Application A

Application B

Fig. 4. Qtime framework. Qtime uses a sampling-based framework
implemented in a dynamically linked library called QLib. Through this library,
the applications regularly collect hardware event counters, either in standalone
mode or concurrent mode, to estimate the application progress and execution
quality online. To collect samples in standalone mode, all other applications
are suspended. This synchronization between applications is managed through
a shared memory region, which is managed by QLib.

In our user-space implementation, we allow concurrent
applications to simultaneously estimate their Quality Time.
Each invocation of Qtime attaches to a single application,
whose Quality Time will then be measured. Each application
must collect its event statistics both in isolated and concurrent
execution. These measurements occur throughout execution to
provide robustness against application phase-changes. Since
we use hardware event counters to track progress, applications
periodically read the current hardware event counters for their
execution, as shown in Figure 4. Since hardware counters
are usually shared among all concurrent applications on a
processor, there is some orchestration required to get accurate
measurements during concurrent execution. In addition to the
sampling phases, wherein other applications are suspended, the
applications also time-multiplex the collection of event counts
during concurrent (non-sampling) periods. This is clearly seen
in Figure 4 in the pattern of stat-collection periods between
the two indicated sampling periods. Overall stat counts for the
entire concurrent execution period are extrapolated linearly.

To orchestrate sampling among multiple applications, we
create a library called Qlib. Rather than use a centralized con-
troller, Qlib allows each application to measure Quality Time

using its own resources. This reduces unnecessary context
switches and provides scalability through decentralization.

The QLib library has to be linked to the application binary.
To eschew recompilation, we take advantage of LD PRELOAD
to intercept libc start main and link in QLib, a library
to handle the communications among the applications, PAPI
calls, and a Shared Memory Region holding Quality Time
statistics, as shown in Figure 6. QLib interfaces with PAPI and
configures the hardware event counters. It also sets up an over-
flow controller that tells PAPI to read out the hardware event
counters every time the PAPI TOT CYCLES counter exceeds
a given threshold. During these overflows, the statistics will
be written (WRSHM) into the shared memory region shown
in Figure 7. QLib writes the collected event counts during
sampling phases to a different location in shared memory than
the non-sampled statistics. These isolated application statistics
are collected for use as representative samples. QLib also sets
up the signal handlers for beginning the sampling phases, and
an exit handler such that when the application exits, it frees
up associated entries in the shared memory region. It also sets
up a SIGALRM handler.

During both the sampling and execution phases, the appli-
cations periodically send event statistics, CPU-time, and the
currently calculated Quality Time to a shared memory region,
or SMR, for communicating this information, as shown in
Figure 7. SMR is divided into shared memory region Entries,
or SMREs, where each SMRE can store an application’s PID,
Quality Time, CPU-time, instructions committed and L1 cache
accesses. At the beginning of execution, every application
allocates a SMRE. The application periodically updates the
SMREs with its execution statistics. The statistics reported are
cumulative, so they are overwritten and there is no need of
a read-modify-write. When an application exits, its SMRE is
freed and can be allocated to other applications.

INIT$

EXIT$

DUMP$

SUSP$

Signal

Check

$
$
$
$
$
$
$
$
$
$$$$$Execu0on$

SMPL$

$
$
$
$
$
$
$
$

Concurrent$

STAT$

EXEC$

U
nl

oc
k Lock

Sigalrm

Sigalrm

O
vf

l/S
ig

al
rm

R
eturn

Fig. 5. State Machine for application execution when running Qtime tool.

An application, when using Qtime tool to estimate its Quality Time, starts in
the sampling state (SMPL) where it tries to collect event counters in standalone
mode by signaling other applications to suspend (SUSP). Samples are collected
(DUMP) in the counter overflow handler. After some predetermined time, the
application resumes execution (EXEC) in concurrent mode and periodically
collects event samples in the concurrent mode (STAT).

Figure 5 describes the state machine in QLib that controls
the sampling and statistic collection behaviors for each thread.
We use SIGALRM to periodically schedule when the appli-
cation will be ready to get samples in standalone mode or

172

concurrent mode, and when it should stop collecting samples.
Once an application decides to sample an application, it sends
a real-time signal to all other applications. On receiving the
signal, all the other applications enter a suspended state and
periodically read a shared memory region to check if the
sampling state is over. Meanwhile the sampling application
initiates the hardware event counters and collects the counters
on periodic counter overflows. After a predetermined sampling
duration, the application stops collecting samples, writes a
value to the shared memory region that indicates that the
sampling is over, and resumes execution. When the suspended
applications next read the shared memory region, they resume
their execution as well.

Qtime allows suspension overhead and Quality Time es-
timation accuracy to be traded off. In our experiments, we
employed 1% sampling intervals in this paper. Thus, in an
N core system with 1% sampling per application, the cost
of suspending co-runners during sampling to be (N-1)% (e.g.
3% on a quad-core system). However, the application-level
overheads can be a lot less than this (as low as 0%), because
an application can have significant speedup when it has the
machine all to itself.

