
GreenDroid: A Mobile
Application Processor
for a Future of Dark Silicon

Nathan Goulding, Jack Sampson, Ganesh Venkatesh,
Saturnino Garcia, Joe Auricchio, Jonathan Babb+,

Michael B. Taylor, and Steven Swanson

Department of Computer Science and Engineering,
University of California, San Diego

+ CSAIL, Massachusetts Institute of Technology

Aug. 23, 2010 Hot Chips 22

Where does dark silicon come from?
(And how dark is it going to be?)

2

Utilization Wall:

With each successive process generation, the percentage
of a chip that can actively switch drops exponentially due
to power constraints.

3

We've Hit The Utilization Wall

  Scaling theory
–  Transistor and power budgets

are no longer balanced
–  Exponentially increasing

problem!

  Experimental results
–  Replicated a small datapath
–  More "dark silicon" than active

  Observations in the wild
–  Flat frequency curve
–  "Turbo Mode"
–  Increasing cache/processor ratio

Utilization Wall: With each successive process generation, the percentage of
a chip that can actively switch drops exponentially due to power constraints.

4

 Classical scaling
Device count S2

Device frequency S
Device power (cap) 1/S
Device power (Vdd) 1/S2

Utilization 1

 Leakage-limited scaling
Device count S2

Device frequency S
Device power (cap) 1/S
Device power (Vdd) ~1
Utilization 1/S2

We've Hit The Utilization Wall

  Scaling theory
–  Transistor and power budgets

are no longer balanced
–  Exponentially increasing

problem!

  Experimental results
–  Replicated a small datapath
–  More "dark silicon" than active

  Observations in the wild
–  Flat frequency curve
–  "Turbo Mode"
–  Increasing cache/processor ratio

Utilization Wall: With each successive process generation, the percentage of
a chip that can actively switch drops exponentially due to power constraints.

5

We've Hit The Utilization Wall

  Scaling theory
–  Transistor and power budgets

are no longer balanced
–  Exponentially increasing

problem!

  Experimental results
–  Replicated a small datapath
–  More "dark silicon" than active

  Observations in the wild
–  Flat frequency curve
–  "Turbo Mode"
–  Increasing cache/processor ratio

2x

2x

2x

Utilization Wall: With each successive process generation, the percentage of
a chip that can actively switch drops exponentially due to power constraints.

6

We've Hit The Utilization Wall

  Scaling theory
–  Transistor and power budgets

are no longer balanced
–  Exponentially increasing

problem!

  Experimental results
–  Replicated a small datapath
–  More "dark silicon" than active

  Observations in the wild
–  Flat frequency curve
–  "Turbo Mode"
–  Increasing cache/processor ratio

2.8x

2x

Utilization Wall: With each successive process generation, the percentage of
a chip that can actively switch drops exponentially due to power constraints.

7

We've Hit The Utilization Wall

  Scaling theory
–  Transistor and power budgets

are no longer balanced
–  Exponentially increasing

problem!

  Experimental results
–  Replicated a small datapath
–  More "dark silicon" than active

  Observations in the wild
–  Flat frequency curve
–  "Turbo Mode"
–  Increasing cache/processor ratio

Utilization Wall: With each successive process generation, the percentage of
a chip that can actively switch drops exponentially due to power constraints.

2.8x

2x

  Scaling theory
–  Transistor and power budgets

are no longer balanced
–  Exponentially increasing

problem!

  Experimental results
–  Replicated a small datapath
–  More "dark silicon" than active

  Observations in the wild
–  Flat frequency curve
–  "Turbo Mode"
–  Increasing cache/processor ratio

8

We've Hit The Utilization Wall
Utilization Wall: With each successive process generation, the percentage of
a chip that can actively switch drops exponentially due to power constraints.

2.8x

2x

The utilization wall will change the way
everyone builds processors.

