
130

Exploring Energy Scalability in Coprocessor-Dominated
Architectures for Dark Silicon

QIAOSHI ZHENG, University of California, San Diego and Northwestern Polytechnical
University, China
NATHAN GOULDING-HOTTA, SCOTT RICKETTS, STEVEN SWANSON,
and MICHAEL BEDFORD TAYLOR, University of California, San Diego
JACK SAMPSON, University of California, San Diego and The Pennsylvania State University

As chip designers face the prospect of increasingly dark silicon, there is increased interest in incorporating
energy-efficient specialized coprocessors into general-purpose designs. For specialization to be a viable means
of leveraging dark silicon, it must provide energy savings over the majority of execution for large, diverse
workloads, and this will require deploying coprocessors in large numbers. Recent work has shown that
automatically generated application-specific coprocessors can greatly improve energy efficiency, but it is not
clear that current techniques will scale to Coprocessor-Dominated Architectures (CoDAs) with hundreds or
thousands of coprocessors.

We show that scaling CoDAs to include very large numbers of coprocessors is challenging because of the
energy cost of interconnects, the memory system, and leakage. These overheads grow with the number of
coprocessors and, left unchecked, will squander the energy gains that coprocessors can provide. The article
presents a detailed study of energy costs across a wide range of tiled CoDA designs and shows that careful
choice of cache configuration, tile size, coarse-grain power management and transistor implementation can
limit the growth of these overheads. For multithreaded workloads, designer must also take care to avoid
excessive contention for coprocessors, which can significantly increase energy consumption. The results
suggest that, for CoDAs that target larger workloads, amortizing shared overheads via multithreading can
provide up to 3.8× reductions in energy per instruction, retaining much of the 5.3× potential of smaller
designs.

Categories and Subject Descriptors: C.1.3 [Other Architecture Styles]: Heterogeneous (hybrid) systems

General Terms: Design, Performance

Additional Key Words and Phrases: CoDA, coprocessor, conservation core, dark silicon, energy efficiency,
scalable specialization

ACM Reference Format:
Qiaohi Zheng, Nathan Goulding-Hotta, Scott Ricketts, Steven Swanson, Michael Bedford Taylor, and Jack
Sampson. 2014. Exploring energy scalability in coprocessor-dominated architectures for dark silicon. ACM
Trans. Embedd. Comput. Syst. 13, 4s, Article 130 (March 2014), 24 pages.
DOI: http://dx.doi.org/10.1145/2584657

This work was partially supported by NSF awards 06483880, 0811794, 1018850, 0811794, and 1228992,
and by C-FAR, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by
MARCO and DARPA.
Author’s addresses: Q. Zheng, N. Goulding-Hotta, Computer Science and Engineering Department, Univer-
sity of California, San Diego; S. Ricketts (Current address), Nvidia; S. Swanson, M. B. Taylor, Computer
Science and Engineering Department, University of California, San Diego; J. Sampson (corressponding au-
thor; current address), Computer Science and Engineering Department, The Pennsylvania State University;
email: jsampson@cs.ucsd.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this work in
other works requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
c© 2014 ACM 1539-9087/2014/03-ART130 $15.00

DOI: http://dx.doi.org/10.1145/2584657

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 130, Publication date: March 2014.

130:2 Q. Zheng et al.

1. INTRODUCTION

The end of Dennard scaling [Dennard et al. 1974], combined with fixed power budgets,
has resulted in designs where larger and larger fractions of a chip’s silicon area must
remain inactive in order to stay within its power budget. This dark silicon results from
the utilization wall [Venkatesh et al. 2010; Goulding et al. 2010; Esmaeilzadeh et al.
2011; Hardavellas et al. 2011; Taylor 2012, 2013; Govindaraju et al. 2012; Semicon-
ductor Industries Association 2012]: the observation that the percentage of a chip that
can switch at full frequency is dropping precipitously with each process generation.

As progressively decreasing portions of a chip’s transistors can be fully utilized, sili-
con area becomes less expensive relative to power and energy consumption. This shift
calls for new architectural techniques that trade dark silicon area for energy efficiency.
One such technique is the use of specialized coprocessors. Specialized coprocessors
are becoming commonplace across smartphone, tablet, and desktop chips. These chips
now include diverse functions such as H.264 accelerators, Viterbi baseband processing
blocks, and cascade-based face detection pipelines. This trend will continue to acceler-
ate as energy efficiency continues to drive processor design.

Dark silicon is a plentiful resource now and will become more so. As a result, chip
designers can include many of these coprocessors, each one specializing to an even
greater degree for a smaller fraction of the workload. This specialization can target
both energy savings [Venkatesh et al. 2010] and/or performance [Clark et al. 2008].
Recent work [Goulding et al. 2010; Hardavellas et al. 2011] has proposed using dark
silicon to implement a host of specialized coprocessors, each of which is a factor of
ten or more energy efficient than a general-purpose processor. Although prior work
has explored the effectiveness of coprocessor-enabled systems for single applications
or small, targeted workloads, to be generally useful these coprocesor-enabled systems
must realize savings across broad and diverse workloads, which means scaling to
workloads featuring dozens or even hundreds of applications.

As the number of coprocessors scales up, these designs will transform from
coprocessor-enabled systems to Coprocessor-Dominated Architectures (CoDAs). In
CoDAs execution hops among coprocessors and general-purpose cores depending on
which is most efficient for the current task, while unused components enter deep low-
power modes. Area budgets at the 22nm node and beyond will provide sufficient tran-
sistor resources to build CoDAs that contain hundreds or thousands of coprocessors,
enabling designers to target higher coverage over ever-larger workloads. The larger
the fraction of the workload that the specialized coprocessors can cover, the larger the
potential increase in overall efficiency that CoDAs can provide.

However, designing scalable CoDAs will raise numerous architectural challenges.
Energy consumption from integration overheads grows as CoDAs scale, eroding poten-
tial savings. Although each coprocessor can improve performance and/or efficiency in
isolation, assembling many coprocessors into a single architecture causes expansion of
the on-chip interconnect and increases the complexity of the memory system. So much
of the chip is idle (i.e., dark) at any moment that leakage energy from idle components
is a much larger problem for dark silicon systems than for conventional designs. In-
creasing coprocessor counts can increase the frequency of migration between them,
adding migration overheads and impacting cache performance. If designers are not
careful, these inefficiencies can overshadow the benefits that the coprocessors provide.

CoDAs also raise questions with respect to application coverage and the usage model
for coprocessors. Traditional coprocessors target a few, key applications (e.g., video
decoding). However, in a CoDA, almost all applications will be using coprocessors,
and multithreaded applications may use several at once. If applications compete for a
particular coprocessor, then either performance or efficiency will suffer, as the losing

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 130, Publication date: March 2014.

Exploring Energy Scalability in Coprocessor-Dominated Architectures for Dark Silicon 130:3

thread either waits for access to the coprocessor or falls back to executing on a general-
purpose core. For multithreaded workloads, these conflicts can dramatically reduce the
efficiency of CoDAs.

This article systematically explores the design space for CoDA systems to observe
how CoDA efficiency scales with larger and highly multithreaded workloads. We survey
CoDA designs to understand the impact of both high-level architectural decisions (e.g.,
cache sizes and the number of coprocessors) and low-level implementation choices (e.g.,
the type of transistors to use and how to manage power gating). Then, we measure the
impact of running concurrent threads on a CoDA, and explore methods for reducing
the impact of competition for contended coprocessors.

This article shows that the main limiter on the efficiency of larger CoDAs is the
efficiency of the other on-chip components and the leakage through dark silicon. In
particular, we show the following.

—Without aggressive power management, leakage precludes efficiency benefits from
large CoDAs, and we show that, even with aggressive power management, leakage is
still a sizable fraction of CoDA energy that grows with coprocessor count. In a CoDA,
the leakage of the inactive components can be higher than the dynamic power of the
active components. Despite this, we also show that CoDAs can still scale to workloads
requiring hundreds of coprocessors while retaining 3.5× efficiency gains.

—CoDAs must have efficient power management, networks, and memory systems in
order to retain high overall efficiency as they scale. Our results provide a roadmap for
how improvements in power management, network, and memory system efficiency
would improve CoDA efficiency. In particular, the results provide strong motivation
for mechanisms to render dark silicon truly dark. For multithreaded workloads,
the results suggest that the impact of threads competing for coprocessors can be
mitigated with only a modest increase in area.

