
1

RETROSPECTIVE: Evaluation of the RAW
Microprocessor: An Exposed-Wire-Delay

Architecture for ILP and Streams
Michael B Taylor David Wentzlaff Saman Amarasinghe Anant Agarwal

University of Washington Princeton University MIT MIT

I. INTRODUCTION

This paper, published in 2004, was an evaluation of our pro-
totype of a scalable general-purpose tiled multicore processor
called Raw.
Original Proposal. An early vision of Raw was proposed
in the famous Sept 1997 IEEE Computer “Billion Transistor
Microprocessor” issue [O48], where a number of leading
architecture groups proposed how to productively put to use
a billion transistors in a single chip processor. At the time,
computer architecture researchers were very wedded to the
promise of single-threaded performance, which was advancing
rapidly due to Dennard Scaling, circuit design techniques re-
fined in the GHz frequency wars, and the rapid development of
out-of-order superscalar technology. The idea of parallelizing
programs by hand had become unpalatable to the architectural
community (and indeed, program committees). As a result,
most of the “Billion Transistor“ proposals focused on hiding
resources behind the microarchitecture.

Our 1997 paper proposed that limits due to wire delay,
rapidly declining efficiency due to microarchitectural over-
heads, and complexity would ultimately require a shift to tiled
multicore architectures that exposed parallel VLSI resources
to software in a physically scalable way (i.e. cores). The
paper further proposed the use of what we later termed scalar
operand networks [O45], a class of networks optimized for
minimal latency of ordered communication of scalars between
cores, and compiler technology for automatically parallelizing
programs across cores using this network. Finally, it proposed
an idea which we internally called “all-software hardware“,
which was to try to implement many traditional hardware
mechanisms in software, to reduce hardware area and allow
more parallelism to be exposed.

II. THE PAPER

Seven years later, many Raw internal research efforts had
been pursued among these different thrusts, focusing on par-
allelizing compilers [O24, O5, O25], all-software hardware,
scalar operand networks, and exposing parallel resources
through tiled multicore. We implemented a full-scale end-to-
end system, including the architecture and microarchitecture,
a state-of-the-art 180nm 425-MHz 16-core 331 mm2 chip [1],
several compilers, a motherboard, and a suite of software
applications. The 2004 paper reported on the fully-fleshed
out, optimized system. A 4-chip, 64-core system was also

constructed which demonstrated the glueless interconnect built
into the Raw chip. We connect below the ideas from the
proposal paper to the evaluation paper and also discuss some
new ideas that arrived after the proposal:
Scalable Tiled Multicores. Perhaps the most successful of
the thrusts was the one that focused on designing a scalable
tiled multicore architecture and its VLSI implementation. The
prototype worked through many of the details of a realistic on-
chip network and scalable I/O system to service these cores,
looked at some of the important questions of provisioning and
optimizing the cores, reducing latency, maximizing bandwidth,
and preventing deadlock. In addition to providing architectural
scalability, the tiled structure was especially for managing
the exhaustive amount of computation required for physical
design when taping out a chip. Many of these design decisions
are detailed in [2], which cleverly includes a full-scale chip
layout where you can zoom in and view individual gates of
the design.
All-Software Hardware. On the all-software hardware front,
we had explored many cases where a combination of compiler
and runtime technology could replace hardware. The most suc-
cessful of these efforts was implementing software instruction
caching using binary rewriting [3], which today remains salient
for embedded processors with fixed-size instruction memory.
We had also tried ideas like software data caching, software
virtual memory, software branch prediction and software float-
ing point but realized less success. Paradoxically, many of
these efforts ended up taking up more hardware area when
implemented in software, because of their software footprint
in on-chip memory. Overall, the conclusion could be distilled
relatively simply: if you have to do it all the time, do it
in hardware to minimize energy, latency and area. If you
only have to do it some of the time, consider software more
strongly.
Automatically Parallelizing Compilation. On the com-
piler front, we developed an impressive ILP automatically-
parallelizing compiler, RawCC, based on the Stanford SUIF
infrastructure, and a key part of that was the hardware scalar
operand network that reduced latencies enough to make paral-
lel speedup attainable. However, due to the ever-present alias-
analysis problem, and the resulting lack of large amounts
of ILP in legacy SPEC binaries, this limited the scope of
single-threaded conventional applications where speedup was
attainable. We also found that it was hard to mitigate the high
software costs of handling dynamic effects in the compiler.



