
η-LSTM: Co-Designing Highly-Efficient Large
LSTM Training via Exploiting Memory-Saving and

Architectural Design Opportunities

Xingyao Zhang
ECOMS Lab and Bespoke Silicon Group (BSG)

University of Houston and University of Washington
Houston and Seattle, USA

xingyaoz@cs.washington.edu

Haojun Xia
Future System Architecture Lab

University of Sydney
Sydney, Australia

xhjustc@gmail.com

Donglin Zhuang
Future System Architecture Lab

University of Sydney
Sydney, Australia

dzhu9887@sydney.edu.au

Hao Sun
Future System Architecture Lab

University of Sydney
Sydney, Australia

hsun2147@uni.sydney.edu.au

Xin Fu
ECOMS Lab

University of Houston
Houston, USA

xfu8@central.uh.edu

Michael B. Taylor
Bespoke Silicon Group (BSG)

University of Washington
Seattle, USA

prof.taylor@gmail.com

Shuaiwen Leon Song
Future System Architecture Lab

University of Sydney
Sydney, Australia

leonangel991@gmail.com

Abstract—Recently, the recurrent neural network, or its most
popular type—the Long Short Term Memory (LSTM) network—
has achieved great success in a broad spectrum of real-world ap-
plication domains, such as autonomous driving, natural language
processing, sentiment analysis, and epidemiology. Due to the com-
plex features of the real-world tasks, current LSTM models be-
come increasingly bigger and more complicated for enhancing the
learning ability and prediction accuracy. However, through our
in-depth characterization on the state-of-the-art general-purpose
deep-learning accelerators, we observe that the LSTM training
execution grows inefficient in terms of storage, performance, and
energy consumption, under an increasing model size. With fur-
ther algorithmic and architectural analysis, we identify the root
cause for large LSTM training inefficiency: massive intermediate
variables. To enable a highly-efficient LSTM training solution for
the ever-growing model size, we exploit some unique memory-
saving and performance improvement opportunities from the
LSTM training procedure, and leverage them to propose the
first cross-stack training solution, η-LSTM, for large LSTM
models. η-LSTM comprises both software-level and hardware-
level innovations that effectively lower the memory footprint
upper-bound and excessive data movements during large LSTM
training, while also drastically improving training performance
and energy efficiency. Experimental results on six real-world
large LSTM training benchmarks demonstrate that η-LSTM
reduces the required memory footprint by an average of 57.5%
(up to 75.8%) and brings down the data movements for weight
matrices, activation data, and intermediate variables by 40.9%,
32.9%, and 80.0%, respectively. Furthermore, it outperforms the
state-of-the-art GPU implementation for LSTM training by an
average of 3.99× (up to 5.73×) on performance and 2.75× (up

This work was partially supported by Air Force Research Laboratory
(AFRL) and Defense Advanced Research Projects Agency (DARPA) under
agreement number FA8650-18-2-7863, and by the DARPA/SRC JUMP ADA
Center. This research was also partially supported by Facebook Faculty Award
and University of Sydney faculty startup funding, Australia Research Council
(ARC) Discovery Project DP210101984. This research was also partially
supported by NSF grants CCF-1900904, CCF-1619243, and CCF-1537085
(CAREER).

to 4.25×) on energy. We hope this work can shed some light on
how to design high logic utilization for future NPUs.

Index Terms—Machine Learning, Neural nets, Recurrent Neu-
ral Network, Accelerator

I. INTRODUCTION

In recent years, machine learning and its special set of

algorithms—artificial neural networks—have been experienc-

ing an unprecedented growth in terms of adaptation and

social impact. The recurrent neural network, or one of its

most popular types—the Long Short Term Memory (LSTM)

network—has achieved great success in a broad range of

application domains including autonomous driving [1], [2],

natural language processing [3], [4], business process man-

agement [5], sentiment parsing [6] and even recent tasks

addressing the COVID-19 pandemic [7], [8]. However, due

to the complex features of the real-world tasks, the LSTM

models become increasingly bigger for enhancing the learning

ability and prediction accuracy [9], [10]. Previous studies [11]–

[13] mainly focus on improving the execution efficiency of

LSTM inference, but enabling highly-efficient training for

large LSTM models has been an open problem.

In this work, we first provide a detailed characterization

on state-of-the-art large LSTM training and analysis for its

inefficiency and design challenges (Sec. III). We have ob-

served that training larger LSTMs frequently results in lower

hardware throughput and energy efficiency. To identify the

root causes, we further profile the GPU unit utilization and

locate the memory-subsystem related overheads. Based on

these high-level clues from these general-purpose accelerators,

we conduct further algorithmic and architectural analysis,

and discover that the root cause of large LSTM training

inefficiency is the massive intermediate variables.

567

2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA)

978-1-6654-3333-4/21/$31.00 ©2021 IEEE
DOI 10.1109/ISCA52012.2021.00051

These variables are generated by forward (FW) propaga-

tion, stored and then reused by backpropagation (BP) for

the gradient calculations. Due to their long reuse distances,

they are typically stored in the DRAM during FW to release

on-chip resources for other live variables that have shorter

reuse distances. After further analysis, we find that these

intermediate variables produced by state-of-the-art LSTM

training flows pose a negative impact on storage (large memory

footprint), performance (training latency and throughput) and

energy efficiency. There have been several recent studies

focused on reducing the large memory footprint induced by

large intermediate variables during forward- and backward-

propagation types of execution [14]–[16], e.g., vDNN [14]

and SuperNeurons [15] for CNNs, and Echo [16] for the

Transformer. However, LSTM training exhibits a unique and

complex computation pattern that precludes these previous

approaches from being applied (Sec.III).
To enable a highly-efficiency LSTM training solution with

ever-growing model sizes, we exploit several unique memory-

saving and performance improvement opportunities from

LSTM training, and leverage them to propose a cross-stack

training solution, η-LSTM (pronounced /"ā-t@/ LSTM), which

comprises both software-level and hardware-level innovations.
At the software-level, η-LSTM primarily focuses on re-

ducing the large intermediate variables generated during FW

propagation via tackling two major factors that determine the

size of the intermediate variables: LSTM cell-level variable

reduction (Sec.IV-A) and BP layer length reduction (Sec.IV-

B). The corresponding designs for them are based on our two
key observations about LSTM training. First, the cell-level

intermediate variables possess very limited opportunities for

compression; but with our execution reordering design, both

the memory footprint and training latency can be effectively

reduced. Second, not all the BP cells produce significant

gradients for weight updating; thus, we can skip the execution

for these “insignificant” BP cells to further reduce memory

footprint, data movement and training latency.
At the hardware-level, we propose new hardware designs

and optimizations to effectively support our software-level in-

novations and provide further architecture-level enhancements

on performance and energy efficiency. Based on design space

exploration, we discover that our proposed memory-saving

optimizations will cause low hardware utilization when per-

formed on the state-of-the-art NN accelerators [11]–[13], [17],

resulting in inefficient execution and increased training time

(Sec. V-A). To address this design challenge, we propose a

novel PE design named Omni-PE (Sec. V-B) that can perform

all the operations in LSTM training and its runtime resource

allocation scheduler (Sec. V-C) that dynamically distributes

the computational resources according to the LSTM work-

load requests, resulting in high hardware utilization. Finally,

we offer a detailed overall hardware design along with its

optimizations for η-LSTM (Sec. V-D). This study makes the

following contributions:

• We conduct a comprehensive characterization study for

large LSTM training on modern GPUs and identify its

ht-1
st-1

δHt
δSt

LSTM FW
Layer

LSTM BP
layer

FW Cell
@T0

FW Cell
@T1

FW Cell
@Tt

BP Cell
@T0

BP Cell
@T1

BP Cell
@Tt

…

…

ht
st

h1
s1

h0
s0

δHt-1
δSt-1

δH1
δS1

δH0
δS0

x0 x1 xt

δX0 δX1 δXt

y0 y1 yt

δY0 δY1 δYt

Unroll

Unroll

Context

Context
Gradients

Fig. 1: The execution flow for one LSTM layer during the

forward- (FW) and back-propagation (BP) phases. T represents

timestamps.

root cause for training inefficiencies;

• We exploit several unique memory-saving and perfor-

mance improvement opportunities in LSTM training and

leverage them to propose the first highly-efficient cross-
stack training solution for large LSTM models, which

comprises both software-level and hardware-level inno-

vations;

• At the software level, we introduce several key observa-

tions regarding the unique LSTM training data patterns,

which are then leveraged to enable large reduction on

memory footprint, data movements and training latency;

• At the hardware level, we propose novel architecture

designs that enable high logic utilization on customized

NPUs, while supporting our software-level optimizations

and further enhancing LSTM training performance and

energy efficiency;

• The experimental results show that for large LSTM train-

ing scenarios, our pure software-level memory-saving

optimizations reduce the memory footprint by an average

of 57.52% (up to 75.75%) and reduce data movement

for weight matrices, activation data and intermediate

variables by 40.85%, 32.89% and 80.04% respectively. In

return, our memory-saving techniques improve the state-

of-the-art GPU (Nvidia V100 32GB) implementation by

1.56× (up to 1.79×) on performance and 1.54× (up

to 1.78×) on energy with no convergence speed issues

and negligible accuracy impact. And our pure hardware

architecture design can achieve an average of 1.67× (up

to 2.69×) better energy over the state-of-the-art GPU

design. Combining them together, our overall η-LSTM

design surpasses the state-of-the-art GPU implementation

by an average of 3.99× (up to 5.73×) on performance

and 2.75× (up to 4.25×) on energy.