—A scalable CoDA design approach can continue to deliver superior efficiency even for
large workloads. The study suggests that a CoDA design approach that can deliver
5.3× improvements in energy efficiency and 5.0× improvements in energy-delay
product for small workloads could continue to yield improvements of 3.7× in energy
and 3.5× in energy delay for designs covering over 100 applications.

The rest of this article proceeds as follows. Section 2 describes the CoDA and coprocessor
architectures we use in this work and the workload we target. Section 3 describes the
model we use to evaluate potential CoDA designs. Section 4 explores the design space
of energy consumption in CoDA designs, and Section 5 addresses issues related to
multithreading. Finally, Section 6 reviews related work, and Section 7 concludes.

2. CODA ARCHITECTURE AND WORKLOAD

A scalable approach to building CoDAs needs to accommodate designs with hundreds
or thousands of coprocessors that target a wide range of applications. In this section
we describe the type of coprocessors we will target in this work and introduce a class
of heterogeneous, tile-based architectures that will allow designers to build (and us to
evaluate) CoDA designs covering a wide range of sizes. Although our approach to eval-
uating CoDAs is independent of the internal architecture of the coprocessors, for sim-
plicity, we will focus on a single style of coprocessor design. This section also describes
the workload we use to guide the design of the CoDAs we evaluate in later sections.

2.1. Architecture

Figure 1 provides a high-level view of the CoDAs this work examines. These CoDAs
are heterogeneous, tiled designs. Each tile contains one general-purpose host processor,
coherent L1 instruction and data caches, a dynamic routing network switch, and many

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 130, Publication date: March 2014.

130:4 Q. Zheng et al.

Fig. 1. Prototypical CoDA. The prototypical CoDA comprises a set of tiles, each of which contains a host
CPU, on-chip network interface, multiple coprocessors, and a shared, coherent L1 data cache. At coarser
granularity, the CoDA comprises several voltage domains, each containing one or more tiles. One L2 is
present for each voltage domain.

Fig. 2. Tightly coupled coprocessor integration. Coprocessors in CoDAs share the data cache and use the
same memory model as the general-purpose host processors. The memory and CPU-to-coprocessor networks
are circuit switched and allow only one active coprocessor at a time.

specialized coprocessors. The chip also contains one or more shared L2 caches. The tiles
communicate with each other and the L2 caches via a point-to-point, wormhole-routed
mesh network that uses physical rather than virtual channels.

Figure 2 shows the connections among the components within a single tile. Only one
processing element on a tile, either the host processor or one of the coprocessors, can
be active at one time, so we can use a scalable, circuit-switched tree-based interconnect

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 130, Publication date: March 2014.

Exploring Energy Scalability in Coprocessor-Dominated Architectures for Dark Silicon 130:5

between the cache and coprocessors. The other coprocessors will either be idle, if they
are associated with a currently running application, or power gated if they are not
associated with any scheduled application. The thread associated with a tile can make
use of any of the coprocessors on that tile. To utilize other coprocessors, the thread
must migrate to the tile containing those coprocessors.

L1 access latency is a function of both the number of coprocessors in a tile and
the distance between a given coprocessor and the L1. L1 access latency is critical to
performance, so this can limit the performance scalability of larger tiles. In practice,
not all coprocessors on a tile or tiles in a CoDA will place an equal demand on the
memory interface or have equivalent sensitivity to memory latency. Rather than use a
multiplexing solution that provides uniform latency to memory, CoDAs use profiling to
organize coprocessors with higher traffic and more latency-sensitive coprocessors closer
to the L1 data cache. This saves wire and muxing energy and minimizes performance
degradation due to wire delay.

The host processor on each tile is a compact, energy-efficient in-order processor
optimized for efficiency and fast wakeup from deep sleep. By design, CoDAs only execute
code on the host processor infrequently. Thus, its performance is less critical than its
simplicity because there will be as many host processors as there are tiles. The processor
in our design is based on the MIPS-like processor in Taylor et al. [2004]. The general-
purpose host processor controls the coprocessors via a tree-based interconnect that also
provides access to the coprocessors’ internal state.

Our architecture breaks the array of tiles into multiple voltage domains (the dotted
boxes in Figure 1). Each domain contains several tiles and a shared L2 cache. Each
domain has its own power rail controlled by an off-chip voltage regulator. This allows
domains to completely power off when they are not in use, but it means that threads
may not benefit from the L2 resources of other domains. For the purposes of this
article, we assume it takes hundreds of μs to flush caches and power down or power
up a domain, so changing which domains are active would only occur at OS scheduling
timescales.

CoDAs can employ deep-sleep power gating at OS scheduling timescales, reconfigur-
ing the powered regions of coprocessors at application granularity. Efficiently managing
numerous inactive elements requires that they are in a deeply power-gated sleep state
by default, and that the OS configures shared resources proportional to concurrency
and not to connectivity. Since the coprocessors that an application may request are
highly predictable and highly specific to that application, this can be a low-frequency
event and is therefore compatible with the timescales of both current [Jotwani et al.
2010] and more aggressive proposed [Henry and Nazhandali 2010; Henry et al. 2011;
Dadgour and Banerjee 2007] power-gating techniques.

2.2. Executing in CoDAs

A program executing in a CoDA system migrates between coprocessors and general-
purpose processors. To orchestrate transitions, a CoDA-aware compiler replaces func-
tions that a coprocessor implements with a “stub” that will invoke the specialized
hardware if it is available or execute the original function in software if it is not. From
the perspective of the rest of the program, the stub behaves exactly like the original
function. This similarity is intentional and fundamental to the vision of the CoDA de-
sign paradigm. The particular hardware in a given CoDA is compiler visible, but not
programmer visible, and the dynamic check for hardware allows CoDAs to deal with
contention, defective components, and legacy code or hardware.

When multiple programs or threads are running concurrently in a CoDA they
can compete for coprocessors. To manage this contention, the stub function checks
if the desired coprocessor is available and reserves it before transitioning to it. If the

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 130, Publication date: March 2014.

130:6 Q. Zheng et al.

coprocessor is not available, the stub invokes the original version of the function that
runs on a general-purpose processor. If the coprocessors used in the CoDA support con-
text switching (like conservation cores [Venkatesh et al. 2010; Sampson et al. 2011],
described shortly), then the CoDA compiler will generate compensation code so that an
execution begun in a coprocessor may finish in software if necessary.

2.3. Coprocessor Selection and Coverage

There are many types of coprocessors that a designer could choose to include in a CoDA,
offering a wide variety of design trade-offs in terms of performance, energy savings,
and coverage potential. Since engineering effort is a primary barrier to the creation
of coprocessors, CoDAs using automatically generated coprocessors will have greater
scalability across many diverse codebases. In order to examine the scalability limits
of CoDAs, we conservatively restrict ourselves to only those types of coprocessors that
we can generate from arbitrary code. We therefore focus this study on automatically
generated coprocessors that attain substantial energy-delay product improvements
without the use of complex pointer analysis and code transformations. That said, our
framework remains applicable to many different kinds of coprocessors, so long as they
are tightly coupled to the host processor and to each other through a shared memory
as shown in Figure 2.

Conservation cores (c-cores) [Venkatesh et al. 2010] are a class of automatically
generated, energy-reducing coprocessors that meet the aforementioned requirements.
Since it is possible to automatically generate a c-core for almost any function, it is
possible to leverage a large number of them, and we use c-cores as the model for
coprocessors in this study. Previous work [Sampson et al. 2011; Goulding et al. 2010;
Venkatesh et al. 2011] has shown that c-cores can offer up to 10× reduction in energy
(30× more efficient for nonmemory operations [Goulding et al. 2010], and 10× overall)
and 23× improvement in energy delay compared to the same code running on an in-
order general-purpose processor. C-cores focus on saving energy rather than directly
improving application speed. However, by lowering energy per instruction, c-cores do
allow greater concurrency within the same power budget.

Each c-core covers a specific portion of a target program, and an automated toolchain
generates the c-cores directly from program source code. The general-purpose proces-
sors handle remaining cold code regions. During execution, threads migrate between
the general-purpose core and c-cores to minimize Energy-Delay Product (EDP). Since
c-cores are individually far more efficient than a CPU, the energy of optimized regions
all but disappears, and system energy savings are more-or-less proportional to the cov-
erage attained, in accordance with Amdahl’s Law. In an idealized CoDA system, as the
area dedicated to c-cores increases to provide increasing coverage of the workload, the
energy per operation would correspondingly improve.