9 9

Utilization Wall:
Dark Implications for Multicore

4 cores @ 1.8 GHz

4 cores @ 2x1.8 GHz
(12 cores dark)

2x4 cores @ 1.8 GHz
(8 cores dark, 8 dim)

(Industry’s Choice)

.…

65 nm 32 nm

.…

.…

Spectrum of tradeoffs
between # of cores and
frequency

Example:
65 nm 32 nm (S = 2)

What do we do with
dark silicon?
  Goal: Leverage dark silicon to scale the utilization wall

  Insights:
–  Power is now more expensive than area
–  Specialized logic can improve energy efficiency (10–1000x)

  Our approach:
–  Fill dark silicon with specialized cores to save energy on

common applications
–  Provide focused reconfigurability to handle evolving workloads

10 10

11

Conservation Cores
  Specialized circuits for

reducing energy
–  Automatically generated from hot

regions of program source code
–  Patching support future-proofs the

hardware

  Fully-automated toolchain
–  Drop-in replacements for code
–  Hot code implemented by c-cores,

cold code runs on host CPU
–  HW generation/SW integration

  Energy-efficient
–  Up to 18x for targeted hot code

D-cache

Host
CPU

(general-purpose
processor)

I-cache

Hot code

Cold code

"Conservation Cores: Reducing the Energy of Mature Computations," Venkatesh et al.,
ASPLOS '10

C-core

12

The C-core Life Cycle

13

Outline

  Utilization wall and dark silicon

  GreenDroid

  Conservation cores

  GreenDroid energy savings

  Conclusions

Emerging Trends

Mobile application processors are becoming a dominant
computing platform for end users.

The utilization wall is exponentially worsening the
dark silicon problem.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1Q'07 1Q'08 1Q'09 1Q'10 1Q'11

Dell

Android iPhone

Historical Data: Gartner

1Q Shipments,
Thousands

Specialized architectures are receiving more and more
attention because of energy efficiency.

14

Mobile Application Processors
Face the Utilization Wall
  The evolution of mobile application processors mirrors

that of microprocessors

  Application processors
face the utilization wall

–  Growing performance
demands

–  Extreme power
constraints

1985 1990 1995 2000 2005 2010 2015

Intel
ARM

15

pipelining

superscalar

out-of-order

multicore

StrongARM

Core Duo

486

586

686

Cortex-A8

Cortex-A9

Cortex-A9
MPCore

Hardware

Linux Kernel

Libraries Dalvik

Applications

Android™

  Google’s OS + app. environment for mobile devices

  Java applications run on the
Dalvik virtual machine

  Apps share a set of libraries
(libc, OpenGL, SQLite, etc.)

16

Applying C-cores to
Android
  Android is well-suited for c-cores

–  Core set of commonly used applications
–  Libraries are hot code
–  Dalvik virtual machine is hot code
–  Libraries, Dalvik, and kernel &

application hotspots c-cores

–  Relatively short hardware
replacement cycle

17
Hardware

Linux Kernel

Libraries Dalvik

Applications

C-cores

Targeted

Broad-based

  Profiled common Android apps to find the hot spots, including:
–  Google: Browser, Gallery, Mail, Maps, Music, Video
–  Pandora
–  Photoshop Mobile
–  Robo Defense game

  Broad-based c-cores
–  72% code sharing

  Targeted c-cores
–  95% coverage with just

43,000 static instructions
(approx. 7 mm2)

18

Android Workload Profile

C
P

U

L1 L1

L1 L1

C
P

U

C
P

U

C
P

U

C
P

U

L1 L1

L1 L1

C
P

U

C
P

U

C
P

U

C
P

U

L1 L1

L1 L1

C
P

U

C
P

U

C
P

U

C
P

U

L1 L1

L1 L1

C
P

U

C
P

U

C
P

U

GreenDroid: Applying Massive Specialization
to Mobile Application Processors

Android
workload

Automatic
c-core
generator

Conservation cores
(c-cores)