The applications also collect samples during the concurrent
execution. In the SIGALRM handler, if it needs to start
collecting samples, it tries to obtain a lock placed in the
shared memory region to ensure that no other application is
currently using the hardware counters. On obtaining the lock,
the application initializes the hardware counters, records event
counts, and calculates the Quality Time. Lock contention is
rare because each thread is implicitly assigned a time slot
(think time-division multiplexing) when it tries to acquire the
lock. A thread contends for the QLib lock with its co-runners
for its first sampling period, but on receiving the lock, its
sampling cycle is placed out-of-phase with co-runners leading
to negligible contention in subsequent sampling periods. The
Quality Time is also updated in the shared memory region
every time the PAPI TOT CYCLES counter overflows.

Before the application begins standalone sampling, it
dumps its current statistics in the shared memory region,
changes the mode to sampling mode and resets the hardware
event counters. Then it dumps the statistics in the shared mem-
ory region on overflows until it finishes standalone sampling.
At this point, it again dumps the statistics, resets the hardware
counters, changes to the EXEC state, and resumes execution.
During the EXEC state, the application is not collecting any
samples and, since it temporarily suspends the event gathering,
it doesn’t register any event overflows. As a result, during the
EXEC state the Quality Time estimation is done inside the
SIGALRM handler. Qtime records the ratio of application’s
Quality Time progress versus the CPU-time progress during
the STAT state. Qtime then uses this ratio during the EXEC
state to update the application Quality Time based on its CPU-
time progress.

Since the hardware counters are read on cycle overflow,
while the state transitions happen inside the SIGALRM han-
dler, which is triggered on time, the state transitions and
statistics collection are not synchronized. Thus we can get
dirty data across these transitions. To avoid that, every time
the application transitions from a statistics collecting state, it
reads the counters, dumps the data into the shared memory

Shared
Memory

Region (SMR)

LOAD

EXECUTE

WRSHM

PAPI
Overflow

PRELOAD

APP SMRE

Qlib%

Dynamic
Linkage

EXIT
Execution

Suspended

Sampling
 Stat Collection

Fig. 6. Application Execution. Qtime preloads QLib at the launch of
an application, which sets up the application sampling framework. During
execution the statistics are written to the SMR when PAPI is triggered by an
event counter overflow. Applications can suspend other applications to collect
samples for standalone execution by sending a signal to other applications. The
applications read the PIDs from the SMR for this purpose. On receiving the
signal the application remains suspended, and periodically checks the SMR to
see if the application has finished sampling, after which it resumes execution.
In concurrent mode, applications can collect samples after obtaining a stat
collection lock present in the SMR.

region, and resets the hardware counters before starting the
next state.

App#A####SMRE#
App#B####SMRE#

App#C####SMRE#
App#D####SMRE#

Applica/on#A#

Applica/on#B#

Shared Memory Region (SMR)

Shared Memory Region Entry (SMRE)

WRSHM

Applica/on#C#

Applica/on#D#

QTOP#

RDSHM

Quality9Time# Instruc/ons#CPU9Time# L1#accesses#PID#

Fig. 7. Shared Memory Region. Applications write their Quality Time,
CPU-times as well as execution statistics into a Shared Memory Region (SMR)
where they can be read (RDSHM) by other applications for synchronization as
well as management purposes. Each application is allocated a Shared Memory
Region Entry (SMRE), which contains application PID, Quality Time, CPU-
time, and other hardware statistics. The shared memory region also contain the
variables indicating currently sampling application as well as the application
currently collecting execution statistics.

Taken as a whole, Qtime provides an efficient and accurate
tool that allows an application to see its own Quality Time.
This is already highly useful for purposes such as profiling, but
in the next section, we will show how collecting Quality Times
for all currently running applications is useful for managing
overall system quality.

IV. QTOP: A DASHBOARD FOR MONITORING
EXECUTION QUALITIES OF OTHER APPLICATIONS

In addition to Qtime, we also implemented Qtop, a dash-
board which continuously tracks application qualities, and

173

provides monitoring and controlling facility for the overall
system quality. Applications run with Qtime dump application
statistics including PID, Quality Time, and CPU-time in the
shared memory region to communicate with other applications.
Qtop periodically reads this shared memory region for the
execution statistics and maintains a history of the application
qualities over time.

Fig. 8. Qtop monitors the online quality of applications using the Qtime

tool. Qtop periodically reads the information written to the shared memory
region by all applications running the Qtime tool. It provides an estimate of
the overall as well as the current quality of application execution, for example
during last 1 second and the last 5 seconds as shown here. The history of
application quality is shown in a live curve where each dot represents a 10%
quality during that second. Underneath, the core on which the application was
running at that point is also shown. These visual quality profiles can provide
valuable insights into application interactions and phase behaviors.

The Qtop dashboard presents a compact visualization of
the system execution quality at present as well as over the
past. Qtop creates a live display of the quality of applications
executing using the Qtime tool, as shown in Figure 8. It
displays not just an application’s Quality Time and CPU-time,
but also takes a ratio of these two time metrics to calculate
the application’s execution quality over recent execution, and
displays it in ascii at a resolution of 10% execution quality. It
also summarizes the application quality over the entire execu-
tion as well as customizable periods, such as last 1 second or
last 5 seconds, and displays them in the application summary.
Finally, it also shows the cores on which the application was
executing for each update.

Qtop can be readily used for detecting a lack of overall
quality in the system as well as the offending workload.
Similarly, it could be used to detect whether the system

is underutilized and can be further consolidated. Qtop can
monitor the entire system with very low overhead (⇠1% core
overhead) comparable to common linux monitoring tools such
as top.