The c-core toolchain generates c-cores as follows. First, the toolchain performs profil-
ing to locate hot code regions. Then, each hot code region is decomposed into a collection
of basic blocks or hyperblocks (for recognized switch statements). C-cores use a spatial
computation approach, and create dedicated functional units for each operator within
each block. At the same time, the toolchain also creates the c-core control logic, which
is a state machine that sequences the blocks. Collectively, the assorted datapaths for
the hot region and the associated control logic comprise a single c-core, which often cor-
responds to an outer loop or function. As an optimization, however, c-core compilation
will outline cold code within hot loops and functions as exceptional cases to be handled
by the host processor. Since the c-cores do not algorithmically change the target region,
executing all or part of the original region in software on the host processor instead of
the c-core is still possible.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 130, Publication date: March 2014.

Exploring Energy Scalability in Coprocessor-Dominated Architectures for Dark Silicon 130:7

Table I. Applications

22 nm C-core
Workload Description Area (mm2)

astar [Standard Performance Evaluation Corporation 2006] pathfinding 0.044
bzip2 [Standard Performance Evaluation Corporation 2000] data compression 0.329
cjpeg [Independent JPEG Group 2002] jpeg encoding 0.076
crafty [Standard Performance Evaluation Corporation 2000] chess 0.580
djpeg [Independent JPEG Group 2002] jpeg decoding 0.118
gzip [Standard Performance Evaluation Corporation 2000] compression/decompression 0.190
mcf [Standard Performance Evaluation Corporation 2000] multi-commodity flow 0.056
viterbi [Embedded Microprocessor Benchmark Consortium 2002] convolutional decoding 0.039

The workload generator modifies the properties of these eight seed applications to generate workloads of up
to 128 cores. The c-core toolchain created 22 placed-and-routed c-cores for the seed applications in order to
provide accurate characterization.

C-cores use the same memory model as the host processor, and share the L1 data
cache with both the host processor and the other c-cores, as seen in Figure 2. To
minimize communication costs across c-core to c-core boundaries, we profile memory
communication among application hotspots hierarchically and provide this as an input
to both c-core selection and CoDA placement. C-cores use techniques including selective
depipelining and cachelets [Sampson et al. 2011] to minimize area and energy costs
while maximizing performance.

2.4. Applications

The selection of coprocessors in a CoDA depends on the set of applications it targets.
Our goal is to understand how CoDAs scale from designs with a handful of coprocessors
to designs featuring hundreds of coprocessors, so we need a correspondingly broad set
of applications to target.

Our workload generator employs a set of “seed” applications from SPEC 2006
[Standard Performance Evaluation Corporation 2006], SPEC 2000 [Standard
Performance Evaluation Corporation 2000], and EEMBC [Embedded Microprocessor
Benchmark Consortium 2002] and modifies their properties to model a greater span
of program characteristics. Table I lists the applications and properties of the c-cores
that target them. This set of seed applications was characterized via 22 automati-
cally generated c-cores that were run all the way to placed-and-routed netlists and
simulated at the gate level with detailed parasitics.

To generate larger workload sizes and model the potential c-cores to cover them, the
workload generator replicates each application 2, 4, 8, and 16 times and adjusts the
area for each of the resulting c-cores by up to 50% to provide variability in hotspot
code density. This produces a generated workload of 16, 32, 64, and 128 applications in
addition to the original 8-application workload. The largest of these workloads requires
352 c-cores to achieve more than 97% coverage. The CoDA containing these 352 c-cores
would require 74 mm2 in a 22nm process technology.

3. MODELING CODAS

Among the aims of this article is to develop an understanding of the CoDA approach
in sufficient depth to derive insights about the energy scalability of CoDAs. However,
there are many possible CoDAs, and fully synthesizing and simulating all of the CoDA
designs we will consider is intractable, so this work employs an analytical model for
CoDA performance, area, and energy efficiency.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 130, Publication date: March 2014.

130:8 Q. Zheng et al.

3.1. Methodology

Our analytical model is driven by three primary components. First, we use the proper-
ties of fully synthesized CoDA subcomponents as inputs to our model. Then, we perform
trace-driven analysis of our workloads to develop our model of dynamic program behav-
ior, including migration and cache coherence effects. Finally, we use the data gathered
from the preceding studies across entire workloads, scale to a 22nm process, and provide
breakdowns for the energy, area, and performance properties of the resulting CoDA.

We use Synopsys Design Compiler, IC Compiler, and PrimeTime as our tools to
measure the fully synthesized, placed-and-routed c-cores for a subset of the hot regions
in the applications in Table I. We build these coprocessor components individually
and use the fully synthesized placed-and-routed netlist for the general-purpose host
processor to inform our model. We synthesize these designs using TSMC 45nmG and
40nmLP technology nodes, and then scale to derive their properties at other design
points.

To collect data about program behavior, we use LLVM [Lattner and Adve 2004] to
annotate an executable, in order to map different parts of execution to c-cores and
general-purpose processors. Each execution simulates a particular mapping of regions
of code to particular tiles on a CoDA and either the host or a coprocessor on that tile.
The annotated executables provide a detailed trace of memory operations, including
coherence messages, cache-to-cache transfers, and NoC segments traversed, as well as
transitions between c-core and non-c-core execution. Aside from these overheads, we
model the progress of execution at one cycle per instruction. The annotated binaries
output summaries of these key statistics as inputs for our analytical model.

3.2. Model Parameters

Wire length = 2
n∑

i=1

√
Component Areai, i ∈ every component along the path. (1)

Several parameters in our analytical model come directly from existing literature or
are scaled from actual 40/45nm measurements to 22nm. Table II lists the key parame-
ters. To calculate wire energy, we multiply the wire length of each traversed segment of
Manhattan-distance routing and the wire energy per mm, as seen in Eq. (1). To calcu-
late the wire length from coprocessor to mux, we sort the coprocessors by the memory
access demand rate, and then place the coprocessors with higher access rates higher
up in the mux tree.

We set the transition cost between software and hardware on the same tile at 30
cycles, based on microbenchmarks exercising a fully synthesized model of the c-core
host interface. Transitions between active tiles take 300 cycles including interrupt
handling and context transfers over the on-chip network, modeled on context-switch
overheads in RAW [Taylor et al. 2004].

Areanew = Areaold ∗ (λnew/λold)2. (2)

Leakage energy per square mmnew = (Leakage energy per square mmold

∗ 3D Factor ∗ (λold/λnew)2).
(3)

Dynamic energynew = Dynamic energyold ∗ (λnew/λold). (4)

Eqs. (2), (3), and (4) are used to scale the area, leakage energy, and dynamic en-
ergy, respectively. λold and λnew represent the feature size of the old and new process

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 130, Publication date: March 2014.

Exploring Energy Scalability in Coprocessor-Dominated Architectures for Dark Silicon 130:9

Table II. Model Parameter Values

Model Parameter Source of Values

Wire energy per mm Bill Dally’s 2009 DAC keynote

Host processor energy
Host energy per instruction from [Goulding et al. 2010],
scaled to 22 nm using Equations 3 and 4

Coprocessor energy
C-core energy/instruction from [Goulding et al. 2010],
scaled to 22 nm using Equations 3 and 4

NoC router energy
Modeled as equivalent to one coprocessor
instruction per routing decision

Cache leakage energy,
area, and access time

CACTI [Thoziyoor et al. 2008], scaled to 22 nm

Main memory bandwidth We assume LPDDR2 in our system, with 3.2 GB/s bandwidth

Transistor speed

Relative latency of HP and LSTP from synthesized circuits,
also could derive similar value from
[Semiconductor Industries Association 2012].
LP interpolated:
HP latency = 1, LP latency = 1.25 and LSTP latency = 2.5

Transistor leakage/dynamic energy From circuit evaluations, scaled to 22 nm
Software and hardware transitions 30 cycles, measured from microbenchmarks
Execution migration between active tiles 300 cycles, measured from microbenchmarks

The sources for our model parameters involve a mix of measurements scaled to 22nm, and simplifying
assumptions about average efficiencies.

technology. Eq. (2) is straightforward: transistor density will continue to increase with
process feature size for compute-constrained designs. Eq. (3) is slightly more complex.
Transistor leakage is a parameter that designers have quite a bit of control over, by
setting the threshold and supply voltages. However, limiting leakage has brought us
to a post-Dennardian scaling regime for dynamic energy at the cost of holding per-
transistor leakage at bay. Thus, for the first part of Eq. (3) we hold innate leakage
constant per transistor. To account for the move from planar to 3D transistors at the
32nm to 22nm transition, we employ an additional scaling factor to account for FinFET-
specific efficiencies. The 3D Factor we use is 0.7, derived from Intel literature on their
22nm process [Bohr and Mistry 2011]. The third part is the transistor density scale
factor. The reason for choosing the leakage energy per square mm as our parameter
is that we also need to model the inactive leakage energy, which is easy to calculate
by area and this parameter. We compute separate leakage/unit area numbers for each
of the three transistor types we consider. Finally, the dynamic energy model (Eq. (4))
is more direct. In a post-Dennardian scaling scenario, we elide energy savings from
voltage reduction, and only credit reductions in capacitance as the sources of improved
dynamic energy. This appears as the second factor in Eq. (4).