II. BACKGROUND: LSTM TRAINING

The Long-Short Term Memory (LSTM) network is a pop-

ular type of recurrent neural network (RNN) which has been

adopted in a wide range of real-world applications. Similar to

other supervised learning networks such as convolution neural

networks (CNNs), LSTM training comprises both forward-

(FW) and backpropagation (BP) procedures. However, com-

mon LSTM networks exhibit a unique execution flow that is

different than CNNs or CNN-like networks. For example, as

568

Wf,i,c,o

Uf,i,c,o +

σ

σ

σ

●

●

ft

it

ct

+
st-1

tanh

● ot

ht-1

xt

FW-MatMul

FW-EW yt

ht

st

tanh

●

o

h
gatest

(a)

Wf,i,c,o

Uf,i,c,o

+
δSt-1

● δôt

δHt-1

δXt

BP-MatMul BP-EW δYt

δHt
+

δSt

δft̂
δit̂

δUf,i,c,o
δWf,i,c,o +

+

ft
●

st
ot

st
ot

δσ

it
ct

δ
tanh

δĉt

δ
tanh

xtxx×

ht-1
×

st-1
ft
ss
fδσ

δσ

δ t

t

δgatest

(b)

Fig. 2: The zoom-in view of the LSTM cell execution during

training: (a) forward- (FW) and (b) back-propagation (BP).

illustrated on the left, “rolled”, side of Fig. 1, within each

layer, the operations of mapping the inputs to the outputs are

integrated into one FW cell, while the operations of mapping

the output gradients to the weight gradients and input gradients

are integrated into one BP cell. Both cells are executed

recurrently because they need to adopt the historic self-output

information. This feature helps model the context dependency

within the input activation for the modeling sequence tasks

(e.g., language modeling, trajectory prediction, etc). It also

forces the layer’s input to be consumed step-by-step to form a

sequential execution. Such sequential execution of one LSTM

layer can be unrolled into a sequence of cells for both FW

and BP to represent the cell states at different timestamps1,

as shown on the right, “unrolled”, side of Fig. 1, where

all the unrolled cells within the same layer share the same

weight matrices. Since the adjacent cells in both FW and BP

exhibit context dependency [18], they can only be processed

sequentially.

Fig. 2 also shows the zoom-in view of the actual com-

putation in both FW and BP LSTM for the cells located

at the tth timestamp. In the FW cell (Fig. 2a), the matrix-

multiplication (FW-MatMul) and the element-wise operations

(FW-EW) leverage the layer input xt and the context output

of its previous cell ht−1 to produce the values for the multiple

LSTM gatet in the cell (circled in red), including the forget

gate ft, the input gate it, the cell gate ct and the output gate

ot. Their computation share a similar function:

gatet = AF (Wf,i,c,oxt + Uf,i,c,oht−1 + bf,i,c,o) (1)

1In this paper, we focus on the LSTM unrolling analysis [18], in which a
cell in a layer is an unrolled cell at a certain timestamp.

where AF represents the activation functions including

sigmoid (σ) for ft, it and ot; and the hyperbolic tangent (tanh)

for ct. Wf,i,c,o and Uf,i,c,o are the weight matrices for xt

and ht−1, respectively, which are different when computing

towards different gate values. bf,i,c,o represents the offsets.

By leveraging another element-wise operation, gatet generates

the cell state st, the context link ht for the next cell, and the

output yt for the cell in the next layer. Note that xt, ht−1,

and st are saved into memory as intermediate parameters for

future usage during FW.

On the other hand, in the BP cell shown in Fig. 2b,

the gates gradients (δgatet) and the cell state gradients for

the previous cell (δSt−1) are generated through performing

element-wise operation (BP-EW) on the following parameters:

the feedback of the output gradients (δYt) from the next layer,

the context gradients (δHt) from the next timestamp, the cell

state gradients (δSt) and the gate values for this timestamp

calculated previously during FW (gatet). Then, these gradients

will be applied to generate the gradients for the two cells

through inner-product (·) matrix-multiplication (BP-MatMul):

the cell in the previous layer with the same timestamp (δXt),

and the cell at the current layer with the previous timestamp

(δHt−1).

(δXt, δHt−1) = (WT
f,i,c,o, UT

f,i,c,o) · δgatest (2)

And these gradients will also be used to produce the weights

gradients (W , U) through the outer product (
⊗

) matrix-

multiplication (BP-MatMul):

(δWf,i,c,o, δUf,i,c,o) + = δgatest
⊗

(xT
t , hT

t−1) (3)

III. CHALLENGES FOR LARGE LSTM TRAINING

Due to the complex features of the real world tasks, neu-

ral network models have been growing exponentially larger,

enhancing learning ability and prediction accuracy [9], [10].

Additionally, today’s network compression and pruning tech-

niques [19]–[21] require training of large NN models at the

beginning for better non-linearity fitting, before pinpointing

and reducing the model redundancy. Thus, it is inevitable that

LSTM models are growing large, e.g., expanding the hidden

size (i.e., determines the weight matrices size), layer length

(i.e., represents the number of cells per layer) and layer num-

ber (i.e., indicates the model depth). Previous studies [11]–

[13] mainly focus on improving the execution efficiency of

LSTM inference, but techniques for enabling highly-efficient

training for large LSTM models remain unexplored. Next, we

provide a detailed characterization on the state-of-the-art large

LSTM training and an analysis of its inefficiency and design

challenges.

A. Initial Characterization: LSTM Training on General-
purpose Accelerators

As GPUs become increasingly popular as general-purpose

accelerators for performing neural network training, we con-

duct a comprehensive characterization on two state-of-the-

art GPUs (i.e., 16GB Nvidia Quadro RTX 5000 with the

569

0

10

20

30

40

50

0
2
4
6
8

10
12

256 512 1024 2048 3072

GF
LO

PS
/W

at
t

TF
LO

PS

Hidden Size

RTX-Throughput V100-Throughput
RTX-Energy Efficiency V100-Energy Efficiency

(a)

0
10
20
30
40
50
60

0
2
4
6
8

10
12

2 3 4 5 6 7 8

GF
LO

PS
/W

at
t

TF
LO

PS

Layer Number

RTX-Throughput V100-Throughput
RTX-Energy Efficiency V100-Energy Efficiency

(b)

0
10
20
30
40
50
60

0
2
4
6
8

10
12

18 35 100 151 303

GF
LO

PS
/W

at
t

TF
LO

PS

Layer Length

RTX-Throughput V100-Throughput
RTX-Energy Efficiency V100-Energy Efficiency

(c)

Fig. 3: The performance and energy efficiency comparison of training LSTM on the latest GPUs (Nvidia RTX5000 with Turing

architecture and V100 with Volta architecture) when scaling up the LSTM model size by increasing (a) the hidden size, (b)

the layer number, or (c) the layer length.

Turing architecture [22] and 32GB Nvidia Tesla V100 with

the Volta architecture [23]) to evaluate the LSTM training

efficiency with the ever-increasing model sizes. We first use

PyTorch [24] to implement the LSTM training algorithms

with various model configurations, and then apply Nvidia Pro-

filer [25] to extract GPU runtime information, e.g., execution

latency, power consumption and unit utilization. More detailed

experimental setup can be found in Sec. VI-A.

There are three typical ways for increasing LSTM model

size: increasing the hidden size, increasing the number of

layers, and increasing the layer length. Fig. 3 illustrates the

comparison in throughput and energy efficiency of the LSTM

training when scaling up the LSTM model size by increasing

the hidden size, the layer number, or the layer length. We have

the following observations:

Impact of varying the hidden size. To study the impact

of hidden size on LSTM training efficiency, we implement

different LSTM models for the real-world task of the language

modeling using the Penn TreeBank (PTB) dataset [26] with a

fixed layer number of 3 and layer length of 35 (determined

by the dataset). Fig. 3a shows that when the hidden size

is increased, the GPU throughput will first increase and

then plateau. Since matrix multiplications (MatMul) are the

main computation tasks for LSTM training, this throughput

increment directly originates from the MatMul optimizations

on modern GPUs. Specifically, when model is small (e.g., the

hidden size is < 1024 [27]), the increased model size demands

higher thread number, which creates opportunities for better

parallel execution and high ALU utilization. However, once the

model reaches a certain size, the ALU units are saturated and

the throughput is not further improved; however, the energy

efficiency starts to decline when further increasing the model

size beyond the throughput saturation point. This indicates an

increasing energy consumption due to the memory activities.

Impact of varying the layer number. To demonstrate the

impact of the varying number of layers on LSTM training

efficiency, we also implement different LSTM models for

the PTB language modeling with the fixed hidden size of

2048 and layer length of 35. Fig. 3b shows that with the

hidden size set large, although the GPU throughput varies

little when scaling the number of layers, the corresponding

energy efficiency decreases. This suggests that larger number

0
1
2
3
4
5

H2
56

H5
12

H1
02

4
H2

04
8

H3
07

2

LN
2

LN
3

LN
4

LN
5

LN
6

LN
7

LN
8

LL
18

LL
35

LL
10

0
LL

15
1

LL
30

3

Av
e

Da
ta

 M
ov

em
en

t (
GB

)

Parameter Activations Intermediate_Variable

4.34x
1.08x

Fig. 4: Data movements caused by parameter, activation data,

and intermediate variables.

of layers may not significantly impact the overall throughput

but it can cause extra energy overhead for training. Note that

due to the native memory size limitation, the 7- and 8-layer

LSTM models cannot be trained on the 16G RTX 5000 GPU.