Low-power
tiled multicore

lattice 19

GreenDroid Tiled Architecture
  Tiled lattice of 16 cores
  Each tile contains

–  6-10 Android c-cores
(~125 total)

–  32 KB D-cache
(shared with CPU)

–  MIPS processor
•  32 bit, in-order,

7-stage pipeline
•  16 KB I-cache
•  Single-precision FPU

–  On-chip network router

C
P

U

L1 L1

L1 L1

C
P

U

C
P

U

C
P

U

C
P

U

L1 L1

L1 L1

C
P

U

C
P

U

C
P

U

C
P

U

L1 L1

L1 L1
C

P
U

C
P

U

C
P

U

C
P

U

L1 L1

L1 L1

C
P

U

C
P

U

C
P

U

20

GreenDroid Tile Floorplan

  1.0 mm2 per tile

  50% C-cores
  25% D-cache
  25% MIPS core,

I-cache, and
on-chip network

1 mm

1 mm

OCN

D $

C
P

U

I $

 C C
 C

 C

 C

 C

 C

 C

 C C

21

GreenDroid Tile Skeleton

  45 nm process
  1.5 GHz
  ~30k instances

  Blank space is filled with
a collection of c-cores

  Each tile contains
different c-cores

22

OCN

D $

C
P

U

I $

C-cores

23

Outline

  Utilization wall and dark silicon

  GreenDroid

  Conservation cores

  GreenDroid energy savings

  Conclusions

24

Constructing a C-core
  C-cores start with source code

–  Can be irregular, integer programs
–  Parallelism-agnostic

  Supports almost all of C:
–  Complex control flow

e.g., goto, switch, function calls
–  Arbitrary memory structures

e.g., pointers, structs, stack, heap
–  Arbitrary operators

e.g., floating point, divide
–  Memory coherent with host CPU

sumArray(int *a, int n)
{
 int i = 0;
 int sum = 0;

 for (i = 0; i < n; i++) {
 sum += a[i];
 }

 return sum;
}

25

Constructing a C-core
  Compilation

–  C-core selection
–  SSA, infinite register,

3-address code
–  Direct mapping from

CFG and DFG
–  Scan chain insertion

  Verilog Place & Route
–  45 nm process
–  Synopsys CAD flow

•  Synthesis
•  Placement
•  Clock tree generation
•  Routing

0.01 mm2, 1.4 GHz

C-cores Experimental Data
  We automatically built 21 c-cores for 9 "hard"

applications

–  45 nm TSMC

–  Vary in size from
0.10 to 0.25 mm2

–  Frequencies from
1.0 to 1.4 GHz

26

Application #
C-cores

Area
(mm2)

Frequency
(MHz)

 bzip2 1 0.18 1235
 cjpeg 3 0.18 1451
 djpeg 3 0.21 1460
 mcf 3 0.17 1407
 radix 1 0.10 1364
 sat solver 2 0.20 1275
 twolf 6 0.25 1426
 viterbi 1 0.12 1264
 vpr 1 0.24 1074

27

C-core Energy Efficiency:
Non-cache Operations

  Up to 18x more energy-efficient (13.7x on average),
compared to running on the MIPS processor

D-cache
6% Datapath

3%

Energy
Saved
91%

D-cache
6%

Datapath
38%

Reg. File
14%

Fetch/
Decode

19%

I-cache
23%

Where do the energy savings
come from?

28

MIPS baseline
91 pJ/instr.

C-cores
8 pJ/instr.