V. QPLACER: A QUALITY TIME BASED
AFFINITY MAPPING TOOL

The quality of application execution can be significantly
affected by architectural resource contention, and different
schedules of applications to cores will result in different
levels of contention. Since Qtime enables online monitoring
of application qualities, it provides an opportunity to alter
system configurations on-the-go and quickly react to changing
application phases. This level of dynamic reactivity is very
difficult when monitoring or profiling is done offline or on
remote machines. We create a user-space tool, Qplacer, that
attempts to improve system throughput by suggesting applica-
tion placements that will improve execution quality. Qplacer
is a user-space tool and does not require root access to run.

While Qplacer does not interfere with OS application
scheduling in terms of which applications are currently sched-
uled, it attempts to increase system quality by discovering
better application placements. For this purpose Qplacer uses
simulated annealing, which ensures that even if the system
converges to a locally optimal placement, it continues to prob-
abilistically try other configurations and provide robustness
against dynamically changing application phases and interac-
tions. It also prevents frequent placement changes by forcing
the system to stay in the current configuration for extended
periods. Possibly other algorithms like genetic programming
could be appropriate as well.

Qplacer uses the following simulated annealing model:

• States, S: Represented by unique configurations in
the system. Two configurations are not unique if all
applications are homogeneous co-locations in the two
configurations. For example, on our evaluation ma-
chine, there are three possible unique configurations,
i.e. “ab,cd”, “ac,bd”, and “ad,cb”.

• Energy, E(S): Each configuration has an associated
energy. Qplacer records the Weighted-Quality of each
application in each configuration, and uses the sum
of these Weighted-Qualities of all applications as
the energy of the configuration. Every interval, the
Weighted-Quality of all applications are calculated by
taking the sum of their existing Weighted-Quality,
weighted down by a damping constant, and the current
Quality of these applications, weighted down by one
minus the damping constant. The initial Weighted-
Quality of each application is a 100%.

• Temperature, T: The system temperature determines
its entropy. Qplacer is less willing to change soon after
a configuration switch. So it uses the natural logarithm
of the time (in milliseconds) since last switch as the
system temperature.

• Switch Probabilities, P: Finally, Qplacer determines
the probability to switch from state S to S’ as:

P (S, S0, T) = e�⇥(E(S0)�E(S))+T (1)

174

Configuration of System 1

OS CentOS release 5.8 (Final), Linux 2.6.39.4
Processor Quad-core Intel Xeon X3220, 2.40GHz,

2 x 4MB shared L2 cache
Memory 1066MHz FSB, 6GB DDR3

Configuration of System 2

OS CentOS release 5.8 (Final), Linux 2.6.29.6
Processor 2-Socket 6-core AMD Opteron 2427,

2.40GHz, 6MB shared L3 cache
Memory 2400MHz HT, 64GB DDR3

TABLE I. SYSTEM CONFIGURATIONS USED IN OUR EVALUATION.

� is a convergence constant. The probabilities are
normalized so that the sum of all switch probabilities
is 1.0.

Every interval, Qplacer estimates the switching probabil-
ities, and then generates a random number to determine the
next state of the system. The Qtop monitoring tool displays the
application swaps made. While there are overheads associated
with swapping configurations, our results indicate that the
swaps occur infrequently enough, and the programs converge
to beneficial schedules rapidly enough that affinity control
can provide benefits in the common case. This is particu-
larly promising compared to static profiling approaches, as it
means that Qplacer or similar approaches will provide benefits
even for previously unseen programs. Thus, Qplacer will be
particularly useful for expanding IaaS and cloud computing
domains wherein arbitrary user computations may be offloaded
to consolidated servers for execution.

VI. EVALUATION

We now describe the evaluation of our user space tools:
Qtime, which approximates application Quality Times, and
Qplacer, which uses simulated annealing to improve applica-
tion placements.

A. Evaluation Methodology

We implemented a user-space tool, Qtime, to suspend
and sample applications, and calculate Quality Time using
statistics collected from applications. The other user-space
tool Qplacer is a tool that monitors application qualities and
improve application placement using simulated annealing. We
run our experiments on the setup described in Table I. We
use the PAPI library [2] version 5.0.1.0 to collect application
execution statistics. We use sampling periods of 1 millisecond
and sampling periods of 1% compared to concurrent execution
periods. We use 0.25 as the damping constant for simulated
annealing, and 2.00 as the convergence constant. We use the
PAPI overflow threshold as 1 million cycles.

We use benchmarks from SPEC2000 [3] and SPEC2006 [4]
for our evaluation. We describe the benchmark characteristics
in Table II. For each workload, we run all the benchmarks in
a loop until all the applications have finished at least once and
measure the Quality Time for all the applications simultane-
ously. The applications are sampled periodically (once every
100ms) to manage phase changes. The experiments are run for
the full application duration; since SPEC benchmarks with ref
inputs typically run for multiple minutes and phases changes
can happen at sub-millisecond scale, the experimental runs did

Application Suite Description
164.gzip SPEC2000 File compression
168.wupwise SPEC2000 Quantum chromodynamics
175.vpr SPEC2000 Place and route CAD tool
181.mcf SPEC2000 Vehicle scheduling algorithm
183.equake SPEC2000 Seismic wave propagation
197.parser SPEC2000 Word processing
256.bzip2 SPEC2000 File compression
300.twolf SPEC2000 Computer aided design
401.bzip2 SPEC2006 File compression
429.mcf SPEC2006 Vehicle scheduling algorithm
462.libquantum SPEC2006 Quantum computing
470.lbm SPEC2006 Computation fluid dynamics

TABLE II. BENCHMARKS USED IN OUR EVALUATION.

see frequent phase changes and Qtime was indeed able to adapt
to them.