The memory trace drives a cache simulator modeling the L1 and L2 caches. We
use this simulator and parameters from CACTI [Thoziyoor et al. 2008] to model area,
dynamic and static energy for our caches. We model the cache in CACTI at 32nm, and
then scale down to 22nm. Area, leakage, and dynamic energy are scaled according to
Eqs. (2), (3), and (4), respectively.

Each L2 is noninclusive and serves only the L1s in the corresponding voltage domain.
Evictions from the L1 cause allocations in L2, and hits in the L2 transfer the line to
the requesting L1 and invalidate it in the L2. On an L1 miss, the L1 accesses the L2
before consulting the coherence directory for that domain. If the missed line is present
in another L1, the directory will initiate a cache-to-cache transfer between the two L1s.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 130, Publication date: March 2014.

130:10 Q. Zheng et al.

Fig. 3. Hierarchical view of performance model. We use the output from the annotated binaries for our
workload to calculate all components of execution time.

Dynamic and static instruction counts for the annotated regions let us model c-core
area (for those c-cores not already run through place-and-route) and execution coverage.
The individual c-cores range in area from 0.0015 to 0.28 mm2. We estimate area for
c-cores that we have not yet built based on a simple regression model using static
counts of each operator type (add, multiply, load, shift, FMAD, etc.) in the annotated
region that we calibrated against previously published areas for the placed-and-routed
c-cores in Sampson et al. [2011] and those fully placed-and-routed for the workload
in this article. Similarly, we use data from previously published work [Sampson et al.
2011] to model increased execution time due to increased L1 access latencies as c-cores
move further away from the L1 in larger tile designs.

Transistor leakage and performance can vary dramatically depending on technol-
ogy library. We derive leakage and area values from post-place-and-route synthesis of
c-cores in a 40nm low-power library and a 45nm general-purpose library, both from
TSMC. From these experiments, we model c-core and other noncache logic leakage
scaled to 22nm at 0.25 mW/mm2, 1.02 mW/mm2, and 29.28 mW/mm2 for leakage-
optimized, low-power, and performance-oriented designs, respectively. The scaling pro-
cess follows Eq. (3). To model the effect of transistor choice on performance, we scale
the nonmemory portion of compute time for CoDAs by 2.0, 1.0, and 0.8 for the leakage-
optimized, low-power, and performance-oriented designs, respectively.

We compare against our energy-efficient in-order baseline processor running at
3 GHz. Based on the c-core energy component breakdown in Goulding et al. [2010],
we model dynamic energy per instruction for nonmemory computation in our c-cores
as 30× less than that for our host processor, which uses 43 pJ/instruction in 22nm.
Prior work [Sampson et al. 2011] shows that c-cores execute 27% faster than the host
processor on average.

3.3. Components of Performance, Area, and Anergy Models

The analytical model has three primary outputs: performance, area, and energy. We
give more details about each submodel in this section. Figure 3 shows the performance
components we modeled. All performance values except CPI come from our trace simu-
lator. CPI is done separately, because it can be a function of internal tile placement due
to additional applications’ c-cores receiving higher priority in the mux tree to the L1,
and the mux tree is modeled at a higher level. In our analytical model, we use these
execution cycles for all processor components to calculate the effective CPI, which is
later used to calculate the energy per instruction.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 130, Publication date: March 2014.

Exploring Energy Scalability in Coprocessor-Dominated Architectures for Dark Silicon 130:11

Fig. 4. Hierarchical view of area model. We model each of these separately and then use formulas to combine
them.

Figure 4 lists the main contributors to chip area. The total area of L2 caches depends
on both the size of each L2 cache and the number of voltage domains that it is duplicated
across.

We model the energy usage by different components at several levels of detail. For
normalization across benchmarks, and between hardware and software, we normalize
our energy model in terms of energy per equivalent instruction in software. Figure 5
demonstrates all the components and their hierarchical relationship in the energy
model. Additional modeling in Section 5 concerning concurrent execution uses statis-
tical models of c-core occupancy to determine the impacts of contention on energy per
instruction.

In this article, we focus on the energy consumed by the on-chip portion of CoDA-based
systems. In real systems, on-chip energy is clearly not the only contributor to energy
consumption, and other researchers are actively optimizing these other components.
For instance, promising research on low-energy DRAM systems is advancing the use of
through-silicon vias, package-on-package, and low-energy off-chip signaling. Similarly,
passive display technologies such as Qualcomm’s Mirasol are on the horizon. Although
these efforts would easily compose with our work, the final properties of these technolo-
gies is still uncertain. Rather than add noise to our results by attempting to incorporate
these components, we defer to other research (e.g., [IMOD Technology Overview 2008;
Lee et al. 2009]).

4. THE CODA DESIGN SPACE

The basic architecture in Figure 1 still allows great flexibility in a CoDA’s configuration,
and the efficiency of a particular CoDA design will vary with the number of tiles, their
size, the selection of caches, etc. Furthermore, under different design constraints (e.g.,
varying area budgets) the ideal values vary.

To understand how the optimal design decisions for CoDAs vary, this section carries
out a systematic survey of the CoDA design space. We use the workloads described
earlier to drive the design of CoDAs ranging in size from a single small tile and a
handful of c-cores to very large devices with hundreds of c-cores.

4.1. Design Parameters

There are many potential CoDA designs. To understand the trade-offs among them, we
systematically survey the space of possible configurations targeting the workload.

Table III describes the space of CoDA designs that we consider. The design space
includes designs ranging from a conventional, general-purpose processor with large
caches and a handful of coprocessors to large arrays of tiles with small caches and
many coprocessors. To limit the size of the design space, we did not consider tiles with
heterogeneous cache resources. In total, we evaluated our workloads on 7200 CoDA
configurations.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 130, Publication date: March 2014.

130:12 Q. Zheng et al.

Fig. 5. Hierarchical view of energy-per-instruction model. We model energy components for all the major
parts in the system. For clarity of presentation, we collapse these down to a manageable set that groups
lower levels of the hierarchy appropriately.

Table IV provides an overview of how each of the parameters interacts with the
models described in Section 3. Several of the parameters are straightforward in nature.
For each workload size we consider, we keep coprocessor coverage constant at nearly
98% and vary the number of c-cores needed to cover the workload. The design space
includes several possible L1 and L2 configurations. The tile area parameter describes

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 130, Publication date: March 2014.

Exploring Energy Scalability in Coprocessor-Dominated Architectures for Dark Silicon 130:13

Table III. CoDA Design Space Parameters

Parameter Values

Workload size (applications) 8, 16, 32, 64, 128
L2 cache size (KB) 512, 2048, 8192
Per-tile L1 cache size (KB) 8, 16, 32, 64
Maximum tile area (mm2) 0.5, 2, 8, 32, unlimited
Number of voltage domains 1, 4
Power-gating efficiency 0, 90%, 95%, 98%
Transistor library LSTP, LP, HP

We considered 7200 CoDA designs, one for each possible
combination of the preceding parameters.