Impact of varying the layer length. The LSTM layer

length is associated with the dataset, which cannot be easily

tuned like other configurations, e.g., the hidden size and layer

number. To illustrate the impact of the increasing layer length

(i.e., indicating the model depth) on LSTM training efficiency,

we implement different LSTM models for different datasets

shown in Table. I with the fixed hidden size of 1024 and

layer number of 3. Fig. 3c demonstrates that when increasing

the layer length, the overall throughput tends to decrease,

resulting in energy efficiency drop. This suggests that longer

layer lengths can cause negative impact on both throughput

and energy efficiency.

In summary, we have observed that training larger LSTMs

frequently results in lower hardware throughput and energy

efficiency. To identify its root causes, we profile the GPU unit

utilization with Nvidia Profiler and observe that the Load/Store

(LDST) unit utilization significantly increases for large LSTM

models, indicating the memory-subsystem related overheads.

Next, based on these high-level hints, we further investigate

the inefficient LSTM training and its root cause.

B. Root Cause for Large LSTM Training Inefficiency

During the forward computation phase, the FW-EW oper-

ations of each LSTM cell generates a group of intermediate

variables, including it, ft, ct, ot and st. When conducting

LSTM inference, these intermediate variables are abandoned

shortly after the current (it, ft, ct, ot) or the next cell (st)
computation. However, for the LSTM training processing,

570

0

0.8

1.6

2.4

3.2

4

0

0.2

0.4

0.6

0.8

1

H2
56

H5
12

H1
02

4
H2

04
8

H3
07

2

LN
2

LN
3

LN
4

LN
5

LN
6

LN
7

LN
8

LL
18

LL
35

LL
10

0
LL

15
1

LL
30

3

Av
e

To
ta

l S
ize

 (G
B)

N
or

m
al

ize
d

Fo
ot

pr
in

t (
%

)
Parameter Activations Intermediate_Variable Total_Size

Fig. 5: The total size (line) and the breakdown (bar) of the

GPU memory footprint.

due to the chain rule, these variables (i.e., it, ft, ct, ot,
st and st−1) are reused in the BP cell computation during

backpropagation. Since the typical BP execution does not

start until the completion of the FW computation, the reuse

distances of these variables can be quite long. In the state-of-

the-art LSTM implementations, they are commonly stored in

the DRAM to release on-chip resources for other live variables

that have short reuse distances. After further characterization

and analysis, we discover that these intermediate variables

produced by the state-of-the-art training flow pose several

major negative impacts on large LSTM training, including

storage, performance and energy inefficiencies.

Storage Inefficiency: Fig. 5 illustrates the breakdown of

the memory footprint for the aforementioned LSTM training

scenarios in Fig. 3, representing three major portions of

runtime data: the weight matrices, the activation data, and the

intermediate variables. Here, H256-H3072 correspond to the

LSTM training models from Fig. 3a with different configura-

tions of the hidden sizes; LN2-LN8 correspond to the LSTM

training models from Fig. 3b with different configurations of

layer numbers; and LL18-LL303 correspond to the LSTM

training models from Fig. 3c with different configurations

of layer lengths. We observe that on average 47.18% (up

to 74.01%) of the memory footprint is contributed by the

intermediate variables, which can easily surpass the GPU’s

on-chip memory capacity. Frequent accesses to them during

the training may cause a large number of random memory

accesses, resulting in large sub-memory system access over-

head. Additionally, due to this storage overhead, large LSTM

training could be easily bounded by the native hardware’s

storage limitation. For instance, as shown in Fig. 3b, the 7-

and 8-layer LSTM models cannot even be trained on a 16G

RTX 5000 GPU. This inefficiency substantially hinders real-

world LSTM model design and implementation.

Performance Inefficiency: In Fig. 3c, we observe that GPU

throughput declines for the LSTM training with a larger layer

length. As shown in Fig. 5, we find that the memory footprints

of the intermediate variables can grow significantly for these

LSTM models with longer layer lengths. Since the memory

accesses to these variables are usually on the critical path of

training, they cause not only the end-to-end training perfor-

mance degradation but also the decreased hardware throughput

due to the significant memory access overhead. Note that the

layer length is associated with the specific training dataset. As

the real-world tasks become increasingly complex, LSTM’s

layer length is somewhat inevitable to be expanded to better

Fig. 6: The cumulative absolute value distribution for the FW

intermediate variables and the BP-EW-P1 results at different

training epochs.

capture long-term context between inputs.

Energy Inefficiency: We also find that that the large data

movements between the on-chip and off-chip memories caused

by accessing the intermediate variables during training directly

contribute to the aforementioned energy efficiency declines

shown in Fig. 3. For instance, Fig. 4 quantifies the amount

of GPU-DRAM data movement from the activation data and

the intermediate variables, respectively. Their DRAM accesses

are much more difficult to reduce than the weight matrices

because they are produced at runtime and often do not exhibit a

certain data pattern which will be benefited from compression.

We observe an average of 4.34× additional data movements

(up to 4.81×) caused by the intermediate variables over that

from the activation data. Moreover, the size of the intermediate

variables also grows faster than activation data.

C. Ineffectiveness of the State-of-the-art Techniques

There have been some studies focusing on reducing the large

memory footprint caused by the intermediate variables during

forward- and backward-propagation types of execution, e.g.,

vDNN [14] for the CNNs, SuperNeurons [15] for the CNNs,

and Echo [16] for the Transformer. The core concept of these

works is trading-off memory footprint with re-computation to

carefully balance between the memory consumption upper-

bound and the training performance. For instance, to reduce

memory footprint, Echo [16] makes a key observation that in

the attention layers of Transformers some partial intermediate

variables during forward propagation can be used to derive

the other key intermediate variables when needed in the back-

propagation. So Echo only needs to store a small amount of

these partial variables for the backpropagation re-computation

to calculate the gradients. However, as discussed in Section

II, the LSTM training exhibits a unique computation pattern

that the stored intermediate variables (e.g., it, ft, ct, ot and

st) are independent of each other and cannot be derived from

each other. Without the essential memory-saving opportunities,

Echo becomes ineffective for LSTM training. On the other

extreme, to minimize the memory footprint without storing

any intermediate variables, the entire FW cell needs to be

recomputed from scratch during the BP cell processing. This

is infeasible in practice since it will substantially extend

the back-propagation latency and cause serious performance

overhead for LSTM training.

Additionally, the state-of-the-art LSTM acceleration ap-

proaches mainly focus on weight compression (e.g., pruning)

for LSTM inference. For example, S.Han et al. [11] and

571

it , ft ,
ct , ot
and st

FW Cell

BP-EW
part1

DRAM

Com
pression

Value

Index

Decode BP-EW
part2

BP-
MatMulExecution Reordering

Computation Skipping

Fig. 7: The diagram of cell-level variables reduction with

execution reordering.

S.Wang et al. [17] reduce the number of weight columns

in MatMul computation to cut down the LSTM inference

workload; and S.Wang et al. [13] propose to transform the

weight matrices into a smaller block-circulate format for

weight compression. However, these approaches cannot reduce

the size of the intermediate variables in large LSTM training

and address the aforementioned inefficiencies caused by them.

IV. UNIQUE LSTM MEMORY-SAVING OPPORTUNITIES

AND OPTIMIZATIONS

To enable a highly-efficiency LSTM training solution with

ever-growing model sizes, we exploit some unique memory-

saving and performance improvement opportunities in the

LSTM training procedure and leverage them to propose a

cross-stack training solution, η-LSTM, which comprises both

software-level (Sec. IV) and hardware-level (Sec. V) inno-

vations. In this section, we introduce key observations and

software-layer designs in η-LSTM which effectively reduce

the large intermediate variable size and the massive data

movements between FW and BP cells during LSTM training.

Specifically, we focus on optimizing two major factors that

determine the intermediate variables’ size: the number of

variables in each cell (Sec. IV-A) and the number of cells

within one layer (i.e., layer length; Sec. IV-B).

A. Cell-level Reduction for Intermediate Variables

Basic idea. First, we attempt to reduce the size of cell-level

intermediate variables. Specifically, we focus on compressing

the intermediate variables (e.g., ft, it, ct,ot, and st) generated

by the FW cells since these variables typically cannot be

immediately consumed and have to be stored for BP to

accelerate the calculation for the gradients in the state-of-

the-art implementations. They comprise the memory footprint

upper-bound of the entire LSTM training. Through further

investigation on the computation flow, we make a key observa-
tion that the cell-level intermediate variables generated by FW

possess very limited opportunities for effective compression

(discussed next). One intuitive solution for this is to quickly

consume these variables during FW for certain important

computation outcomes, instead of fully storing them during the

training process to cause different efficiency issues (Sec.III).

Guided by this intuition, we find that it is possible to reorder

the LSTM training execution flow to quickly and effectively

consume these FW intermediate variables while maintaining

computation correctness. More surprisingly, we discover that

this reordering creates a new set of variables that exhibit much

higher data compression opportunities and can be effectively

compressed to travel between FW and BP cells, resulting in

significant memory footprint and latency reduction for LSTM

training. Next, we provide more detailed discussion on the

cell-level variable reduction.

Enhancing Data Compression Opportunities via Ex-
ecution Reordering. To explore the opportunities of cell-

level variable reduction, we collect the FW’s intermediate

variables from six large LSTM training benchmarks evalu-

ated in this paper, shown in Table. I and investigate their

value distributions. Note that the BP-EW computation can

be divided into two computation stages: BP-EW-P1, which

performs computation relying on only FW intermediate vari-

ables, and BP-EW-P2, which takes the outputs from BP-

EW-P1 to calculate gradients during backpropagation. For

example, the formula to calculate the input gate gradient is:

δît = δSt

⊙
ct
⊙

it
⊙

(1− it). Since ct and it are generated

by the FW procedure, ct
⊙

it
⊙

(1−it) belongs to BP-EW-P1,

while the computation involving gradients belongs to BP-EW-

P2. Fig. 6 shows the cumulative absolute value distribution for

the FW generated intermediate variables and the calculated

results from BP-EW-P1 phase, at different training epochs.