Evaluating our Quality Time scheme and comparing al-
ternatives requires us to replay each scheme in the face of
potentially variable machine behavior. Thus, we run both our
baseline isolated executions and each benchmark tuples multi-
ple times to better cover the scope of real program behaviors.
We report the evaluation results for Qtime accuracy based on
12 standalone runs for the 12 benchmarks on both Systems,
along with 78 runs for all possible pairs of 12 benchmarks with
1 instance each for both System 1 and System 2, 78 runs with
2 instances each for system 1, and 78 runs with 3 instances
each for System 2. We also run every experiment thrice to
adapt for system noise and report their arithmetic means.
Therefore, we report the Qtime results based on 1008 runs
overall. On the other hand for Qplacer evaluation, we report
results based on all 78 possible pairings of the 12 benchmarks
with 2 instances each on System 1. We run 3 experiments with
Qplacer and 3 without Qplacer for each benchmark pair and
report the arithmetic means to compensate for system noise.
Therefore, Qplacer results are reported based on 468 runs
overall. For comparing total system throughput we compare
the sum of execution times for all the applications’ first runs.
For comparing the accuracy of instantaneous estimates, we
use the simplifying assumption that, for these benchmarks,
an equivalent number of committed instructions implies an
equivalent amount of application progress. This simplifying
assumption is borne out by the minimal variance in total
committed instructions across runs for SPEC benchmarks.

B. Qtime’s Quality Time Estimation Results

We ran Qtime with a sampling period of 1% compared
to the concurrent execution period and a sampling duration
of 1 millisecond using the L1-DCA and TOT-INS events.
We observe that while the existing method of using CPU
time to track application progress has an error of 29.5% on
average (arithmetic mean) for the two systems described in
Table I. The errors on these two systems evaluated are 36.9%
and 22.2% on average and 150.3% and 115.6% at most,
respectively. Our initial simple sampling-based technique is
able to reduce this error for almost all the workloads, as
shown in Figure 9, to 10.8% on average when using L1 data
cache access and 16.4% when using instructions committed,
as shown in Figure 9. However, for some workloads, the
error goes up significantly when using our sampling technique.
This is due to the amplification effects of sampling: If our

175

AVG
STDEVPr

og
re

ss
 E

st
im

at
io

n
Er

ro
r (

%
)

0
5

10
15
20
25
30
35
40

CPU−time TOT−INS L1−DCA
TOT−INS−CAP L1−DCA−CAP

MAX
0

50

100

150

200

Fig. 9. Quality Time can be accurately and efficiently estimated by our

technique. Sampling-based Quality Time estimation has an accuracy of
10.8% on average, when using L1-DCA. However, the maximum error is
110.7% with L1-DCA and 189.6% with TOT-INS. We are able to reduce the
max error to 25.1% (and 7.5% on average) when using L1-DCA by capping
the Quality Time each interval.

“representative” sample is actually in a different phase than
the execution we use it to predict, then our back-calculation of
time can be erroneous. In particular, if we sample during a low
event-frequency phase, and predict for a high event-frequency
phase, our estimation of time elapsed can be implausibly high.
As a result, the maximum error is still very high, 110.7% and
189.6% for L1 data cache access and instructions committed,
respectively, as shown in Figure 9.

Benchmarks

164.gzip

168.wupwise

175.vpr

181.mcf

183.equake

197.parser

256.bzip2

300.twolf

401.bzip2

429.mcf

462.libquantum

470.lbm
OVERALL

Pr
og

re
ss

 E
st

im
at

io
n

Er
ro

r (
%

)

0

20

40

60

80

100

120

140

160
CPU Time
Quality Time

Fig. 10. Qtime’s Quality Time estimation, by benchmark. We show the
ranges of error for both CPU-Time and Qtime’s L1-DCA-based Quality Time
estimation. Our technique improves the accuracy and reduces the variability
in approximating application progress in the presence of interference.

Fortunately, we can refine our technique by applying cap-
ping to our Quality Time estimation to improve our results.
We know that for every interval, the Quality Time cannot be
less than zero. Also, ignoring the rare case of speedups when
sharing resources, the Quality Time can be assumed to be less
than or equal to the CPU time. We apply these two limits every
intervals to bound our Quality Time estimation. As shown in
Figure 9, capping leads to better Quality Time estimation,
especially when using L1 data cache accesses. When using

L1 data cache access, capping reduces the maximum error to
25.1% and arithmetic mean of absolute errors to 7.5% (8.2%
and 6.7%, respectively, on the two systems evaluated) with
a standard deviation of 3.4%, as shown in Figure 9. The
instantaneous errors cancelled each other out and as a result the
absolute error in Quality-Time remained stable. This implies
that the longer the application runs the smaller the %Quality
error. Figure 10 shows the final results by benchmark.

We get similar Qtime accuracy results on systems with
Hyper-threading. This was made possible due to PAPI’s virtu-
alization and Intel’s hyper-threaded event counter support [5].
A full evaluation of Qtime/HT has been left as future work.