Table IV. Overview of Parameter Impects on the System Energy, Area, and Performance Models

Parameter Direct Impact Impact on Final Results

Workload size Number of coprocessors
Chip area, leakage power,
communication distances

Cache size

Area of the chip
Active leakage, inactive leakage
and dynamic power

Wire length Energy used by wires
Cache miss rate and
main memory accesses rate

CPI and execution time

Hit latency CPI and execution time

Maximum tile area
Area of the chip

Active leakage, inactive leakage
and dynamic power

Wire length Energy used by wires

Number of tiles
L1 cache number,
thread conflict ratio

Number of voltage domains
Number of L2 caches Chip area, leakage energy
On/off-chip wire lengths Energy used by wires, NoC

Power-gating efficiency Inactive leakage power
Energy used by CoDA, cache,
host processor, MUX, etc.

Transistor library
Dynamic and static
energy/instruction

Energy used by all components

CPI Total non-memory execution time

While each parameter influences several of the model components described in Section 3, this table
summarizes their most immediate and largest overall impacts.

the maximum area of a single tile in our tiled design. Larger tiles can contain more
c-cores and reduce inter-tile hopcounts, but c-cores within the tile may have longer
intra-tile communication paths.

The final three parameters are somewhat more complex. Among these are the two
power management parameters: the number of independent voltage domains on the
chip and the efficiency of the power-gating circuits that cut off power to idle chip
components within an active voltage domain. An off-chip voltage regulator can cut
power to its domain, effectively reducing its leakage to zero. “Power-gating efficiency”
determines the effectiveness of the power-gating circuits that cut power to inactive tiles
in voltage domains that are powered. The designer has some control over this parameter
(e.g., by implementing state-of-the-art power-gating circuits [Jotwani et al. 2010]) but
it is also a function of manufacturing technology. The final parameter determines the
standard cell library used to implement the design. The available options are low static

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 130, Publication date: March 2014.

130:14 Q. Zheng et al.

power (LSTP), low power (LP), and high performance (HP). Section 3.1 described the
leakage and performance properties associated with each of these values.

4.2. Pareto Results

Figure 6 shows the results of the design space study, respectively focusing on de-
signs with a single voltage domain and on designs with up to four voltage domains.
Figure 6(a) plots all single-voltage domain designs we considered, for all workloads,
according to the area they consume and their Energy-Delay Product (EDP) relative
to a general-purpose processor without c-cores and equipped with a 32KB L1 and
a 512KB L2. Figure 6(b) plots the same, but for up to four voltage domains. Then,
Figures 6(c) through (f) plot the Pareto frontier along the energy and delay axes for
each of our workload sizes for different power-gating efficiency/voltage domain combi-
nations, denoted as (X% PGE, Y VD) respectively. The Pareto frontiers consist of the
design points for which there are no designs that are both faster (lower delay) and more
efficient (lower energy per instruction).

In Figures 6(c) through (f) we can see clearly that the impact of power management
increases as CoDAs grow. Without aggressive dynamic leakage control, larger designs
without power gating must transition to low-leakage transistors to obtain increasing
energy savings, sacrificing performance. Similarly, the cost of using high-performance,
high-leakage transistors to buy performance, even with power gating, rapidly increases
as the workload size increases. This is due to the corresponding increase in leak-
age from the additional c-core area the CoDA needs to employ to cover the larger
workload.

Even with multiple voltage domains, for larger workloads, tile granularity or finer
power gating becomes critical. Additional voltage domains ease the critical dependence
on the efficiency of the power-gating implementation, albeit at the cost of duplicating
L2 cache resources. This duplication cost is apparent in the spreading of area values
in Figure 6(a) compared to Figure 6(b). Adding voltage domains also allows on-chip
power gating to operate at coarser granularities, further reducing complexity. As seen
in Figure 6(e) and Figure 6(f), the impact is profound for designs without effective
power gating.

Figures 6(c) through (f) show that, while changing the number of power domains has
limited effect on the bottom right side of the Pareto curve—designs already embracing
both low-power transistors and efficient power gating—the differences are clearer for
higher-performance designs at the upper left. Overall efficiency for the multiple-domain
designs is greater, and the designs spend more area to achieve this effect. In an era
with increasing quantities of dark silicon, this may be a reasonable trade off. The
differences between power gating techniques are similarly muted by the presence
of additional voltage domains, and designs without fine-grained power gating retain
more than 3× efficiency for workloads up to 64 applications, whereas Figure 6(c) these
designs have already diverged. As with the single-voltage domain case, however, for
higher efficiency at larger workload sizes, these CoDAs must still feature aggressive
dynamic power management, or coprocessor leakage will excessively degrade energy
efficiency. While the L2 duplication approach is not indefinitely scalable, these trends
indicate that, for even larger workloads than those examined here, partitioning the
design into more domains will improve results until duplication costs run up against
the area budget.

Table V lists the parameters for each of the EDP-optimal configurations from
Figures 6(c) through (f), from smallest workload to largest. The EDP-optimal points
are similar for most of the workload sizes, but the largest design uses a larger tile size
to reduce the number of hops involved in inter-tile communication.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 130, Publication date: March 2014.

Exploring Energy Scalability in Coprocessor-Dominated Architectures for Dark Silicon 130:15

Fig. 6. EDP vs. area and energy vs. delay over design space for each assumed power-gating efficiency and
voltage domain count. In (a) and (b) we plot EDP versus area over our entire design space for 1 and 4 voltage
domains, respectively. Each point marks an averaged evaluation over one workload size for one design. We
note different assumptions for power-gating efficiency with different shades and different workload sizes
with different shapes. In (c) through (f) we plot the energy vs. delay Pareto curve for the four extreme points
of our power-gating efficiency and voltage domain spaces for increasingly large workloads (8, 32, 64, and 128
applications, respectively). As the workload (and CoDA) grow larger, the power-gated and nonpower-gated
Pareto lines diverge drastically.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 130, Publication date: March 2014.

130:16 Q. Zheng et al.

Table V. EDP-Optimal Designs

Apps L2 L1 Max. Tile Tiles
in Cache Cache Area # # EDP Area Speedup Xtr. per

Workload (KB) (KB) (mm2) Tiles C-cores vs. SW (mm2) pJ/inst. vs. SW Type VD

Baseline 512 32 - 1 0 1.0 10.29 51.05 1.0 HP 1

8 512 32 0.5 5 22 0.200 43.20 10.40 0.941 LP 1-2
16 512 16 0.5 9 44 0.206 45.20 9.97 0.857 LP 2-3
32 512 32 0.5 20 88 0.218 50.70 11.50 0.930 LP 5
64 512 32 0.5 40 176 0.270 60.70 13.39 0.892 LP 10
128 512 32 2.0 16 352 0.286 72.70 14.80 0.926 LP 4

The parameters for the EDP-optimal CoDA design for each workload size.

Fig. 7. Energy components of EDP-optimal designs. We show the primary contributing energy components
for the most efficient points in our design space as we scale the workload size, keeping coverage constant.
For larger designs (covering larger workloads), leakage and interface overheads play a larger role, while
compute energy progressively decreases due to transitioning to energy-efficient coprocessors.

4.3. Overhead Growth as a Function of Workload Size

Figure 7 shows how the components of overall energy consumption in the Pareto-
optimal CoDA designs change as the number of applications increases. It shows that,
although a CoDA with sufficient c-cores to cover its workload can reduce compute en-
ergy by 94%, that compute energy becomes a tiny fraction of total energy. The culprit is
leaking dark silicon (and Amdahl’s Law). Even with voltage domains and 98% efficient
power gating [Jotwani et al. 2010], the leakage accounts for nearly half of the energy
consumption. The costs of traversing local and global interconnect and of accessing the
L2 cache also contribute significant energy costs. In the case of the interconnect, the
wires, rather than the logic, expend most of the energy.

There are two key takeaways from Figure 7. While it is obvious that managing leak-
age in a large chip like a CoDA would be important, it was not at all clear that, even
with multiple power domains and 98% effective power gating, the leakage of inactive
components would remain a sizeable overhead in total energy per instruction. Fortu-
nately, the other key takeaway from Figure 7 is more positive: Despite the clear growth
of overheads as CoDAs scale, they do scale. Even with its overheads, a CoDA covering
128 applications remains several times more efficient than running the software on a

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 130, Publication date: March 2014.

Exploring Energy Scalability in Coprocessor-Dominated Architectures for Dark Silicon 130:17

general-purpose processor. For many domains, such as Android platforms, where 128
applications may be enough to cover over 80% of the total execution time [Goulding-
Hotta et al. 2012], this means that CoDAs scale sufficiently well to be practical.

