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Abstract— As the complexity of FPGA-based systems scales,
the importance of efficiently handling irregular code increases.
Recent work has proposed Irregular Code Energy Reduc-
ers (ICERs), a high-level synthesis approach for FPGAs that
offers significant energy reduction for irregular code compared
to a soft core processor. ICERs target the hot-spots of programs,
and are seamlessly connected via a shared L1 cache with a
soft processor that executes the cold code. This paper evaluates
the application of the selective depipelining (SDP) technique to
ICERs, which greatly reduces both the execution time and energy
of irregular computations.

SDP enables irregular computations to be expressed as large,
fast, low-power combinational blocks. SDP maintains high mem-
ory bandwidth by scheduling the many potentially dependent
memory operations within these blocks onto a high-frequency,
highly-multiplexed coherent memory while scheduling combina-
tional operations at a much lower frequency. SDP is a key enabler
for improving the execution properties of irregular computations
that are difficult to parallelize. We show that applying SDP to
ICERs reduces energy-delay by 2.62× relative to ICERs. ICERs
with SDP are up to 2.38× faster than a soft core processor and
reduce energy consumption by up to 15.83× for a variety of
irregular applications.

I. INTRODUCTION

FPGAs now play host to increasingly large-scale systems
with complex and varied behaviors. To manage complexity,
many designers are turning toward high-level synthesis (HLS)
tools, which allow them to specify system behavior in a high-
level language. A common approach incorporates application-
specific hardware to execute the highly-parallel regions of
code, coupled with a soft processor core to handle the re-
maining code. Although existing HLS tools can target highly
structured, parallel code for acceleration, most are ill-suited for
the remaining irregular, difficult-to-parallelize code. However,
as systems continue to scale, the execution of the non-parallel
regions on soft cores limits the efficiency of the system as a
whole. Recent work [26], [20], [1] attained energy savings by
converting even irregular code regions into specialized circuits.

One such approach [1] improves the energy efficiency
of soft-core-based systems by converting hot regions of
large, irregular C programs into a collection of energy-saving
application-specialized coprocessors called Irregular Code En-
ergy Reducers, or ICERs. Execution jumps between hot code,
which runs on the ICERs, and cold code, which runs on the
soft core. In both cases, memory operations are performed
through a shared L1 cache, which eliminates the need for
pointer analysis and enables high code coverage.

Although ICERs were able to achieve up to 9.5× savings
in energy for targeted code at approximately the same level
of performance, the energy and performance were limited by

a fundamental tension. For low energy and high performance
on non-memory operations, we would like large, low-power
combinational blocks that chain together many operators with
few registers and a slow clock. For high performance on
memory operations, we would like an ultra-fast clock that can
multiplex many memory operations onto a shared, pipelined,
L1 cache. The ICER compromise was to pipeline the combi-
national portions of the circuit to bring its frequency up to the
speed of the L1. At the same time, the L1 was run unpipelined
in order to reduce complexity for cache miss handling. This
led to less-than-optimal energy and performance for three key
reasons: First, the interface to the memory system limited
the window for exploiting instruction-level parallelism (ILP).
Second, ICERs did not directly attack the large fraction of
dynamic power consumed by the clock tree. Third, ICERs
require many pipeline registers to make the circuit meet timing
at the higher frequency: Although FPGA register resources are
plentiful, unrestrained usage drives up energy overheads.

This paper addresses the three key limitations of ICERs
by applying a technique called selective depipelining, or
SDP, originally developed for patchable, ASIC-based copro-
cessors [20]. SDP converts each basic block in a program
into a single macro operator and removes many pipeline
registers entirely while retaining fast, highly-pipelined access
to the L1 for memory operations. Synchronization between the
pipelined and unpipelined portions of the circuits is enforced
statically through the use of large numbers of automatically-
generated multicycle path assertions for the CAD tools. This
reduces clock power, increases memory parallelism, and ex-
tracts greater ILP. SDP scales to produce macro operators
that can be very large: For the applications we examine, the
macro operators cover up to 77 sub-operations including 23
memory requests. By applying this technique to ICERs, we
can construct application-specific coprocessors that efficiently
target large bodies of code with little parallelism and irregular
memory behavior.

Compared to a soft core, selectively depipelined ICERs, or
SDP-ICERs, improve, on average, performance by 2.0× and
energy-delay product by 16.46× for targeted functions. When
including the program regions that run on the soft processor,
average application performance improves by 1.79× and ap-
plication energy-delay product by 9.79×.