Time (sec)
0 10 20 30 40 50

Es
tim

at
ed

 Q
ua

lit
y

Ti
m

e
(s

ec
)

0

10

20

30

40

50 CPU−Time
Ideal
L1−DCA−CAP

Fig. 11. Instantaneous tracking of Quality Time. We plot the calculated
and ideal Quality Time for 401.bzip2 as a function of time. We show that our
technique can provide accurate instantaneous estimations of Quality Time as
well as accurate holistic estimations, with the estimated Quality Time closely
tracking the ideal.

Figure 11 shows an example of how our technique can
provid consistently accurate estimations over the course of
execution, as well as accurate summary statistics. Figure 11
shows that, for the entire course of the execution of 401.bzip2,
the estimation of progress tracks very closely with the ideal.
While whole-execution accuracy is sufficient for use cases
such as IaaS metering, fine-grained accuracy is necessary for
using Quality Time for scheduling, resource allocation, or other
dynamic decisions.

Getting sampling to work in a dynamic system without ex-
cessive extrapolation error is indeed challenging. A key result
of our paper, as seen here, is that our approach, a combination
of frequent sampling, judicious choice of hardware events,
and capping, i.e. bound error in one direction, allows the
system to infer much more information about execution quality
than is possible from CPU-time alone. Combined with CPU-
time, Qtime allows for a more complete picture of execution
properties under contention.

C. Throughput Improvement with Qplacer

Since Quality Time can accurately estimate the impact of
interference on an application, making Quality Time infor-
mation available to a scheduler can be useful in dynamically
discovering which application pairings result in the least con-
flicting schedules.

We evaluated our affinity scheduler’s ability to produce
good co-schedules on the Quad-core Intel Xeon evaluation

176

Workloads

164.gzip_164.gzip

164.gzip_175.vpr

164.gzip_183.equake

164.gzip_188.ammp

164.gzip_197.parser

164.gzip_256.bzip2

164.gzip_300.twolf

164.gzip_401.bzip2

164.gzip_429.mcf

164.gzip_462.libquantum

164.gzip_470.lbm

175.vpr_175.vpr

175.vpr_183.equake

175.vpr_188.ammp

175.vpr_197.parser

175.vpr_256.bzip2

175.vpr_300.twolf

175.vpr_401.bzip2

175.vpr_429.mcf

175.vpr_462.libquantum

175.vpr_470.lbm

181.mcf_164.gzip

181.mcf_175.vpr

181.mcf_181.mcf

181.mcf_183.equake

181.mcf_188.ammp

181.mcf_197.parser

181.mcf_256.bzip2

181.mcf_300.twolf

181.mcf_401.bzip2

181.mcf_429.mcf

181.mcf_462.libquantum

181.mcf_470.lbm

183.equake_183.equake

183.equake_188.ammp

183.equake_401.bzip2

183.equake_429.mcf

183.equake_462.libquantum

183.equake_470.lbm

Th
ro

ug
hp

ut
 Im

pr
ov

em
en

t
 w

ith
 Q

pl
ac

er
 (%

)

−80
−60
−40
−20

0
20
40
60
80

100
120

(a)

Workloads

188.ammp_188.ammp

188.ammp_401.bzip2

188.ammp_429.mcf

188.ammp_462.libquantum

188.ammp_470.lbm

197.parser_183.equake

197.parser_188.ammp

197.parser_197.parser

197.parser_256.bzip2

197.parser_300.twolf

197.parser_401.bzip2

197.parser_429.mcf

197.parser_462.libquantum

197.parser_470.lbm

256.bzip2_183.equake

256.bzip2_188.ammp

256.bzip2_256.bzip2

256.bzip2_300.twolf

256.bzip2_401.bzip2

256.bzip2_429.mcf

256.bzip2_462.libquantum

256.bzip2_470.lbm

300.twolf_183.equake

300.twolf_188.ammp

300.twolf_300.twolf

300.twolf_401.bzip2

300.twolf_429.mcf

300.twolf_462.libquantum

300.twolf_470.lbm

401.bzip2_401.bzip2

401.bzip2_429.mcf

401.bzip2_462.libquantum

401.bzip2_470.lbm

429.mcf_429.mcf

429.mcf_462.libquantum

429.mcf_470.lbm

462.libquantum_462.libquantum

462.libquantum_470.lbm

470.lbm_470.lbm

AVERAGE

Th
ro

ug
hp

ut
 Im

pr
ov

em
en

t
 w

ith
 Q

pl
ac

er
 (%

)

−80
−60
−40
−20

0
20
40
60
80

100
120

(b)
Fig. 12. Qplacer can improve throughput by using Quality Time for placement. Qplacer can use the online Quality Time estimates for the applications,
which changes over time due to application phases, and dynamically determines application placement using simulated annealing. In our evaluation on System
1, described in Table I, this leads to an average throughput improvement of 3.2% over 78 runs (all possible pairs of 12 benchmarks; two instances of each
benchmark launched) and a maximum throughput improvement of 105.0%. The improvements should be even larger for systems with higher heterogeneity.