4.4. Area Scaling and Defect Tolerance

The potential for defect rates to increase as CoDAs grow is an interesting consideration.
Since the original application can run unmodified on any tile’s host processor without
using any particular c-core, the CoDA design approach is highly resistant to defects in
most on-chip components; known defective components will simply not be used. Indeed,
the same mechanism that checks if a c-core is available in the face of contention can be
used to seamlessly avoid execution on any components discovered to be defective. Thus,
CoDAs gracefully decay with progressively higher defect rates, or as workloads shift
away from their target: CoDAs retain functionality at all times and degrade in power
and performance efficiency as a function of unusable c-cores. Because c-core usage
in a CoDA is transparent to the programmer, this does not represent a usability or
virtualization hurdle at the programming layer. Thus, while CoDAs, being larger, may
have lower defect-free yields than smaller SoCs, even defective CoDAs are likely still
highly usable. We envision that for CoDAs, rather than speed-binning, a key sorting
policy may be coverage-binning based on the expected fraction of the workload that can
successfully execute on c-cores.

5. CODAS AND CONCURRENCY

Concurrent execution is now ubiquitous in computing platforms ranging from cell
phones to data centers, so understanding the impact of multithreaded and multipro-
gram workloads on CoDAs (and vice versa) is essential. This section identifies the
positive and negative impacts that multithreading has on CoDAs and describes sev-
eral techniques to address the problems that can arise.

On the positive side, running multiple threads on a CoDA increases overall energy
efficiency because it amortizes fixed energy costs, including those due to leakage, across
the work from multiple threads. At the same time, however, concurrent threads raise
the possibility of competition for c-cores. This can occur when two applications want
access to a c-core that targets part of a shared library (e.g., glibc), or when two threads in
the same application are executing the same function. In these cases, the “losing” thread
will either execute on a general-purpose core, sacrificing efficiency, or wait, sacrificing
performance. We assume that the scheduler always schedules the contending thread
on a general-purpose core. More aggressive schedulers may use more complicated
heuristics to dynamically decide whether to sacrifice energy or performance.

The amount of contention for c-cores depends on the number of instances of that
c-core present in the CoDA and the number of threads that need access to it. The
profiling process that identifies the “hot” functions to target with c-cores can also
determine how many copies of each c-core are necessary to avoid contention.

Another concern for scaling up the number of threads on a CoDA is the utilization of
available bandwidth and contention for communication resources. However, while the
number of c-cores may rise rapidly, the maximum number of concurrent threads on a
CoDA is limited to the number of tiles, which is more modest, the design in Table V
with the lowest single-thread EDP uses 16 tiles.

Given that the memory system of each tile is blocking and in-order, the maximum
number of outstanding misses at a time for this CoDA is 16, several of which may be
resolved in the L2. RAW [Taylor et al. 2004], also with 16 tiles, an equivalent NoC,
and a similar memory system (although it lacked L2 caches), saw less than 7% average
performance degradation when executing SPEC workloads independently across all 16
of its tiles. In practice, we find that, because of the blocking nature of the L1, we do

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 130, Publication date: March 2014.

130:18 Q. Zheng et al.

Fig. 8. Off-chip memory bandwidth usage. We calculate the average off-chip memory bandwidth needed by
all the benchmarks, and calculate how it scales when we run more and more threads, assuming a uniform
random distribution among our benchmarks. Between the in-order, blocking nature of the L1 caches that
limits the rate of misses and the filtering effects of the L2 caches, the total off-chip bandwidth could be
readily served by a small number of LPDDR2 channels.

Fig. 9. The benefits of multithreading. Total energy per instruction is the sum of the per-thread energy,
shared energy overheads, and the energy from execution on a general-purpose core rather than a c-core
because of contention. Overall, if the running workload is a good match for the CoDA, energy per instruction
drops because multiple threads can amortize the leakage energy of idle, but still powered, components.

not significantly speed up the total rate of memory accesses leaving the L1 compared
to the original software-only execution. Our own experiments indicate that in the av-
erage case for our workload, the average off chip bandwidth required is quite modest,
as shown in Figure 8. Thus, contention due to workload mismatch is likely to dom-
inate multithreading effects for this workload. We acknowledge that, for alternative
workloads such as, for instance, running 16 copies of the MCF benchmark, bandwidth
contention would be a primary determining factor in performance, since such a work-
load would require more than 3× the off-chip bandwidth of the one we consider.

5.1. Target Workload Sensitivity

If there is a mismatch between the profile measurements and the workload’s needs
“in the field,” the benefits of amortizing fixed costs across threads will be lost. In our
multithreading experiments, we consider two workload distribution scenarios. The
first distribution scenario, Uniform, describes the case where all applications account
for an equal share of execution time. In the second workload distribution scenario,
Nonuniform, 10% of the applications account for 90% of execution time.

Figures 9 and 10 demonstrate the impact of contention and workload mismatch
on energy efficiency. We begin by selecting a particular CoDA design: We use the
CoDA that provided the best EDP from our design space for the uniform workload

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 130, Publication date: March 2014.

Exploring Energy Scalability in Coprocessor-Dominated Architectures for Dark Silicon 130:19

Fig. 10. The cost of contention. In this example, the running workload is a poor fit for the CoDA, resulting in
high contention for a small number of c-cores. In this case, the conflict energy rises continuously, swamping
the gains from amortizing shared energy overheads.

distribution scenario (i.e., the designer expected there to be very little contention) over
the 128-program workload. The parameters for this design can be seen as the last row
in Table V. As the CoDA has 16 tiles, it can support up to 16 simultaneous threads.

Figure 9 shows how energy per instruction for a fixed CoDA design changes as the
number of concurrent threads increases for a workload matching the target distribu-
tion (i.e., there actually is very little contention). The graph shows total energy per
instruction and two of its subcomponents: amortizeable overhead (i.e., fixed leakage
costs that multiple threads can amortize), and conflict overhead (e.g., extra energy
required to execute a thread on a general-purpose core rather than a c-core). For con-
text, a constant line at the top of the graph depicts the energy per instruction for a
single-threaded software execution.

The data show that adding three threads can reduce total energy per instruction
by 9%. Beyond four threads, the rise in conflict energy overpowers the reduction in
shared overhead. Running 16 threads will increase per-instruction energy by 5% over
the single-threaded case.

Figure 10 shows energy efficiency for the same CoDA, designed for the uniform dis-
tribution scenario, but running a workload which follows the nonuniform distribution
scenario, which creates a severe workload mismatch. The result is significantly higher
contention and much lower energy efficiency. In this case, there is a long rise in energy
per instruction due to growing conflict overhead. At 16 threads the energy per instruc-
tion has more than doubled. The conflict overhead rises much more rapidly in this case
because the workload distribution differs so greatly from the training set.

5.2. Mitigating Contention via C-Core Merging

In most cases perfect profiling is impossible, and contention for c-cores is inevitable.
However, we can take measures to reduce its impact. The simplest way to reduce the
cost of contention is to replicate c-cores to provide “spares” that can absorb unexpected
increases in demand. However, naively providing spare c-cores nearly doubles CoDA
area and would decrease single-threaded efficiency by 23.4% due to increased leakage
and interconnect overheads.

To reduce the area cost of replication we can exploit the fact that, in most cases,
applications will need the “spare” c-cores infrequently. To exploit this observation, we
can merge multiple spare c-cores, allowing a single spare to reduce the impact of con-
tention for many different c-cores. Previous work [Venkatesh et al. 2011] describes
how to merge c-cores. That approach automatically identifies target functions that
are similar to one another such that generating a single coprocessor that can execute

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 130, Publication date: March 2014.

130:20 Q. Zheng et al.

Fig. 11. The benefits of spare c-cores. Adding spare c-cores to CoDAs reduces the impact of contention
and therefore energy per instruction. Merging the spare c-cores preserves most of the energy
savings while reducing the area overhead for the spares.

either function would only be slightly larger and slightly less efficient than a dedicated
c-core for each piece of code. That work shows that merging c-cores can reduce the area
required to cover a given set of functions by 23% while reducing the energy efficiency
of the specialized logic by 27%. Since the dynamic energy of the specialized logic rep-
resents a modest fraction of the total energy, this trade-off will often be beneficial for
CoDAs targeting multithreaded workloads.