The rest of the paper is organized as follows. Section II
provides an overview of ICER-based systems and context
for selective depipelining. Section III describes SDP and its
application to ICERs. Section IV evaluates the benefits of
ICERs enhanced with SDP. Finally, Section V reviews related
work, and Section VI concludes.
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Fig. 1. ICER-based system architecture In an ICER-based system, a soft
core processor controls one or more ICERs and executes any code not mapped
into ICERs. The soft core and ICERs communicate primarily through the
shared L1 cache. A narrow tree network carries control signals and provides
the soft core access to each ICER’s internal state.

II. ICER ARCHITECTURE OVERVIEW

To understand the impact of SDP, we first introduce the
baseline ICER architecture to which SDP will be applied.
ICERs are FPGA-based coprocessors generated by an au-
tomated toolchain [1] from the source code for frequently-
executed regions of an application. Each ICER comprises
a datapath and control unit. To construct the datapath, the
toolchain converts each static operator in the input program
into a dedicated functional unit. Dependencies between oper-
ators are converted into wires between these functional units.
Registers distributed throughout the datapath store data needed
across clock cycles. The control unit directs execution in the
datapath and consists of a set of distributed state machines.
These state machines correspond very closely to the control
flow graph (CFG) of the original program to allow ICERs to
precisely replicate the semantics of the soft core execution
of the code. ICERs improve on soft core energy efficiency
by eliminating many of the overheads present in conventional
processor pipelines, including instruction fetch/decode, regis-
ter file accesses, and generalized bypass networks.

Figure 1 shows a block diagram of a system built around
a soft core and several ICERs. The soft core executes code
not mapped into ICERs and handles dispatch to and from the
ICERs. When program execution reaches a region covered by
an ICER, the soft core transfers execution to the ICER and
sleeps, waiting for the ICER to finish. ICERs target difficult-
to-parallelize codes with difficult-to-analyze memory accesses.
For these computations, coherent caches and a single shared
address space are a sensible memory solution. Additionally,
the cache serves as the on-chip communication mechanism
among ICERs and with the soft core, avoiding the energy costs
of off-chip communication through main memory.

Two key aspects of the ICER architecture are its integration
with the soft core, and its compatibility with the soft core’s
view of memory. ICER memory operations complete in origi-
nal program order, and ICERs stall during cache misses. Since
the ICERs and soft core operate coherently on the same in-
memory data, the system can fall back to running the code on
the soft core at any time. This allows designers to port systems
to smaller fabrics and eases debugging efforts. In addition to

the shared data cache, the soft core also connects directly to
the ICERs via a pipelined tree network. Every internal register
in an ICER has an address in the tree. The soft core issues
read and write commands to the tree to initialize ICERs and
to retrieve state and restart them when handling exceptions.

III. SELECTIVE DEPIPELINING

We enhance FPGA-based ICERs by applying selective
depipelining, a technique originally developed for patchable,
ASIC-based coprocessors [20]. SDP increases operator effi-
ciency and reduces memory interface and clocking overheads.
SDP is a pipelining scheme that improves performance and
reduces datapath energy consumption in non-pipeline-parallel
code, such as the irregular computations that ICERs target.
SDP selectively eliminates pipeline registers from the datapath
in order to reduce clock power and increase opportunities for
combinational logic optimization. The technique works for
blocks with many, potentially dependent, operations, and maps
readily to both the FPGA environment and the ICER architec-
ture. We call ICERs incorporating this technique selectively
depipelined ICERs, or SDP-ICERs.

Selective depipelining takes advantage of the fact that
memory and datapath sub-operations within a macro operation
have different needs. As chip resources continue to scale,
spatial computation [14] techniques that replicate datapath
operators become progressively cheaper to apply. However,
irregular computations continue to demand a centralized mem-
ory interface. SDP runs memory operations in a pipelined
fashion synchronized to the frequency of the nearest level
of memory while operating the datapath at a much lower
frequency corresponding to one logical clock tick per basic
block. Using separate logical clock frequencies effectively
replicates the memory interface in time, while the datapath
runs at a slower clock rate and without the overheads of
pipeline registers present solely to synchronize the datapath
and memory system on every clock cycle.