system (System 1 in Table I) by scheduling two copies each of
two applications on the multi-chip module with two processors,
each with two cores. The system works for more applications
than number of cores as well. We run one application per
core to match the behavior of typical clusters with batch
schedulers and commercial IaaS systems, such as Amazon
EC2. We compare our tool’s dynamic scheduling against the
average throughput over the 3 possible distinct static schedul-
ing configurations. Figure 12, where each bar represents the %
increase in total throughput for 4-application workloads when
using Qplacer compared to the average throughput reported by
2-possible static application placements, shows that for most
sets of applications, choosing to dynamically reschedule based
on Quality Time indications of interference is beneficial for
overall throughput. In cases where there was little potential
benefit between the best and average schedules, the technique
sometimes decreased throughput due to the errors in estimation
of the Quality Time leading to a misguided choice of applica-
tion placement. The migration and sampling overheads were
small and did not significantly impact the overall throughput.
Improving our Quality Time estimation and heuristic to avoid
these low benefit cases will be a future effort.

VII. RELATED WORK

Architectural Interference Typical commercial multicore
processors share resources among concurrent threads, and
resource sharing leads to interference between applications,

as described by Tang et al. [6]. Govindan et al. [7] show
that even with the use of hypervisors the unpredictability in
slowdowns is very high. Stillwell et al. [8] also examined
the performance impact of resource sharing in servers at
the system level. For these resource-sharing processors, it is
important to precisely estimate the performance of applications
in order to improve resource accounting and utilization, as
shown by Armbrust et al. [9]. For resource-sharing commercial
systems, it is important to accurately estimate the progress of
applications and exercise control over it in order to maintain
performance guarantees and improve resource utilization, as
also pointed out by Buttazzo [10], since even state-of-the-art
resource management schemes, such as the ones proposed by
Gohner et al. [11] and Elmroth et al. [12], do not account for
application slowdowns due to sharing of processor resources.

The emergence of manycore computing in the server space,
punctuated by the arrival of Tilera’s Tile Gx100 [13] and
Intel’s 48-core SCC [14], offers higher density and energy-
efficiency. However, these benefits are only realizable if in-
terference is more carefully controlled, as these manycore
processors heavily rely on shared resources. Quality Time
provides a performance abstraction for interference-free execu-
tion. Such abstractions are useful for utilities such as kernel-
schedulers. We are also witnessing an emergence of multi-
cores in other ecosystems such as embedded computing, such
as the smartphones. These systems are under an even bigger
pressure to share resources due to limited area budgets, and

177

this can lead to difficulties in existing resource management
techniques for multiprogrammed embedded systems, such as
the ones proposed by Lipari et al. [15], Bernat et al. [16], and
Beccari et al. [17], reducing the effectiveness of techniques
such as resource reservation [18] and proportional resource
sharing [19] for real-time systems.

Quality Time provides a performance abstraction for
interference-free execution. Such abstractions can be useful
for high-order decisions such as resource management and
progress tracking, as suggested by Zhang et al. [20], in
manycore systems.

Resource Isolation Performance isolation has been proposed
as a means to reduce resource interference. Verghese et
al. [21] proposed mechanisms for performance isolation for
resources such as I/O bandwidth and storage, while Banga et
al. [22] suggested resource containers to isolate and account for
system-level resource usage. However, since typical manycore
architectures rely on shared processor resources, this perfor-
mance isolation (and not just resource isolation [23]) should
be extended to the micro-architectural levels to account for
application slowdowns due to sharing of processor resources.

Performance Estimation Performance estimation has been
studied in existing literature for different objectives. For ex-
ample, Eyerman et al. [24] used a mechanistic performance
modeling to create CPI-stacks, which can be used to determine
performance bottleneck in systems. These models however
require some knowledge of the microarchitecture as well as
some offline regression. Lee et al. [25] use offline regression to
estimate performance and power consumption of applications.
However, our performance estimation technique is online and
requires no knowledge of the underlying microarchitecture.

Research has also been done on creating application
progress estimates in hardware. TimeCube [26] tracks appli-
cation progress using an analytical performance estimation
model similar to the one proposed by Solihin et al. [27]. These
models are able to model minute architectural details such as
tracking prefetches, measure memory bandwidth constraints,
and cache intricacies such as dirty lines, via mechanisms
like those proposed by Kaseridis et al. [28]. They can model
off-chip architectural resources that affect application perfor-
mance, such as the details of DRAM DDR protocol and
bank buffer behaviors. These mechanisms can even obviate
the need for standalone execution by using shadow structures,
for example shadow cache techniques that have been proposed
for associative caches, such as by Zhou et al. [29].

However, while it is faster to accumulate execution statis-
tics in hardware and the performance estimation of mecha-
nisms designed alongside the architectures can produce very
high accuracy due to their intimate knowledge of the archi-
tectural details, no commodity system currently implements
these mechanisms. Thus, these techniques are not germane
for the many systems that use existing multicore processors,
which are already facing architectural interference problems.
The techniques to mitigate the interference problem on these
systems need to be implemented in software. Qtime focuses
on portability and using a purely online approach (no off-line
analysis). Although on the surface this precludes inclusion
of micro-architectural knowledge, some micro-architectural
details (e.g., cache sizes) are relatively easy to read from the

system and could be used to potentially improve Qtime.