To quantify the benefits of merging, we created a CoDA that uses merged spares to
provide twice as many of each type of c-core, at a cost of 41% additional area and a 15%
reduction in single-threaded efficiency. Figure 11 plots the total energy per instruction
of a CoDA with merged spares compared to the CoDA from Figures 9 and 10. Merging
provides benefits for both the uniform (bottom two lines) and nonuniform (middle two
lines) workload distributions. For the uniform case, providing spare c-cores improves
energy efficiency by 7.4% at 16 threads. In the nonuniform case, where the workload
is mismatched, the merged c-core CoDA improves energy efficiency by up to 22.1% (at
7 threads) and continues to provide a gain of 11.1% energy efficiency over a CoDA
without merged spares at 16 threads.

6. RELATED WORK

As the dark silicon problem grows, designers are increasingly integrating specialized
coprocessors into general-purpose architectures. GPUs are an especially common
addition, and the latest offerings from Intel and AMD directly integrate GPUs and
processors on-chip. Many recent efforts [Luk et al. 2009; Owens et al. 2005; Wang et al.
2007] attempt to harness these heterogeneous platforms with language extensions
like CUDA [Nickolls et al. 2008] and streaming frameworks such as Brook [Buck et al.
2004], but they focus primarily on highly parallel code and loosely coupled execution
models.

Even flexible heterogeneous processing frameworks such as Intel’s EXOCHI [Wang
et al. 2007] face challenges in using 1000s of distinct coprocessors in one design:
EXOCHI’s uniform abstraction for sequencing execution across heterogeneous exe-
cution engines requires specialized compilers for each piece of target hardware. Recent
efforts have focused on automating the production and use of specialized coproces-
sors [Venkatesh et al. 2010; Sampson et al. 2011]. These automatically generated
coprocessors do not achieve the performance of hand-crafted accelerators, but they are
very energy efficient and can target nearly arbitrary code, including irregular code that
is difficult to parallelize.

Previous efforts to execute the majority of applications in hardware relied on reconfig-
urable fabrics rather than dedicated coprocessors. Tartan [Mishra et al. 2006] mapped

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 130, Publication date: March 2014.

Exploring Energy Scalability in Coprocessor-Dominated Architectures for Dark Silicon 130:21

entire programs onto a hierarchical coarse-grained asynchronous reconfigurable fab-
ric. Reconfigurable logic allows for greater flexibility, but estimates in Mishra et al.
[2006] showed fabric virtualization is necessary to map entire programs, and that adds
performance and energy overheads.

Tiled architectures, such as Raw [Taylor et al. 2004], TRIPS [Sankaralingam et al.
2003], and WaveScalar [Swanson et al. 2007], are a common approach to improving
scalability because they reduce wire delay. Scalable CoDA systems also use a tiled
architecture for this reason and to distribute coprocessors among multiple memory
and host interfaces. The authors of GreenDroid [Goulding et al. 2010; Goulding-Hotta
et al. 2011] suggested tiling as a means of organizing a coprocessor-enabled system but
did not investigate the scalability problems that this work identifies and addresses.

Hannig et. al [2011] describe a model for dynamically mapping computations to a
heterogeneous MPSoC via an invasive computing paradigm. While CoDA systems could
potentially benefit from such an exploration of parallel resources, the current CoDA
approach focuses on reducing energy for primarily serial applications. Moreover, the
CoDA approach is intentionally designed to work with completely unmodified legacy
code, requiring only a mapping between the functions present in a program and the
functions covered in hardware, allowing complete programmer transparency. The best
approach to designing new programs written with CoDA systems in mind remains a
topic of future research.

Like CoDAs, previous work [Allred et al. 2012] has also proposed a methodology
to design multicore systems for dark silicon. While that work operates mainly on a
architecturally identical core but individually optimized for different voltage-frequency
domains, and only discuess the energy efficiency of the processing cores, CoDAs operate
at much finer granularity and far greater scale over diverse processing elements. In
this article, we not only discuss the processing cores, but also the cache system and the
interconnections.

Previous work, such as Vuletic et al. [2006], that examined interactions between
multithreading and coprocessors focused heavily on device virtualization and man-
aging the local memories within accelerators. In contrast, the c-cores in a CoDA are
coherent by default and do not have large private memories. C-cores can also use merg-
ing [Venkatesh et al. 2011] to mitigate resource contention by increasing the number
of c-cores capable of running a given task without increasing the number of c-cores,
rather than add full-fledged virtualization.

Previous works that sought to offload the majority of execution to coprocessors
[Sampson et al. 2011; Venkatesh et al. 2010] utilized clock gating, but not power
gating. As Figure 6 shows, power gating is critical to the efficiency of CoDAs targeting
large workloads because so much silicon will sit idle and power gated almost all of the
time. This requires designers to assume, from the outset, that all processing elements
in CoDAs are in the deepest-sleep state possible by default. While sensor motes [Seok
et al. 2008] and other energy-critical systems have long operated with such a model, it
is not the traditional model for general-purpose processors.

7. CONCLUSION

This work has examined the scalability challenges that arise with the integration of
hundreds of specialized coprocessors into general-purpose architectures. Our system-
atic survey of the CoDA design space showed that scalable designs that cover over 100
applications can provide 3.7× improvements in energy and 3.5× improvements in en-
ergy delay across the entire workload. We found that the key limiters of the efficiency
in scalable CoDA designs are leakage in dark silicon and overheads in the network and
memory system that arise in large, tile-based designs.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 130, Publication date: March 2014.

130:22 Q. Zheng et al.

The results suggest that contention among threads for shared coprocessors can limit
efficiency gains, but that CoDAs can provide area-efficient “spare” coprocessors to pro-
vide up to 3.8× improvements in energy per instruction relative to a single-threaded
workload by amortizing fixed leakage, interconnect, and memory system costs.

REFERENCES

Jason Allred, Sanghamitra Roy, and Koushik Chakraborty. 2012. Designing for dark silicon: A methodological
perspective on energy efficient systems. In Proceedings of the ACM/IEEE International Symposium on
Low Power Electronics and Design (ISLPED’12). ACM Press, New York, 255–260.

Mark Bohr and Kaizad Mistry. 2011. intel’s Revolutionary 22 nm Transistor Technology. http://download.
intel.com/newsroom/kits/22nm/pdfs/22nm-Details Presentation.pdf.

Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike Houston, and Pat
Hanrahan. 2004. Brook for gpus: Stream computing on graphics hardware. ACM Trans. Graph. 23, 3,
777–786.

Nathan Clark, Amir Hormati, and Scott Mahlke. 2008. VEAL: Virtualized execution accelerator for loops.
In Proceedings of the 35th Annual International Symposium on Computer Architecture (ISCA’08). IEEE
Computer Society, 389–400.

Hamed F. Dadgour and Kaustav Banerjee. 2007. Design and analysis of hybrid nems-cmos circuits for ultra
low-power applications. In Proceedings of the 44th ACM/IEEE Design Automation Conference (DAC’07).
306–311.

Robert H. Dennard, Fritz H. Gaensslen, Hwa-Nien Yu, V. Leo Rideout, Ernest Bassous, and Andre R. Leblanc.
1974. Design of ion-implanted mosfet’s with very small physical dimensions. IEEE J. Solid-State Circ.
9, 5, 256–268.

Embedded Microprocessor Benchmark Consortium. 2002. Eembc benchmark suite. http://www.eembc.org.
Hadi Esmaeilzadeh, Emily Blem, Renee S. Amant, Karthikeyan Sankaralingam, and Doug Burger. 2011.

Dark silicon and the end of multicore scaling. In Proceedings of the 38th Annual International Symposium
on Computer Architecture (ISCA’11). IEEE, 365–376.

Nathan Goulding, Jack Sampson, Ganesh Venkatesh, Saturnino Garcia, Joe Auricchio, Jonathan Babb,
Michael B. Taylor, and Steven Swanson. 2010. GreenDroid: A mobile application processor for a fu-
ture of dark silicon. http://www.academia.edu/2384482/GreenDroid A mobile application processor for
a future of dark silicon

Nathan Goulding-Hotta, Jack Sampson, Ganesh Venkatesh, Saturnino Garcia, Joe Auricchio, Po-Chao
Huang, Manish Arora, Siddhartha Nath, Vikram Bhatt, Jonathan Babb, Steven Swanson, and Michael
B. Taylor. 2011. The greendroid mobile application processor: An architecture for silicon’s dark future.
IEEE Micro 31, 2, 86–95.