The x-axis represents the absolute value range of the FW

intermediate variables and the results from BP-EW-P1 phase,

which is [0,1]. Note that both FW intermediate variables and

BP-EW-P1 results are within this range based on formulation

(Fig. 2 in Sec.II), e.g., FW intermediate variables are produced

by the activation functions.

From Fig. 6, we can observe that only around 25% of

the FW intermediate variables have values smaller than 0.1.

On the other hand, BP-EW-P1 phase (which only depends

on the FW intermediate variables for computation) generates

approximately 65% of the data outputs with values smaller

than 0.1, representing a very different data value pattern than

FW intermediate variables. Also, this interesting data pattern

is not impacted by different training epochs either. Since BP-

EW-P1 computation only relies on FW intermediate variables,

if hardware resources are available, it is possible to reorder the

LSTM training by bringing the BP-EW-P1 phase forward into

the FW phase to execute concurrently, immediately consuming

all the FW intermediate variables. There are two direct benefits

associated with this design. First, based on Fig. 6, BP-EW-

P1 results’ data value pattern can significantly enhance the

data compression opportunities for reducing LSTM’s training

memory footprint upper-bound bounded by FW intermediate

variables, e.g., experiments show that applying a near-zero
pruning at the value threshold around 0.1 provides both

large memory savings and little training accuracy loss (See

Sec. VI-B4 for more discussion.). Second, after the reordering,

BP-EW-P1 will generate much smaller compressed results

which replace the FW intermediate variables to be requested

by the BP processing. In other words, these large cell-level FW

generated intermediate variables are no longer needed to be

stored for BP processing, resulting in large memory footprint

reduction. Additionally, the rest of the BP process now takes

the decoded format of the outputs from BP-EW-P1 in FW,

which also helps skip some unnecessary computation in both

572

(a)

(b)

Fig. 8: The weight gradients magnitude for different

timestamp BP cells when implementing (a) single loss

LSTM - IMDB [28] and (b) per-timestamp loss LSTM -

WMT(MLPerf) [29].

BP-EW-P2 and BP-MatMul (e.g., near-zero operands). The

overall execution reordering strategy is illustrated in Fig. 7

and its hardware support is discussed in Sec. V.

B. BP Layer Length Reduction

Basic idea. After the cell-level variable reduction, we

further extend our exploration to the layer-level for additional

memory footprint reduction and latency improvement oppor-

tunities. Specifically, we focus on analyzing whether or not

the demands from BP process for the intermediate variables

produced in FW can be reduced. After all, if BP does not

demand such reuse for fast computation, there is no need to

store FW-generated intermediate variables. Based on this in-

tuition and further evaluation, we make a key observation that

not all the BP cells produce significant gradients for weight
updating. Therefore, we propose to predict these insignificant

BP cells and skip their execution. This skipping will require

no intermediate variables to be stored in the corresponding

FW process as if performing LSTM inference (calculating loss

only), further reducing the memory footprint and training la-

tency. We elaborate the observations and proposed techniques

as follows.

Key observation: Since the LSTM layer is unrolled into

a sequence of LSTM cells, the BP cells in the same layer

generate the gradients (δW and δU) for updating the same

weight matrices. To explore the characterization of these

weight gradients generated by different BP cells of the same

layer, we collect the gradients from the different layers of

two real-world LSTM training benchmarks (IMDB and WMT

(MLPerf) from Table. I) and compare magnitudes (i.e., the

accumulated value for all their absolute scalar data), shown in

Fig. 8.

Interestingly, we find that how the loss is calculated is

determined by LSTM model designers and it impacts which

BP cell can be skipped. For instance, we have identified two

types of LSTM models based on how the loss is computed:

BP
Cell

BP
Cell

BP
Cell

BP
Cell

BP
Cell

BP
Cell

Partial
δW, δU

Partial
δW, δU

Partial
δW, δU

Partial
δW, δU

Partial
δW, δU

δW, δU

Scaling
Factor

δW, δU

BP
Cell

BP
Cell

BP
Cell

Partial
δW, δU

Partial
δW, δU

Scaling
Factor

δW, δU
Single Loss

LSTMs
Per-Timestamp

Loss LSTM

× ×

Fig. 9: The diagram of BP cell Skipping. The left figure

represents the original BP cell execution, the middle and right

figures represent our BP cell skipping approach for single loss

LSTM and per-timestamp loss LSTM, respectively.

single loss LSTM and per-timestamp loss LSTM. For the

former, LSTM models are designed to calculate the loss based

on the last timestamp cell at the final layer, e.g., IMDB

model for reviewing attitude classification. For the latter,

LSTMs calculate the loss per timestamp BP cell at the final

layer, e.g., LSTM model from MLPerf performing machine

translation. Fig. 8 further demonstrates these two types of

LSTM models: different models exhibit different patterns of

gradients magnitude. For the single loss LSTMs (e.g., IMDB),

the gradients magnitude per layer decreases from the last to

the first cell. This is because the single loss vanishes with the

increased propagation distance [30]. For per-timestamp loss

LSTMs (e.g., WMT), the gradients magnitude grows at each

layer from the last cell to the first cell. This is because each

cell will receive the loss of the corresponding timestamp and

this loss information gets accumulated from the last cell to the

first cell. Note that the per-timestamp loss LSTM generates

insignificant gradients at the beginning of BP process.

Prediction for the Insignificant BP Cells. By leveraging

the key observation above, we propose to skip the execution

for those insignificant BP cells. First, we need to build

an effective mechanism to identify which BP cells produce

insignificant gradients for weight updating. Since it is a futile

attempt to perform this identification after the BP cells com-

plete their execution, we aim to identify these BP cells ahead

of their execution via the loss information as it determines

the magnitude of the gradients for each BP cell. Furthermore,

we find that the gradients exhibit a certain correlation with the

propagation distance: (1) for the cells at certain timestamp, the

gradients increase from the last layer to the first layer; (2) for

the cells from the same layer, the weight gradients decrease

for single loss LSTMs and increase for per-timestamp loss

LSTMs, from the last timestamp to the first timestamp. Based

on these, we can build a model with the information of loss,

layer and timestamp as inputs to predict the weight gradients

magnitudes for each BP cell as follows:

δW Mag =
α ·∑ loss · (LN − layerID)

(LL− timeStamp)β
(4)

Here,
∑

loss represents the loss accumulation from the last

timestamp to the current timestamp. For single loss LSTMs,∑
loss is only the loss from the last timestamp cell at the

final layer. LN and LL represent the layer number and the

layer length of the LSTM model, respectively. layerID and

timeStamp indicate the BP cell location in the LSTM graph.

573

FW-MatMul … MatMul

EW FW-EW
+BP-EW-P1

BP-MatMul

BP-EW-
P2

FW Cell Execution BP Cell Execution
Co

nt
rl

Execution Time
Low Logic Utilization Idle Time of EW

Fig. 10: The diagram of inefficient computational resource

allocation when implement LSTM training on the architecture

designs with static computational resource allocation.

β indicates gradients magnitude trend according to the LSTM

type: for single loss LSTMs, β equals to ”1”, and for per-

timestamp loss LSTMs, β equals to ”-1”. Finally, α is the

factor determined by the LSTM model and the dataset, which

can be calculated using the results of the first training epoch.

These predicted weight magnitude will be used to compare

with the threshold to determine the importance of the BP cells.

However, the basic method above can only reduce the

intermediate variables’ loading without reducing the actual

memory footprint caused by these variables. This is because

this basic strategy requires loss information to determine the

importance of BP cell, and the loss is be produced after all

FW cells’ execution. Therefore, to obtain BP cells’ importance

prior to the FW execution, we propose to predict the loss for

current training epoch using historic loss results:

pred lossn = lossn−1 − (lossn−2 − lossn−1)
2

lossn−3 − lossn−2
(5)

Here pred lossn represents the predicted loss results for

nth epoch, and loss represents the actual loss generated by

previous epochs. Note that the first three epochs will not

perform the prediction as the prediction requires the historic

loss from previous three epochs. With the loss predicted,

the importance of BP cells can be predicted before the FW

cells’ execution, thus, avoiding data movements and memory

footprint caused by storing these insignificant variables.

Convergence-Aware BP Execution Skipping. To reduce

the impact of skipping BP execution and maintain the conver-

gence speed, we propose to offset the value loss. As shown

in the Fig. 9, since the BP cells from the same LSTM layer

generate the gradients for the same weights, the value loss

can be potentially offset via amplifying the weight gradients

results from those significant BP cells: δWlayer = δWpartial×
factor, here the scaling factor is determined by the predicted

weight gradients and the number of the skipped BP cells.

V. η-LSTM ARCHITECTURE DESIGN

In this section, we discuss our hardware designs and opti-

mizations to effectively support our software-level innovations

and provide further enhancements for enabling highly-efficient

large LSTM training. Based on design space exploration,

we discover that our proposed memory-saving optimizations

will induce low hardware utilization when performed on the

state-of-the-art NN accelerators, resulting in inefficient execu-

tion and increased training time (Sec. V-A). To address this

design challenge, we propose a customized highly-efficient

LSTM training architecture comprised of a novel PE design

Cycle 1 2 3 4 5 6 7 8 9 10 11 12
Adder
input1 A A C C E C+D G C+D+F A+B+F+G A+B+F+G

Adder
Input2 B D A+B F A+B+E H C+D+F+H

Adder
Output A+B C+D A+B+E C+D+F A+B+F+G C+D+F+H Sum

(A~H)
Streaming Processing

Fig. 11: The timing chart for our streaming processing adder-

based accumulator. “A” ∼ “H” represent the floating-point

values to be accumulated.