2

NEW: Domain Specific Languages. We spent several years
mapping applications to the Raw in order to generate the
results and make the case for the architecture. Frustrated with
the difficulty of scaling performance with ILP-based models,
we started developing a language, StreamIt, that could be
used to express streaming computations at a higher level,
and paradoxically, make the task of automatic parallelization
even easier. StreamIt was one of the earliest examples of a
domain specific languages (DSLs) whose purpose was not
only to improve programmer productivity, but to constrain the
expression of programs in a way that simultaneously improves
productivity and makes the parallelization problem tractable
[O11].
NEW: Multiprogramming. Perhaps relatively unsurprising
in retrospect, the results from the paper showed that tiled
multicores were very good at running unrelated unparallelized
applications with relatively little performance interference.
Although this was not considered a conference grade insight at
the time, it is very relevant to how multicores are used today
in datacenters and cloud computing.

III. RESONANCE WITH THE FUTURE

The progression of technology is often less a progression of
individual works and more of a collective contribution to an
evolving technological zeitgeist. Without diminishing the con-
tributions of many others in the architecture community, we
highlight a few resonances between this paper and subsequent
developments in the field.

Scalable multicore (and manycore) has resonated across
industry, and tiled variants have appeared, for example, in
the Tilera 64-core TILE64 [4][5], Tile64Pro, and 72-core
TileGX architectures, Intel’s 80-core Teraflop chip [6], and
perhaps most significantly, the Intel Skylake SP processor that
is widely used in today’s datacenters. A few members of the
original team have also continued refinements to manycore
processor chip design, in the form of the open source Celer-
ity [7] and Piton [8][9] processors.

Raw was one of the earliest examples of a scalable network-
on-chip (NOC) and the analysis of its on-chip networks [O19]
laid a foundation for a wide variety of network-on-chip litera-
ture. The work on scalar operand networks has proven useful
to other parallel architects who have needed mechanisms
for tight synchronization of data between cores; and Raw
has served as an early inspiration for CGRA architectures,
which share Raw’s desire to precisely orchestrate the flow of
operands between plentiful parallel resources.

Raw’s StreamIt DSL served as an early example of the
efficacy of domain-specific languages for attaining parallel
performance, which has been reflected in the success of other
DSLs like PyTorch, CUDA, OpenCL and Halide.

REFERENCES

[1] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald,
H. Hoffmann, P. Johnson, W. Lee, A. Saraf, N. Shnidman, V. Strumpen,
S. Amarasinghe, and A. Agarwal, “A 16-issue Multiple-Program-Counter
Microprocessor with Point-to-Point Scalar Operand Network,” in ISSCC,
2003.

[2] M. Taylor, “Tiled Microprocessors,” Ph.D. dissertation, Massachusetts
Institute of Technology, 2007.

[3] J. E. Miller and A. Agarwal, “Software-based instruction caching for
embedded processors,” in ASPLOS, 2006.

[4] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay,
M. Reif, L. Bao, J. Brown, M. Mattina, C.-C. Miao, C. Ramey, D. Went-
zlaff, W. Anderson, E. Berger, N. Fairbanks, D. Khan, F. Montenegro,
J. Stickney, and J. Zook, “TILE64 processor: A 64-core SoC with
mesh interconnect,” in ISSCC: Digest of Technical Papers of the IEEE
International Solid-State Circuits Conference, 3-7 2008, pp. 88–89,598.

[5] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. F. B. III, and A. Agarwal, “On-chip inter-
connection architecture of the tile processor,” IEEE Micro, vol. 27, pp.
15–31, 2007.

[6] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan,
P. Iyer, A. Singh, T. Jacob, S. Jain, S. Venkataraman, Y. Hoskote, and
N. Borkar, “An 80-tile 1.28tflops network-on-chip in 65nm cmos,” in 2007
IEEE International Solid-State Circuits Conference. Digest of Technical
Papers, 2007, pp. 98–589.

[7] S. Davidson, S. Xie, C. Torng, K. Al-Hawaj, A. Rovinski, T. Ajayi,
L. Vega, C. Zhao, R. Zhao, S. Dai, A. Amarnath, B. Veluri, P. Gao,
A. Rao, G. Liu, R. K. Gupta, Z. Zhang, R. Dreslinski, C. Batten, and M. B.
Taylor, “The Celerity Open-Source 511-core RISC-V Tiered Accelerator
Fabric,” Micro, IEEE, Mar/Apr. 2018.

[8] M. McKeown, Y. Fu, T. Nguyen, Y. Zhou, J. Balkind, A. Lavrov,
M. Shahrad, S. Payne, and D. Wentzlaff, “Piton: A manycore processor
for multi-tenant clouds,” IEEE Micro, pp. 70–80, March/April 2017.

[9] J. Balkind, M. McKeown, Y. Fu, T. Nguyen, Y. Zhou, A. Lavrov,
M. Shahrad, A. Fuchs, S. Payne, X. Liang, M. Matl, and D. Wentzlaff,
“OpenPiton: An open source manycore research framework,” ASPLOS,
2016.