Nathan Goulding-Hotta, Jack Sampson, Qiaoshi Zheng, Vikram Bhatt, Joe Auricchio, Steven Swanson, and
Michael B. Taylor. 2012. GreenDroid: An architecture for the dark silicon age. In Proceedings of the 17th

Asia and South Pacific Conference on Design Automation (ASP-DAC’12). IEEE, 100–105.
Venkatraman Govindaraju, Chen-Han Ho, Tony Nowatzki, Jatin Chhugani, Nadathur Satish, Karthikeyan

Sankaralingam, and Changkyu Kim. 2012. DySER: Unifying functionality and parallelism specialization
for energy efficient computing. IEEE Micro 33, 5, 38–51.

Frank Hannig, Sascha Roloff, Gregor Snelting, Jurgen Teich, and Andreas Zwinkau. 2011. Resource-aware
programming and simulation of mpsoc architectures through extension of ×10. In Proceedings of the 14th

International Workshop on Software and Compilers for Embedded Systems (SCOPES’11). ACM Press,
New York, 48–55.

Nikos Hardavellas, Michael Ferdman, Babak Falsafi, and Anastasia Ailamaki. 2011. Toward dark silicon in
servers. IEEE Micro 31, 4, 6–15.

Michael B. Henry, Robert Lyerly, Leyla Nazhandali, Adam Fruehling, and Dimitrios Peroulis. 2011. MEMS-
based power gating for highly scalable periodic and event-driven processing. In Proceedings of the 24th

International Conference on VLSI Design (VLSIDesign’11). 286–291.
Michael B. Henry and Leyla Nazhandali. 2010. From transistors to mems: Throughput-aware power gating

in cmos circuits. In Proceedings of the Design, Automation and Test in Europe Conference and Exhibition
(DATE’10). 130–135.

IMOD Technology Overview. 2008. IMOD technology overview. http://www.qualcomm.com/common/
documents/white papers/QMT Technology Overview 12-07.pdf.

Independent Jpeg Group. 2002. Library for jpeg image compression. http://www.ijg.org/.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 130, Publication date: March 2014.

Exploring Energy Scalability in Coprocessor-Dominated Architectures for Dark Silicon 130:23

Ravi Jotwani, Sriram Sundaram, Stephen Kosonocky, Alex Schaefer, Victor Andrade, Greg Constant, Amy
Novak, and Samuel Naffziger. 2010. An ×86-64 core implemented in 32nm soi cmos. In Proceedings of
the IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC’10). 106–107.

Chris Lattner and Vikram Adve. 2004. Llvm: A compilation framework for lifelong program analysis and
transformation. In Proceedings of the International Symposium on Code Generation and Optimization
(CGO’04). IEEE Computer Society, 75–86.

Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. 2009. Architecting phase change memory as
a scalable dram alternative. In Proceedings of the 36th Annual International Symposium on Computer
rchitecture (ISCA’09). ACM Press, New York, 2–13.

Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. 2009. Qilin: Exploiting parallelism on heterogeneous
multiprocessors with adaptive mapping. In Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture (Micro’09). ACM Press, New York, 45–55.

Mahim Mishra, Timothy J. Callahan, Tiberiu Chelcea, Girish Venkataramani, Seth C. Goldstein, and Mihai
Budiu. 2006. Tartan: Evaluating spatial computation for whole program execution. SIGOPS Oper. Syst.
Rev. 40, 5, 163–174.

John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. 2008. Scalable parallel programming with
cuda. In Proceedings of the ACM SIGGRAPH Classes (SIGGRAPH’08). ACM Press, New York, 1–14.

John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krger, Aaron E. Lefohn, and Timothy
J. Purcell. 2005. A survey of general-purpose computation on graphics hardware. In Proceedings of the
Eurographics State of the Art Reports. 21–51.

Jack Sampson, Ganesh Venkatesh, Nathan Goulding-Hotta, Saturnino Garcia, Steven Swanson, and Michael
B. Taylor. 2011. Efficient Complex Operators for irregular codes. In Proceedings of the 17th IEEE Inter-
national Symposium on High Performance Computer Architecture (HPCA’11). 491–502.

Karthikeyan Sankaralingam, Ramadass Nagarajan, Haiming Liu, Changkyu Kim, Jaehyuk Huh, Doug
Burger, Stephen W. Keckler, and Charles R. Moore. 2003. Exploiting ILP, TLP, and DLP with the poly-
morphous TRIPS architecture. In Proceedings of the 30th Annual International Symposium on Computer
Architecture (ISCA’03). ACM Press, News York, 422–433.

Semiconductor Industries Association. 2012. International technology roadmap for semiconductors.
http://www.itrs.net/Links/2012ITRS/Home2012.htm.

Mingoo Seok, S. Hanson, Yu-Shiang Lin, Zhiyoong Foo, Daeyeon Kim, Yoonmyung Lee, Nurrachman Liu,
D. Sylvester, and D. Blaauw. 2008. The phoenix processor: A 30pw platform for sensor applications. In
Proceedings of the IEEE Symposium on VLSI Circuits. 188–189.

Standard Performance Evaluation Corporation. 2000. SPEC CPU 2000 benchmark specifications. SPEC2000
Benchmark Release. http://www.spec.org/.

Standard Performance Evaluation Corporation. 2006. SPEC CPU 2006 benchmark specifications. SPEC2006
Benchmark Release. http://www.spec.org/.

Steven Swanson, Andrew Schwerin, Martha Mercaldi, Andrew Petersen, Andrew Putnam, Ken Michelson,
Mark Oskin, and Susan J. Eggers. 2007. The wavescalar architecture. ACM Trans. Comput. Syst. 25,
2, 4.

Michael B. Taylor. 2012. Is dark silicon useful? Harnessing the four horsemen of the coming dark silicon
apocalypse. In Proceedings of the 49th ACM/IEEE Design Automation Conference (DAC’12). ACM Press,
New York, 1131–1136.

Michael B. Taylor. 2013. A landscape of the new dark silicon design regime. IEEE Micro 33, 5, 8–19.
Michael B. Taylor, Walter Lee, Jason Miller, David Wentzlaff, Ian Bratt, Ben Greenwald, Henry Hoffmann,

Paul Johnson, Jason Kim, James Psota, Arvind Saraf, Nathan Shnidman, Volker Strumpen, Matt Frank,
Saman Amarasinghe, and Anant Agarwal. 2004. Evaluation of the raw microprocessor: An exposed-wire-
delay architecture for ilp and streams. In Proceedings of the 31st Annual International Symposium on
Computer Architecture (ISCA’04). IEEE Computer Society, 2–13.

Shyamkumar Thoziyoor, Naveen Muralimanohar, Jung Ho Ahn, and Norman P. Jouppi. 2008. CACTI
5.1. Tech. rep. HPL-2008-20. HP Labs, Palo Alto, CA. http://www.hpl.hp.com/techreports/2008/
HPL-2008-20.html.

Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Garcia, Vladyslav Bryksin, Jose Lugo-
Martinez, Steven Swanson, and Michael B. Taylor. 2010. Conservation cores: Reducing the energy
of mature computations. In Proceedings of the 15th International Conference Edition of ASPLOS on
Architectural Support for Programming Languages and Operating Systems (ASPLOS’10). ACM Press,
New York, 205–218.

Ganesh Venkatesh, Jack Sampson, Nathan Goulding-Hotta, Sravanthi K. Venkata, Michael B. Taylor, and
Steven Swanson. 2011. QsCores: Trading dark silicon for scalable energy efficiency with quasi-specific

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 130, Publication date: March 2014.

130:24 Q. Zheng et al.

cores. In Proceedings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture
(Micro’11). 163–174.

Miljan Vuletic, Paolo Ienne, Christopher Claus, and Walter Stechele. 2006. Multithreaded virtual-memory-
enabled reconfigurable hardware accelerators. In Proceedings of the IEEE International Conference on
Field Programmable Technology (FPT’06). 197–204.

Perry H. Wang, Jamison D. Collins, Gautham M. Chinya, Hong Jiang, Xinmin Tian, Milind Girkar, Nick Y.
Yang, Guei-Yuan Lueh, and Hong Wang. 2007. EXOCHI: Architecture and programming environment
for a heterogeneous multi-core multithreaded system. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI’07). ACM Press, New York, 156–166.

Received January 2013; revised June 2013; accepted September 2013

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4s, Article 130, Publication date: March 2014.