Supporting Software Changes

  Software may change – HW must remain usable
–  C-cores unaffected by changes to cold regions

  Can support any changes, through patching
–  Arbitrary insertion of code – software exception

mechanism
–  Changes to program constants – configurable registers
–  Changes to operators – configurable functional units

  Software exception mechanism
–  Scan in values from c-core
–  Execute in processor
–  Scan out values back to c-core to resume execution

29

30

Patchability Payoff: Longevity

  Graceful degradation
–  Lower initial efficiency
–  Much longer useful lifetime

  Increased viability
–  With patching, utility

lasts ~10 years for
4 out of 5 applications

–  Decreases risks of
specialization

31

Outline

  Utilization wall and dark silicon

  GreenDroid

  Conservation cores

  GreenDroid energy savings

  Conclusions

GreenDroid:
Energy per Instruction

32

  More area dedicated to c-cores yields higher execution
coverage and lower energy per instruction (EPI)

  7 mm2 of c-cores provides:
–  95% execution coverage
–  8x energy savings over MIPS core

0
10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7 8 9

Av
er

ag
e

En
er

gy
 p

er

In
st

ru
ct

io
n

(p
J)

C-core Area (mm2)

What kinds of hotspots turn into
GreenDroid c-cores?

33

C-core Library #
Apps

Coverage
(est., %)

Area
(est., mm2)

Broad-
based

dvmInterpretStd libdvm 8 10.8 0.414 Y

scanObject libdvm 8 3.6 0.061 Y

S32A_D565_Opaque_Dither libskia 8 2.8 0.014 Y

src_aligned libc 8 2.3 0.005 Y

S32_opaque_D32_filter_DXDY libskia 1 2.2 0.013 N

less_than_32_left libc 7 1.7 0.013 Y

cached_aligned32 libc 9 1.5 0.004 Y

.plt <many> 8 1.4 0.043 Y

memcpy libc 8 1.2 0.003 Y

S32A_Opaque_BlitRow32 libskia 7 1.2 0.005 Y

ClampX_ClampY_filter_affine libskia 4 1.1 0.015 Y

DiagonalInterpMC libomx 1 1.1 0.054 N

blitRect libskia 1 1.1 0.008 N

calc_sbr_synfilterbank_LC libomx 1 1.1 0.034 N

inflate libz 4 0.9 0.055 Y

.

GreenDroid: Projected Energy
Aggressive mobile application processor
(45 nm, 1.5 GHz)

GreenDroid c-cores

GreenDroid c-cores + cold code (est.)

  GreenDroid c-cores use 11x less energy per instruction
than an aggressive mobile application processor

  Including cold code, GreenDroid will still save ~7.5x energy

34

91 pJ/instr.

8 pJ/instr.

12 pJ/instr.

Project Status
  Completed

–  Automatic generation of c-cores from source code to place & route
–  Cycle- and energy-accurate simulation (post place & route)
–  Tiled lattice, placed and routed
–  FPGA emulation of c-cores and tiled lattice

  Ongoing work
–  Finish full system Android emulation for more accurate

workload modeling
–  Finalize c-core selection based on full system Android

workload model
–  Timing closure and tapeout

35

36

GreenDroid Conclusions
  The utilization wall forces us to change how we

build hardware

  Conservation cores use dark silicon to attack
the utilization wall

  GreenDroid will demonstrate the benefits of c-cores
for mobile application processors

  We are developing a 45 nm tiled prototype at UCSD

GreenDroid: A Mobile
Application Processor
for a Future of Dark Silicon

Nathan Goulding, Jack Sampson, Ganesh Venkatesh,
Saturnino Garcia, Joe Auricchio, Jonathan Babb+,

Michael B. Taylor, and Steven Swanson

Department of Computer Science and Engineering,
University of California, San Diego

+ CSAIL, Massachusetts Institute of Technology

Aug. 23, 2010 Hot Chips 22

Backup Slides

38

39

Automated Measurement
Methodology
  C-core toolchain

–  Specification generator
–  Verilog generator

  Synopsys CAD flow
–  Design Compiler
–  IC Compiler
–  45 nm library

  Simulation
–  Validated cycle-accurate

c-core modules
–  Post-route gate-level

simulation

  Power measurement
–  VCS + PrimeTime

Source

Rewriter

gcc

C-core
specification
 generator

Verilog
generator

Synopsys flow
Simulation

Power
measurement

Hot code

Hotspot analyzer

Cold code