(Sec. V-B) and its matching runtime scheduler (Sec. V-C).

Finally, the overall η-LSTM architectural design is illustrated

in Sec. V-D.

A. Hardware Design Challenge Induced by our Memory-
Saving Optimizations

Irregular Workload Pattern: As discussed in the previous

section, our memory-saving optimizations move some com-

putation from the BP cells to the FW cells which further

reduces the computation workload per BP cell. As discussed

in Fig. 2 in Sec.II, as a result, the amount of MatMul and

EW operations varies across cells and even becomes different

for the same cell at different computation phases (FW or BP).

Additionally, the reduction of the computation workload in

each BP cell relies on runtime information, making the amount

of the MatMul and the EW operations vary across different

training iterations, training epochs, and datasets. Thus, the

workload pattern becomes more irregular under our memory-

saving optimizations which requires special hardware support.

Ineffectiveness of the State-of-the-Art NN Accelerators:
There have been several architectural designs for accelerating

NN execution, e.g., NPUs [31], [32] and LSTM inference

accelerator [11]–[13], [17], [33]. Some designs, e.g. [33],

adopt a unified processing element design to include a large

number of logic for performing all the essential functionalities

(e.g., multiplication, add, accumulation, activation), resulting

in low logic utilization and high area cost. More commonly,

some designs, e.g. [11], [13], [17] statically distribute the

computation resources into several hardware modules (e.g.,

MatMul and EW modules) with each hardware module con-

ducting different operations. The logic resources per hardware

module are determined by the amount of the operations.

However, this kind of static allocation approach may cause

inefficient execution as the workload pattern becomes more

irregular under our memory-saving optimizations for highly-

efficient LSTM training. As shown in Fig. 10, when the EW

execution in the BP cell becomes sparse, the corresponding

hardware logic will be idle for a long period of time, causing

low logic utilization and degraded performance.

B. Omni-Processing Element Design

To achieve high hardware utilization and corresponding

performance benefit, we propose to dynamically distribute

the computational resources according to the workload re-

quests. To this end, we first group the hardware computational

resources into fine-grained pieces, i.e., processing elements

(PEs), to enable flexible resource allocation. We then propose

574

Input1
Queue

Input2
Queue

× +

Controller

Output
Queue

Partial
Output
Queue

Accumulator

Fig. 12: The Omni-PE Design.

a novel universal PE design, Omni-PE, that is able to conduct

the streaming processing for all the operations involved in

the LSTM training. To be specific, we aim to reduce the PE

resource consumption via maximizing the logic reuse between

MatMul and EW operations.

The MatMul computation requires the multiplier and accu-

mulator to process the streaming input each cycle, while the

EW computation requires the multiplier, adder and activation

function unit for the streaming input. Since the activation

function unit can be implemented using the on-chip storage

to build the look-up table [11], the major logic difference

between MatMul and EW lies in the differences between the

accumulator and the adder units.

Though both the accumulator and the adder perform the

addition operation, their designs are very different. At each

cycle, the accumulator sums up the current cycle’s input with

the accumulated value produced by the previous cycle [34].

However, when using the adder to implement this execution

flow, it is unable to accept input at every cycle to support

the streaming processing as performing addition in the adder

takes multiple cycles (e.g., 8 cycles in our study), which peri-

odically stalls the accumulation to wait for the addition output.

Therefore, the accumulator and adder usually exhibit different

low-level designs for enabling the streaming processing and

they often cannot directly perform each other’s functionality.

In this study, we enable the streaming accumulation in the

adder by rearranging the computation flow. Instead of always

waiting for the full accumulation results from the previous

cycles, our design leverages partial outcomes to achieve the

streaming processing, as illustrated by an example in Fig. 11.

To simplify the discussion, we assume the add latency takes

2 cycles in this example. As it shows, at the beginning of the

accumulation, the computation is conducted every 2 cycles

given the streaming inputs since it takes 2 cycles to finish one

addition. With the partial outputs ready later (e.g., at 4th cycle

in the figure), the partial outputs (e.g., A+B) will be sent back

to the adder while waiting for the next steaming input (e.g.,

F). As can be seen, the adder is effectively pipelined which

is able to accept input at every cycle to support the streaming

processing. Finally, when there is no more data from the input

stream (e.g., from 9th cycle), all the partial accumulated results

will be summed up to produce the final result.

Given that the adder is able to conduct the streaming

accumulation, we then propose our Omni-PE design which

can perform both MatMul and EW operations, as illustrated

in Fig. 12. Our Omni-PE contains one multiplier and one

adder. There are four multiplexers (MUX) inserted between

the multiplier and adder, where the left two MUXs will flip

per cycle to ensure the data evenly transmitted to the two input

ports of the adder, and right two MUXs select the input for

the adder as either the PE’s input or the multiplier’s output.

The adder’s output is then sent to a partial output queue

for accumulation. Finally, a MUX is employed before the

output queue to select the appropriate output from either the

multiplier or the adder. With the control signals generated by

the controller, our Omni-PE can be dynamically configured to

perform the following operations for LSTM training:

• For matrix-vector multiplication (·), both the multiplier

and adder will be activated; the adder acts as the accu-

mulator and the output MUX collects the results from the

partial output queue;

• For element-wise multiplication (
⊙

) and outer-

production (
⊗

), only the multiplier will be activated,

and its output will be sent to the output queue through

the final MUX to skip the adder;

• For element-wise addition (+), only the adder will be

activated which will take both inputs to the PE. The final

MUX will select results from the partial output queue.

C. Runtime Resource Allocation

We then explore a Runtime Resource Allocation (R2A)

scheduler that concurrently launches the data dependence

operations (i.e., MatMul and EW) and intelligently assigns

our omni-PEs to these operations for the optimal performance

and energy-efficiency. Our R2A scheduler first estimates the

amount of workloads (i.e., the operation types and their num-

ber) through the entire LSTM training, which is determined by

the model configuration. Based on the estimated workloads of

MatMul and EW, the scheduler will then divide the PEs into

two groups with each group configured to perform MatMul

and EW operations, respectively. During the LSTM training,

some PEs become idle when assigned operation is not ready

to start due to the data dependency on another operation. To

improve the PE utilization, those idle PEs will be firstly re-

assigned to conduct operations with ready inputs and then

switch back later to perform the operations originally assigned

by the scheduler.

For example, PEs are divided to perform MatMul and

EW operations. During the forward propagation, since the

EW operations depend on the results from MatMul, the PEs

assigned for EW will first support MatMul (i.e., swing PEs)

and then return to process EW once the adequate inputs

have been generated from MatMul. Note that there exists no

pipeline stalls as the swing PEs design can effectively avoid

dependency waiting by reassigning the necessary number of

PEs from EW for MatMul outputs generation. This results in

efficiently overlapped execution between these two kernels.

Both the PE assignment and the functionality switch are

performed by the controllers illustrated in Fig. 12.

D. The Overall η-LSTM Architecture

As shown in Fig. 13a, the η-LSTM accelerator groups

the Omni-PEs into channels for the parallelism enhancement

575

Channel Controller

Omni-PE

Omni-PE

Omni-PE

Actv
Module

Sigmoid
Unit

Tanh
Unit

● ● ●

32
Omni-

PEs

DRAM

Scratchpad

ŋ -LSTM Controller

DM
A Swing

Ch.
Swing

Ch. Ch.

Ch. Ch. Ch.

● ● ●

● ● ●

A

(a) (b)

Fig. 13: The overview of our η-LSTM architecture and the

micro-architecture diagram of Channel architecture.

Sparse
?

Compression
Module

WT Index
Queue

WT Data
Queue

I/O Interface

RD Index
Queue

Decoder
Module

RD Data
Queue

Sparse
?

Channel
Output

Channel
Input

Data
Request

Fig. 14: The Customized DMA Module

and the control complexity reduction. We expand the concept

of swinging individual PE’s functionalities in our runtime

resource allocation, to swing channels’ functionalities as a

group of PEs (i.e., swing channel design). Additionally, it also

includes a customized direct memory access (DMA) module,

a scratchpad and an η-LSTM controller (performing R2A

scheduler). The detailed designs are described as follows:

Channel Architecture: As Shown in Fig. 13b, one chan-

nel is composed of 32 Omni-PEs and a channel controller
which manipulates all PEs’ controllers within the channel.

The channel controller is also responsible for performing data

communication with the on-chip scratchpad. Note that for the

operation like outer-product, all the PEs could request the

same input data. To improve the data distribution efficiency,

we insert a broadcasting queue inside the channel controller

to provide data to all the PEs. Additionally, we apply an

activation module inside each channel for calculating the

activation functions, i.e., sigmoid (σ) and hyperbolic tangent

(tanh). To reduce the area overhead, the activation module

only contains one sigmoid unit and one hyperbolic tangent

unit for all the 32 Omni-PEs as the workloads of activation

operations are much lower than other operations in the LSTM.

We further adopt a lookup table design to avoid the complex

logic design for either the sigmoid (σ) or hyperbolic tangent

(tanh) unit.

Customized DMA Module: To enable the cell-level in-

termediate variables’ reduction and skipping execution for

insignificant BP cells, we customized our DMA module that

includes a data compression module and a decoder module.

When the DMA module receives data from the channels, it will

first identify the received data as dense or sparse; the dense

data will be sent to the WT data queue, and the sparse data

will be sent to the compression module to perform pruning

according to their value magnitudes. The compression module

TABLE I: Large LSTM Training Benchmarks.