Performance Analysis Several performance analysis tools
and techniques have been proposed previously, such as
VTune [30] and Cilkview [31]. However, these techniques
analyze application performance in isolation, and usually drive
analysis of offline systems, such as by London et al. [32].
Zagha et al. [33] propose an offline performance analysis
using hardware counters for specifically MIPS R10K, whereas
our technique can be used on any platform. Compared to the
context-sensitive technique proposed by Ammons et al. [34],
our technique provides less information, which is sufficient for
our purpose; as a result, the tool is efficient enough to be used
online.

Kambadur et al. [35] propose using remote machines to
analyze profile data obtained from live datacenter applications
using Google Wide Profiler [36]. This technique has a very low
overhead; however, since they collect profiles on live applica-
tions, but process them on remote machines, the round-times
are too large to make phase-sensitive analysis/scheduling.
Moreover, they do not have standalone performance estimates,
which is very useful in providing bounded QoS to applications
in certain settings, such as IaaS or embedded-systems.

Resource Management Several hardware techniques have
been proposed to manage resources inside processor itself,
such as profiling based allocation schemes proposed by Liu
et al. [37] and Suh et al. [38]. Bitirgen et al. [39] proposed
simultaneous cache and bandwidth allocation using machine
learning. These management schemes are tuned for varying
purposes; for example, Hsu et al. [40] tune their cache alloca-
tion algorithm to maximize different metrics such as fairness
and throughput; and Guo et al. [41] allocate cache partitions
based on QoS provided by choosing between strict, elastic,
and opportunistic schemes. However, these policies are better
managed at the software level, because of the possible changes
in the system requirements.

In software, co-scheduling can reduce pressure on the
resources and increase performance when sharing scarce
resources between multiple applications. Amongst previous
works, Cazorla et al. [42], Jiang et al. [43], El-Moursy et
al. [44] and Snavely et al. [45] discuss mechanisms for
application scheduling. Federova et al. [46] examined OS-level
scheduling to optimize CMT (multithread CMPs) performance.
However, due to increasing heterogeneity within the processors
as well as across different processors, application placement
is becoming increasingly important. Qtop uses simulated an-
nealing to affect application placement while leaving the
scheduling decisions to the kernel.

VIII. CONCLUSION

We observe that, even though multicore processors are
being used in all forms of computing, many software utilities
continue to use CPU time as the proxy for application progress
– which can be misleading when architectural resources are
shared among cores. On the two multicore processors evalu-
ated, we show these distortions to be 30.0% on average and up
to 150.3% in the worst case. We introduce the notion of Quality
Time, a simple quantification for application execution effi-
ciency, which can be used by software utilities as a proxy for
application progress. Quality Time can be estimated efficiently

178

and accurately with user-space utilities, without recompilation.
We implement three tools, Qtime, Qtop, and Qplacer, which
generate, monitor, and use Quality Time, respectively, to
reduce the error in tracking application progress to 7.5% on
average and 25.1% in the worst-case, and increase throughput
by 3.2% on average and 105.0% in the best case.

ACKNOWLEDGEMENT

This work was partially supported by NSF Awards
06483880, 0846152, 0811794, 1018850, 0811794, and
1228992, and by C-FAR, one of six centers of STARnet, a
Semiconductor Research Corporation program sponsored by
MARCO and DARPA.

REFERENCES

[1] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in ASPLOS, 2002.

[2] D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting perfor-
mance data with papi-c,” 2009.

[3] “SPEC CPU 2000 benchmark specifications,” 2000, SPEC2000 Bench-
mark Release.

[4] “SPEC CPU 2006,” 2006. [Online]. Available:
http://www.spec.org/cpu2006/

[5] “Implement performance monitoring for hyper-threading technology,”
Intel Developer Forum. [Online]. Available: http://goo.gl/aYq4Xs

[6] L. Tang, J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa, “The im-
pact of memory subsystem resource sharing on datacenter applications,”
in ISCA, 2011.

[7] S. Govindan, J. Liu, A. Kansal, and A. Sivasubramaniam, “Cuanta:
quantifying effects of shared on-chip resource interference for consoli-
dated virtual machines,” in SOCC, 2011.

[8] M. Stillwell, D. Schanzenbach, F. Vivien, and H. Casanova, “Resource
allocation using virtual clusters,” in International Symposium on Cluster
Computing and the Grid, 2009.

[9] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Commun. ACM, vol. 53, April 2010.

[10] G. Buttazzo, “Research trends in real-time computing for embedded
systems,” SIGBED Rev., 2006.

[11] M. Gohner, M. Waldburger, F. Gubler, G. Rodosek, and B. Stiller, “An
accounting model for dynamic virtual organizations,” in International
Symposium on Cluster Computing and the Grid, 2007.

[12] E. Elmroth, F. G. Marquez, D. Henriksson, and D. P. Ferrera, “Ac-
counting and billing for federated cloud infrastructures,” in International
Conference on Grid and Cooperative Computing, 2009.

[13] R. Schooler, “The processor: Many-core for embedded and cloud
computing,” in Workshop on High Performance Embedded Computing,
2010.

[14] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, S. Borkar, V. De,
R. C. D. Wijngaart, and T. Mattson, “A 48-Core IA-32 Message-Passing
Processor with DVFS in 45 nm CMOS,” in ISSCC, 2010.

[15] G. Lipari and S. K. Baruah, “Efficient scheduling of real-time multi-
task applications in dynamic systems,” in Real Time Technology and
Applications Symposium, 2000.