Name Abbr. Hidden Size Layers Length

TREC-10 [35] QC 3072 2 18

PTB [26] LM 1536 4 35

IMDB [28] SA 2048 3 100

WAYMO [36] AD 1024 3 128

WMT [29], [37], [38] MT 1024 4 151

BABI [39] QA 1280 5 303

will output the important data and their indices to the WT

data queue and WT index queue, respectively. Finally, the

data in the WT data queue and WT index queue will be

stored either in the on-chip Scratchpad or off-chip DRAM via

the I/O interface. When the DMA module receives the data

requests from the channels, the dense data will be loaded via

I/O interface and stored into the RD data queue waiting to be

distributed by the η-LSTM controller. On the other hand, the

sparse data value and their indices will be stored in the RD

data queue and RD index queue, respectively. Note that the

sparse intermediate variables can help locate the unimportant

computation, providing the opportunities in further reducing

the data requests for involving dense variables. In order to

only load the data for important computation from the dense

variables, we introduce the decoder module using the index

information of the sparse operand to locate the corresponding

address of the operand. Finally, the operands in the RD data

queue will be sent to the channels for the training execution.

Scalability Discussion: Since our channel architecture sup-

ports SIMT execution (e.g., 1 channel supports 32 PEs)

and the explicit execution dependency between channels is

eliminated by our swing channel design, η-LSTM supports

highly parallel execution. Thus, by adding more channels, η-

LSTM can achieve linearly increasing throughput within the

constraints of thermal, power and area. Additionally, since

our co-design strategy enables both drastic intermediate data

reduction (software) and their fast consumption (hardware),

the memory cost is not required to linearly grow with the

number of channels. Thus, η-LSTM exhibits good design

scalability.

VI. EVALUATION

A. Experimental Methodology

Training Benchmarks: We employ six representative large

LSTM applications listed in the Table. I as our training

benchmarks. Each application has its unique LSTM model

configuration in terms of the hidden size (Hidden Size), layer

number (Layers), and layer length (Length). TREC-10 [35]

performs question segmentation (QC) that classifies the ques-

tions into 10 categories. PTB [26] represents Penn TreeBank,

which is widely used for word-level language modeling (LM).

IMDB [28] performs the sentiment analysis (SA) that predicts

the positive or negative attitude from texts. WAYMO [36] is a

commercial LSTM model to perform object tracking for au-

tonomous driving (AD). WMT [29] is a representative LSTM

model included in the MLperf benchmark [38] which performs

German-English machine translation (MT) [37]. BABI [39]

576

0x

2x

4x

6x

8x

TREC10 PTB IMDB WAYMO WMT BABI Ave

Sp
ee

du
p

Baseline MS1 MS2 Combine-MS LSTM-Inf Static-Arch Dyn-Arch

(a)

0

0.5

1

1.5

2

2.5

TREC10 PTB IMDB WAYMO WMT BABI AveN
or

m
al

ize
d

En
er

gy
 C

on
su

m
pt

io
n Baseline MS1 MS2 Combine-MS LSTM-Inf Static-Arch Dyn-Arch

(b)

Fig. 15: The (a) speedup and (b) normalized energy consump-

tion of η-LSTM design compared against other designs.

performs the question answering (QA) for automatic text

understanding and reasoning.

Environment Setup: The baseline and our software-level

optimizations for the LSTM training are implemented using

Pytorch [24], a popular open-sourced machine learning frame-

work that supports dynamic computation graphs on the state-

of-the-art GPUs. We conduct 32-bit floating-point LSTM train-

ing with a moderate batch size (i.e., 128) for our evaluation.

On the hardware side, we implement all the hardware design

optimizations discussed in Sec. V in Verilog and synthesized

on the Xilinx Vertex-UltraScale+ HBM VCU128 FPGA eval-

uation board [40]. The design is operated at 500MHz. For

the off-chip memory access evaluation, we adopt the HBM

IP interface [41] connected to the on-board external HBM

memory. The execution latency results are obtained from the

post-synthesis design, and the energy consumption is evaluated

using the Vivado Power Analysis [42] at the post-route level.

Note that there are hardware resource differences between the

NVIDIA GPUs and the FPGA board. For example, VCU128

only has an 8GB HBM memory while V100 has a 32GB

HBM with double bandwidth. To provide fair evaluation, we

implemented 40 channels on the VCU128 and set the HBM

bandwidth as 224GB/s, which provides nearly a quarter of

NVIDIA V100’s computational capability and memory re-

sources; and then we assemble our LSTM training accelerator

with four VCU128 boards for performing the LSTM training

(e.g., 1/4 training workload per board). We collect the latency

and energy consumption accordingly.

Comparison Cases: To evaluate the effectiveness of η-

LSTM, we compare it with the following design scenarios: (1)

Baseline: the state-of-the-art GPU accelerated LSTM training

execution; (2) MS1: our cell-level variables’ reduction op-

timization (Section IV-A) implemented on top of the state-

of-the-art GPU; (3) MS2: our BP cell computation reduc-

tion mechanism (Section IV-B) implemented on GPU; (4)

Combine-MS: our combined software-level memory-saving

optimizations from Sec. IV implemented on GPU; (5) LSTM-

0

1

2

3

TREC10 PTB IMDB WAYMO WMT BABI AveN
or

m
al

ize
d

En
er

gy

Ef
fic

ie
nc

y

Baseline LSTM-Inf Static-Arch Dyn-Arch

Fig. 16: The energy efficiency comparison across different

hardware design scenarios.

0
0.2
0.4
0.6
0.8

1

W
ei

gh
t M

at
ric

es
 D

M

0
0.2
0.4
0.6
0.8

1

Ac
tiv

at
io

n
Da

ta
 D

M

0
0.2
0.4
0.6
0.8

1

In
tm

d-
Va

ria
bl

e
DM

TREC10 PTB IMDB WAYMO WMT BABI

(a) (b) (c)

Fig. 17: The effectiveness of our memory-saving techniques

on the data movement reduction for (a) weight matrices, (b)

activation data, (c) intermediate variables.

Inf: state-of-the-art LSTM inference accelerator design [11];

(6) Static-Arch: the architectural design for LSTM training

with computational resources statically distributed across sev-

eral hardware modules for conducting different operations (the

distribution is based on the TREC10 configuration); and (7)

Dyn-Arch: our architectural design of η-LSTM with dynamic

resource allocation but without software-level memory-saving

optimizations.

B. Experimental Results

1) Effectiveness on Performance and Energy Consumption:
Fig. 15 illustrates the normalized performance and energy

consumption of our η-LSTM design compared with other de-

sign scenarios. We first evaluate the effectiveness of memory-

saving optimizations. From the figure, we observe our cell-

level variable reduction (MS1) achieves on average 1.21× (up

to 1.35×) speedup and saves 17.66% (up to 26.01%) energy,

i.e., 1.21× (up to 1.35× energy improvement), comparing

with the baseline case. Our BP cell computation reduction

(MS2) achieves on average 1.32× (up to 1.56×) speedup and

23% (up to 35.75%) energy saving, i.e., 1.30× (up to 1.56×)

energy improvement, comparing with the baseline case. We

observe that MS1 is more effective for LSTM training with

larger hidden size, and MS2 is more effective for the LSTM

training with larger layer length. This is because the LSTM

with large hidden size provides more opportunities for MS1 to

locate the trivial intra-cell variables, and more trivial BP cells

can be identified in the LSTM with a long layer length that

help achieve better performance and energy saving. Overall,

our optimizations achieve on average 1.56× (up to 1.79×)

speedup and 35.26% (up to 43.94%) energy saving, i.e.,

1.54× (up to 1.78×) energy improvement, comparing with

the baseline case.

We then evaluate the effectiveness of our architectural

design. From the figure, we observe that the LSTM-Inf on

average decreases the performance by 27.52% and incurs

76.56% additional energy cost. This is because LSTM-Inf

577

suffers from the resource-consuming PE design which results

in significantly lower throughput under the resource limitation.

Additionally, LSTM-Inf adopts a static computational resource

allocation scheme, which is based on the TREC10 dataset

in our experiment. This allocation strategy makes it hard

for LSTM-Inf to be efficient for different LSTMs. By using

Omni-PE in Static-Arch, the average performance is decreased

by 3.36% with 33.03% additional energy overhead over the

baseline. Although improved from LSTM-Inf, this still suffers

from the same static computational resource allocation issue

as that in LSTM-Inf. On the other hand, our Dyn-Arch design

outperforms the baseline case by 1.42× (up to 1.85×) on

performance and 9.5% (up to 33.66%) on energy saving, i.e.,

1.10× (up to 1.51×) energy improvement. We further compare

the energy efficiency among baseline, LSTM-Inf, Static-Arch,

and Dyn-Arch as shown in Fig. 16. From the figure, the energy

efficiency of LSTM-Inf is always lower than the baseline. The

energy efficiency of Static-Arch varies for different LSTM

benchmarks, and only when the LSTM workload matches the

on-chip resource distribution, the energy efficiency of Static-

Arch can outperform the baseline case. However, our Dyn-

Arch can always outperform the baseline case and achieve on

average 1.67× (up to 2.69×) energy efficiency.

Finally, our η-LSTM takes the advantages of both the

software and hardware optimizations, and outperforms the

baseline case by 3.99× (up to 5.73×) on speedup and 63.70%
(up to 76.48%) on energy saving, i.e., 2.75× (up to 4.25×)

energy improvement.