[16] G. Bernat and A. Burns, “Multiple servers and capacity sharing for
implementing flexible scheduling,” Real-Time Syst., Jan. 2002.

[17] G. Beccari, S. Caselli, and F. Zanichelli, “A technique for adaptive
scheduling of soft real-time tasks,” Real-Time Syst., Jul. 2005.

[18] L. Abeni and G. Buttazzo, “Resource reservation in dynamic real-time
systems,” Real-Time Syst., Jul. 2004.

[19] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. Baruah, J. Gehrke, and
C. Plaxton, “A proportional share resource allocation algorithm for real-
time, time-shared systems,” in Real-Time Systems Symposium, 1996.

[20] X. Zhang, S. Dwarkadas, G. Folkmanis, and K. Shen, “Processor
hardware counter statistics as a first-class system resource,” in Workshop
on Hot Topics in Operating Systems, 2007.

[21] B. Verghese, A. Gupta, and M. Rosenblum, “Performance isolation:
sharing and isolation in shared-memory multiprocessors,” in ASPLOS,
1998.

[22] G. Banga, P. Druschel, and J. C. Mogul, “Resource containers: a new
facility for resource management in server systems,” in OSDI, 1999.

[23] K. J. Nesbit, J. Laudon, and J. E. Smith, “Virtual private caches,” in
ISCA, 2007.

[24] S. Eyerman, K. Hoste, and L. Eeckhout, “Mechanistic-empirical proces-
sor performance modeling for constructing cpi stacks on real hardware,”
in ISPASS, 2011.

[25] B. C. Lee and D. M. Brooks, “Accurate and efficient regression
modeling for microarchitectural performance and power prediction,”
SIGARCH Comput. Archit. News, 2006.

[26] A. Gupta, J. Sampson, and M. B. Taylor, “Timecube: A manycore
embedded processor with interference-agnostic progress tracking,” in
SAMOS, 2013.

[27] Y. Solihin, V. Lam, and J. Torrellas, “Scal-tool: pinpointing and quan-
tifying scalability bottlenecks in dsm multiprocessors,” in SC, 1999.

[28] D. Kaseridis, J. Stuecheli, J. Chen, and L. K. John, “A bandwidth-aware
memory-subsystem resource management using non-invasive resource
profilers for large cmp systems.” in HPCA, 2010.

[29] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou, and
S. Kumar, “Dynamic tracking of page miss ratio curve for memory
management,” in ASPLOS, 2004.

[30] J. Reinders, “Vtune performance analyzer essentials,” in Intel Press,
2005.

[31] Y. He, C. E. Leiserson, and W. M. Leiserson, “The cilkview scalability
analyzer,” in SPAA, 2010.

[32] K. London, J. Dongarra, S. Moore, P. Mucci, K. Seymour, and
T. Spencer, “End-user tools for application performance analysis using
hardware counters,” in PDCS, 2001.

[33] M. Zagha, B. Larson, S. Turner, and M. Itzkowitz, “Performance
analysis using the mips r10000 performance counters,” in SC, 1996.

[34] G. Ammons, T. Ball, and J. R. Larus, “Exploiting hardware performance
counters with flow and context sensitive profiling,” in PLDI, 1997.

[35] M. Kambadur, T. Moseley, R. Hank, and M. A. Kim, “Measuring
interference between live datacenter applications,” in SC, 2012.

[36] G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and R. Hundt, “Google-
wide profiling: A continuous profiling infrastructure for data centers,”
IEEE Micro, 2010.

[37] C. Liu et al., “Organizing the last line of defense before hitting the
memory wall for CMPs,” in HPCA, 2004.

[38] G. E. Suh, S. Devadas, and L. Rudolph, “Analytical cache models with
applications to cache partitioning.” in HPCA, 2002.

[39] R. Bitirgen, E. Ipek, and J. F. Martinez, “Coordinated management
of multiple interacting resources in chip multiprocessors: A machine
learning approach,” in MICRO, 2008.

[40] L. R. Hsu, S. K. Reinhardt, R. Iyer, and S. Makineni, “Communist,
utilitarian, and capitalist cache policies on cmps: caches as a shared
resource,” in PACT, 2006.

[41] F. Guo, Y. Solihin, L. Zhao, and R. Iyer, “A framework for providing
quality of service in chip multi-processors,” in MICRO, 2007.

[42] F. J. Cazorla, P. M. W. Knijnenburg, R. Sakellariou, E. Fernández,
A. Ramirez, and M. Valero, “Architectural support for real-time task
scheduling in smt processors,” in CASES, 2005.

[43] Y. Jiang, X. Shen, J. Chen, and R. Tripathi, “Analysis and approximation
of optimal co-scheduling on chip multiprocessors,” in PACT, 2008.

[44] A. El-Moursy, R. Garg, D. H. Albonesi, and S. Dwarkadas, “Compatible
phase co-scheduling on a cmp of multi-threaded processors,” in IPDPS,
2006.

[45] A. Snavely and D. M. Tullsen, “Symbiotic jobscheduling for a simul-
taneous multithreaded processor,” in ASPLOS, 2000.

[46] A. Fedorova, M. Seltzer, C. Small, and D. Nussbaum, “Performance
of multithreaded chip multiprocessors and implications for operating
system design,” in USENIX Technical Conference, 2005.

179