2) Effectiveness on Data Movement Reduction: Fig. 17

shows the effectiveness of our memory-saving optimizations

on the data movement reduction. From the figure, we observe

that MS1 on average reduces the data movement of weight

matrices and intermediate variables by 31.79% and 60.27%,

respectively. But MS1 has no impact on reducing the activation

data movement. The MS2 on average reduces the data move-

ment of weight matrices, activation data, and intermediate

variables by 24.67%, 32.89%, and 49.34%, respectively. The

MS1 outperforms MS2 on data movement for weight matrices

and intermediate variables, but MS2 provides unique opportu-

nity of deducting the activation data movement. Overall, these

two optimizations can reduce the data movement involved in

the LSTM training from different levels (i.e., cell-level and

layer-level). Our η-LSTM outperforms the baseline case by on

average 40.85%, 32.89% and 80.04% on the data movement

reduction for weight matrices, activation data and intermediate

variables, respectively.

3) Effectiveness on Memory Footprint Reduction: We then

evaluate the effectiveness of our memory-saving optimizations

on the memory footprint reduction. As shown in Fig. 18,

all our optimizations efficiently reduce memory footprint.

Specifically, the MS1 and MS2 achieve on average 32.37%
(up to 39.09%) and 41.65% (up to 61.68%) memory footprint

reduction, respectively. Overall, our integrated memory-saving

optimizations achieve on average 57.52% (up to 75.75%)

reduction in memory footprint.

0
0.2
0.4
0.6
0.8

1
1.2

Ba
se

lin
e

M
S1

M
S2

Ba
se

lin
e

M
S1

M
S2

Ba
se

lin
e

M
S1

M
S2

Ba
se

lin
e

M
S1

M
S2

Ba
se

lin
e

M
S1

M
S2

Ba
se

lin
e

M
S1

M
S2M

em
or

y
Fo

ot
pr

in
t Weight Matrices Activation Data

IMDB WAYMO BABI

Fig. 18: The effectiveness of our memory-saving techniques

on the memory-footprint reduction.

TABLE II: Accuracy Impact
TREC10 PTB IMDB WAYMO WMT BABI

Baseline 78.82% 217.19 PPL 76.78% 0.138 MAE 3.13 BLEU 68.75%

Combined-MS 78.80% 218.36 PPL 76.78% 0.138 MAE 3.13 BLEU 68.69%

PPL: Perplexity (Lower is Better);

MAE: Mean Absolute Error (Lower is Better);

BLEU: BiLingual Evaluation Understudy (Higher is Better)

4) Accuracy Impact: Note that our memory-saving op-

timizations perform approximate computing. Therefore, we

conduct the accuracy analysis in terms of the convergence

speed and the final accuracy difference. We find that the

convergence speed is not affected for all our LSTM bench-

marks. This is because the neural network training exhibits

superior ability for tolerating noise and small changes, and

more importantly, we adopt the convergence speed aware

scaling for our BP cell skipping technique that compensates

the negative impact on the convergence speed. As illustrated by

Table. II, our memory-saving optimizations only incur < 1%
accuracy difference compared to the baseline case.

5) Analysis on Adder-Based Accumulator Design: We com-

pare our adder-based accumulator design with the Xilinx accu-

mulator IP [34]. As the results demonstrated by Table. III, we

first observe that our design saves 43.61% LUT and 37.25%
FF compared with the Xilinx IP design. Besides, our design

reduces the energy consumption by 17% compared with Xilinx

IP design. This is because the Xilinx IP targets translating the

32-bit floating-point accumulation into 64-bit fixed-point ac-

cumulation, thus consuming more logic resources and causing

more dynamic power overhead. Finally, we observe that the

Xilinx IP exhibits lower latency compared with our design.

However, since we are targeting the large LSTM training, the

streaming input for accumulation is long. Our design only

causes < 2.87% latency overhead for conducting accumulation

with more than 1024 streaming inputs. Note that we already

include this latency overhead in our overall evaluation.

VII. RELATED WORKS

Neural Network Acceleration: There have been massive

numbers of studies focusing on the acceleration of the NN

workload [43]–[48]. For example, Procrustes [49] exploits the

sparsity in the CNN training and conducts the customized ac-

celerator design. TensorDash [50] also designs an accelerator

for sparse CNN training with a smart workload distribution

for the dynamic variable sparsity. However, the LSTM training

exhibits significantly different execution pattern from the CNN

578

TABLE III: The comparison between the Xilinx accumulator

IP and our adder-based accumulator design.

Utilization Dynamic Power (W) Latency

(Cycle)LUT FF Clock Signal Logic Total

Xilinx IP 821 969 0.026 0.031 0.043 0.1 20

Our Design 463 608 0.014 0.039 0.03 0.083 50

training, the previous works can hardly reduce the intermediate

variable size.

There are also several studies that focus on exploiting

the software and architectural co-designs for accelerating the

LSTM inference execution [11]–[13], [17], [51], [52]. For

example, ESE [11] and DeltaRNN [12] compress the weight

matrices and propose accelerator designs to improve the in-

ference performance. Since the massive intermediate variable

movement is caused by the unique features of LSTM train-

ing processing, these LSTM inference works fail to address

this challenge. Additionally, the static computational resource

allocation employed in these accelerator designs causes inef-

ficient logic utilization to memory-saving optimizations that

decreases the overall performance.

Memory Footprint Reduction: Several studies have ex-

plored trading the memory footprint reduction with the

re-computation [14]–[16], [21]. For example, SmartEx-

change [21] proposes to encode the weight matrices into

a small format and decode once they are loaded on-chip.

However, there is very limited opportunity to compress or

encode the FW intermediate variable involved in the LSTM

training as discussed in Section IV-A. On the other hand,

Echo [16] proposes to store partial intermediate variable

for attention layer during the FW processing and perform

the re-computing based on partial variables to generate the

entire variables. However, the LSTM training exhibits different

computation pattern that the generated intermediate variables

are independent with each other, hence, Echo can hardly be

applied for LSTM training.

VIII. CONCLUSION

To enable a highly-efficient LSTM training solution for

the ever-growing model size, we propose the first cross-stack

training solution, η-LSTM, for large LSTM models. η-LSTM
comprises both software-level and hardware-level innovations

that effectively lower the memory footprint upper-bound and

excessive data movements during large LSTM training, while

also drastically improving training performance and energy

efficiency. Experimental results on six real-world large LSTM

training benchmarks demonstrate that η-LSTM significantly

reduces the memory-footprint and the data movement for the

LSTM training. Furthermore, it outperforms the state-of-the-

art GPU implementation for LSTM training on performance

and energy efficiency.

REFERENCES

[1] A. Girma, X. Yan, and A. Homaifar, “Driver Identification Based
on Vehicle Telematics Data using LSTM-Recurrent Neural Network,”
in 2019 IEEE 31st International Conference on Tools with Artificial
Intelligence (ICTAI), pp. 894–902, IEEE, 2019.

[2] S. H. Park, B. Kim, C. M. Kang, C. C. Chung, and J. W. Choi,
“Sequence-to-Sequence Prediction of Vehicle Trajectory via LSTM
Encoder-Decoder Architecture,” in 2018 IEEE Intelligent Vehicles Sym-
posium (IV), pp. 1672–1678, IEEE, 2018.

[3] S. Ghosh, O. Vinyals, B. Strope, S. Roy, T. Dean, and L. Heck,
“Contextual LSTM (CLSTM) Models for Large Scale NLP Tasks,” arXiv
preprint arXiv:1602.06291, 2016.

[4] Z. Huang, W. Xu, and K. Yu, “Bidirectional LSTM-CRF Models for
Sequence Tagging,” arXiv preprint arXiv:1508.01991, 2015.

[5] N. Tax, I. Verenich, M. La Rosa, and M. Dumas, “Predictive Business
Process Monitoring with LSTM Neural Networks,” in International
Conference on Advanced Information Systems Engineering, pp. 477–
492, Springer, 2017.

[6] R. Jia and P. Liang, “Data recombination for neural semantic parsing,”
arXiv preprint arXiv:1606.03622, 2016.

[7] M. Z. Islam, M. M. Islam, and A. Asraf, “A Combined Deep CNN-
LSTM Network for The Detection of Novel Coronavirus (COVID-
19) using X-Ray Images,” Informatics in Medicine Unlocked, vol. 20,
p. 100412, 2020.

[8] S. Polyzos, A. Samitas, and A. E. Spyridou, “Tourism Demand and
The COVID-19 Pandemic: An LSTM Approach,” Tourism Recreation
Research, pp. 1–13, 2020.

[9] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed,
and H. Arshad, “State-of-The-Art in Artificial Neural Network Appli-
cations: A Survey,” Heliyon, vol. 4, no. 11, p. e00938, 2018.

[10] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A
Survey of Deep Neural Network Architectures and Their Applications,”
Neurocomputing, vol. 234, pp. 11–26, 2017.

[11] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao,
Y. Wang, et al., “ESE: Efficient Speech Recognition Engine with Sparse
LSTM on FPGA,” in Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pp. 75–84, 2017.

[12] C. Gao, D. Neil, E. Ceolini, S.-C. Liu, and T. Delbruck, “DeltaRNN:
A Power-Efficient Recurrent Neural Network Accelerator,” in Pro-
ceedings of the 2018 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp. 21–30, 2018.

[13] S. Wang, Z. Li, C. Ding, B. Yuan, Q. Qiu, Y. Wang, and Y. Liang,
“C-LSTM: Enabling Efficient LSTM using Structured Compression
Techniques on FPGAs,” in Proceedings of the 2018 ACM/SIGDA Inter-
national Symposium on Field-Programmable Gate Arrays, pp. 11–20,
2018.

[14] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W. Keckler,
“vDNN: Virtualized Deep Neural Networks for Scalable, Memory-
Efficient Neural Network Design,” in 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pp. 1–13,
IEEE, 2016.

[15] L. Wang, J. Ye, Y. Zhao, W. Wu, A. Li, S. L. Song, Z. Xu, and T. Kraska,
“SuperNeurons: Dynamic GPU Memory Management for Training Deep
Neural Networks,” in Proceedings of the 23rd ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, pp. 41–53,
2018.

[16] B. Zheng, N. Vijaykumar, and G. Pekhimenko, “Echo: Compiler-
Based GPU Memory Footprint Reduction for LSTM RNN Training,”
in 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), pp. 1089–1102, IEEE, 2020.

[17] S. Wang, P. Lin, R. Hu, H. Wang, J. He, Q. Huang, and S. Chang,
“Acceleration of LSTM with Structured Pruning Method on FPGA,”
IEEE Access, vol. 7, pp. 62930–62937, 2019.

[18] A. Sherstinsky, “Fundamentals of Recurrent Neural network (Rnn) and
Long Short-Term Memory (LSTM) Network,” Physica D: Nonlinear
Phenomena, vol. 404, p. 132306, 2020.

[19] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A Filter Level Pruning Method
for Deep Neural Network Compression,” in Proceedings of the IEEE
international conference on computer vision, pp. 5058–5066, 2017.

[20] K. Ullrich, E. Meeds, and M. Welling, “Soft Weight-Sharing for Neural
Network Compression,” arXiv preprint arXiv:1702.04008, 2017.

[21] Y. Zhao, X. Chen, Y. Wang, C. Li, H. You, Y. Fu, Y. Xie, Z. Wang, and
Y. Lin, “SmartExchange: Trading Higher-Cost Memory Storage/Access
for Lower-Cost Computation,” arXiv preprint arXiv:2005.03403, 2020.

[22] “NVIDIA TURING GPU ARCHITECTURE.” https://www.nvidia.
com/content/dam/en-zz/Solutions/design-visualization/technologies/
turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf.

579

[23] “NVIDIA TESLA V100 GPU ARCHITECTURE.” https://images.
nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.
pdf.

[24] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., “Pytorch: An Im-
perative Style, High-Performance Deep Learning Library,” in Advances
in neural information processing systems, pp. 8026–8037, 2019.

[25] N. V. Profiler, “User’s guide, 2014.”
[26] M. Marcus, G. Kim, M. A. Marcinkiewicz, R. MacIntyre, A. Bies,

M. Ferguson, K. Katz, and B. Schasberger, “The Penn Treebank:
Annotating Predicate Argument Structure,” in HUMAN LANGUAGE
TECHNOLOGY: Proceedings of a Workshop held at Plainsboro, New
Jersey, March 8-11, 1994, 1994.

[27] Y. Yu, X. Si, C. Hu, and J. Zhang, “A Review of Recurrent Neural Net-
works: LSTM Cells and Network Architectures,” Neural computation,
vol. 31, no. 7, pp. 1235–1270, 2019.

[28] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,
“Learning Word Vectors for Sentiment Analysis,” in Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, (Portland, Oregon, USA), pp. 142–150,
Association for Computational Linguistics, June 2011.

[29] M. Johnson, M. Schuster, Q. V. Le, M. Krikun, Y. Wu, Z. Chen, N. Tho-
rat, F. Viégas, M. Wattenberg, G. Corrado, et al., “Google’s Multilingual
Neural Machine Translation System: Enabling Zero-Shot Translation,”
Transactions of the Association for Computational Linguistics, vol. 5,
pp. 339–351, 2017.

[30] S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber, et al., “Gradient
Flow in Recurrent Nets: The Difficulty of Learning Long-Term Depen-
dencies,” A field guide to dynamical recurrent neural networks. IEEE
Press, 2001.

[31] D. A. Palmer and M. Florea, “Neural Processing Unit,” Feb. 18 2014.
US Patent 8,655,815.

[32] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural Acceler-
ation for General-Purpose Approximate Programs,” in 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 449–460,
IEEE, 2012.

[33] F. Silfa, G. Dot, J.-M. Arnau, and A. Gonzalez, “E-PUR: An Energy-
Efficient Processing Unit for Recurrent Neural Networks,” in Proceed-
ings of the 27th International Conference on Parallel Architectures and
Compilation Techniques, pp. 1–12, 2018.

[34] “Accumulator v12.0 LogiCORE IP Product Guide (PG119) - Xil-
inx.” https://www.xilinx.com/support/documentation/ip documentation/
accum/v12 0/pg119-c-accum.pdf.

[35] E. M. Voorhees and D. M. Tice, “Building A Question Answering
Test Collection,” in Proceedings of the 23rd annual international ACM
SIGIR conference on Research and development in information retrieval,
pp. 200–207, 2000.

[36] Z. Gu, Z. Li, X. Di, and R. Shi, “An LSTM-Based Autonomous Driving
Model Using a Waymo Open Dataset,” Applied Sciences, vol. 10, no. 6,
p. 2046, 2020.

[37] M.-T. Luong and C. D. Manning, “Achieving Open Vocabulary Neu-
ral Machine Translation with Hybrid Word-Character Models,” arXiv
preprint arXiv:1604.00788, 2016.

[43] C. Zhang, G. Yuan, W. Niu, J. Tian, S. Jin, D. Zhuang, Z. Jiang, Y. Wang,
B. Ren, S. L. Song, et al., “ClickTrain: Efficient and Accurate End-to-
End Deep Learning Training via Fine-Grained Architecture-Preserving
Pruning,” in The 35th ACM International Conference on Supercomputing
(ICS 2021), 2021.

[38] P. Mattson, C. Cheng, G. Diamos, C. Coleman, P. Micikevicius, D. Pat-
terson, H. Tang, G.-Y. Wei, P. Bailis, V. Bittorf, et al., “MLPerf Training
Benchmark,” Proceedings of Machine Learning and Systems, vol. 2,
pp. 336–349, 2020.

[39] J. Weston, A. Bordes, S. Chopra, A. M. Rush, B. van Merriënboer,
A. Joulin, and T. Mikolov, “Towards AI-Complete Question Answering:
A Set of Prerequisite Toy Tasks,” arXiv preprint arXiv:1502.05698,
2015.

[40] M. Wissolik, D. Zacher, A. Torza, and B. Da, “Virtex UltraScale+
HBM FPGA: A Revolutionary Increase in Memory Performance,” Xilinx
Whitepaper, 2017.

[41] “AXI High Bandwidth Memory Controller v1.0 Product Guide (v1.0).”
https://www.xilinx.com/support/documentation/ip documentation/hbm/
v1 0/pg276-axi-hbm.pdf.

[42] T. Feist, “Vivado Design Suite,” White Paper, vol. 5, p. 30, 2012.
[44] X. Zhang, X. Fu, D. Zhuang, C. Xie, and S. L. Song, “Enabling Highly

Efficient Capsule Networks Processing Through Software-Hardware Co-
Design,” IEEE Trans. Computers, vol. 70, no. 4, pp. 495–510, 2021.

[45] X. Zhang, S. L. Song, C. Xie, J. Wang, W. Zhang, and X. Fu,
“Enabling Highly Efficient Capsule Networks Processing Through A
PIM-Based Architecture Design,” in IEEE International Symposium on
High Performance Computer Architecture, HPCA 2020, San Diego, CA,
USA, February 22-26, 2020, pp. 542–555, IEEE, 2020.

[46] A. Li, T. Geng, T. Wang, M. C. Herbordt, S. L. Song, and K. J. Barker,
“BSTC: a novel binarized-soft-tensor-core design for accelerating bit-
based approximated neural nets,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC 2019, Denver, Colorado, USA, November 17-19, 2019
(M. Taufer, P. Balaji, and A. J. Peña, eds.), pp. 38:1–38:30, ACM, 2019.

[47] S. Jin, G. Li, S. L. Song, and D. Tao, “A novel memory-efficient deep
learning training framework via error-bounded lossy compression,” in
PPoPP ’21: 26th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, Virtual Event, Republic of Korea, February 27-
March 3, 2021 (J. Lee and E. Petrank, eds.), pp. 485–487, ACM, 2021.

[48] T. Geng, T. Wang, C. Wu, C. Yang, S. L. Song, A. Li, and M. C.
Herbordt, “LP-BNN: Ultra-low-Latency BNN Inference with Layer
Parallelism,” in 30th IEEE International Conference on Application-
specific Systems, Architectures and Processors, ASAP 2019, New York,
NY, USA, July 15-17, 2019, pp. 9–16, IEEE, 2019.

[49] D. Yang, A. Ghasemazar, X. Ren, M. Golub, G. Lemieux, and M. Lis,
“Procrustes: a Dataflow and Accelerator for Sparse Deep Neural Net-
work Training,” in 2020 53rd Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), pp. 711–724, IEEE, 2020.

[50] M. Mahmoud, I. Edo, A. H. Zadeh, O. M. Awad, G. Pekhimenko,
J. Albericio, and A. Moshovos, “TensorDash: Exploiting Sparsity to
Accelerate Deep Neural Network Training,” in 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pp. 781–795, IEEE, 2020.

[51] Y. Guan, Z. Yuan, G. Sun, and J. Cong, “FPGA-Based Accelerator
for Long Short-Term Memory Recurrent Neural Networks,” in 2017
22nd Asia and South Pacific Design Automation Conference (ASP-DAC),
pp. 629–634, IEEE, 2017.

[52] X. Zhang, C. Xie, J. Wang, W. Zhang, and X. Fu, “Towards Memory
Friendly Long-Short Term Memory Networks (LSTMs) on Mobile
GPUs,” in 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 162–174, IEEE, 2018.

580