For every basic block in a program’s CFG, SDP generates a
macro operator. Then, it generates a control unit that operates
on the memory clock (fast clock) and generates the pulsed
datapath clock (slow clock) on each basic block transition. For
each macro operator, there is one control state, which is further
subdivided into fast states corresponding to fast-clock cycles.
The number of fast states in a given control state is based on
the number of memory operations in the macro operator and
the latency of the critical combinational path through the sub-
operations. This means that different basic blocks operate at
different slow clock frequencies.

The execution of a macro operator begins with a slow clock
pulse from the control unit. One macro operator executes
for each pulse. During a slow clock cycle, only the control
path and the currently-executing basic block are active. The
pulse latches live-out data values from the previous macro
operator and applies them as live-ins to the current macro
operator. When the macro operator comprising the basic block
completes, it triggers the next pulse of the slow clock and the
execution of the next basic block.

During the execution of a macro operator, the control
unit passes through fast states in sequence. Some fast states
correspond to memory operations. Unlike datapath operators,
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Fig. 2. An example of selective depipelining (SDP) This diagram shows
the ICER datapath for an example while loop. Under SDP, the highlighted
registers are removed from the datapath, saving energy. Circuit performance
is maintained through multicycle constraints.

which are scheduled according to combinational delay, SDP
schedules memory accesses with respect to the fast clock for
pipelining.

Pipelined loads and stores occur in two phases: request
and response. When the datapath generates a new request, it
sends it to the memory hierarchy and continues performing
other operations in parallel. In each fast cycle, the datapath
can both issue and retire operations at the width of the
memory interface. SDP handles dependent memory operations
by forcing memory operations to complete in order, but
multiple outstanding requests can be in flight at any time. In
the response phase, the control unit waits as needed for a load
value or store confirmation. Fast clock registers save loaded
values for use by dependent sub-operations. These are the only
registers within a macro operator.

SDP example Figure 2 illustrates SDP over one basic block
from an example while loop. The datapath contains arithmetic
operators and load/store units for individual operations from
the original program. The datapath can take multiple fast
cycles to settle during one slow clock cycle, while memory
operations proceed according to the fast clock.

As seen in the figure, SDP saves energy and resources by
completely eliminating registers. This can be more effective
than merely clock gating registers when not in use, because
the clock accounts for a significant portion of dynamic power,
and SDP completely eliminates some leaves from the clock
tree. Spatial computation in the datapath eliminates the need
for registers to time multiplex datapath operators and opens
up opportunities for more aggressive combinational logic
optimizations within the datapath.

By incorporating SDP, SDP-ICERs offer substantial im-
provements over ICERs. First, the focus of previous ICER
work [1] was energy reduction, but SDP allows SDP-ICERs
to both reduce energy and provide speedup for irregular code
offloaded from the soft core. Second, the original ICER data-
paths could contain at most one memory operation per control
block, forcing basic blocks with multiple memory operations
to be split. SDP-ICERs, on the other hand, can contain macro
operators for arbitrary basic blocks, even those with multiple
dependent memory operations. Using SDP, our toolchain built

SDP-ICERs containing macro operations encompassing up
to 77 operators including 23 memory requests. Below, we
describe the toolchain and the synthesis process.

A. Building SDP-ICERs using SDP
We have integrated SDP into the ICER toolchain. Given a

target code base, the toolchain first profiles the application
and selects frequently-executed regions of code to convert
into SDP-ICERs. The toolchain applies SDP and generates
synthesizeable Verilog for the target regions. It also generates
interface code that the application uses to access the new
hardware.
Clocking Both our L1 data cache and all of our SDP-ICERs
can run at 130 MHz or faster, whereas the soft core can only
achieve 80 MHz on our target platform. In contrast to [20],
which uses the processor clock as the fast clock, SDP-ICERs
use the L1 data cache clock, while the soft core runs on its
own clock. For simplicity, we clock both the L1 data cache
and the SDP-ICERs at the frequency of the slowest SDP-ICER
when any SDP-ICER is in operation, and downclock the L1
data cache to 80 MHz when the soft core is running. Without
SDP, the slowest ICERs could only synthesize to 80 MHz, and
share the clock with the soft core.

Many paths in a macro operator are purely combinational,
and need only to complete within the minimum execution time,
in fast cycles, that the toolchain assigns to the basic block.
However, sub-operations that access memory are more con-
strained. The inputs to memory sub-operations must be ready
sufficiently in advance of the fast clock boundary to issue the
operations synchronously. Our toolchain enumerates all such
multicycle constraints and propagates them to synthesis.
Memory SDP provides SDP-ICERs with in-order comple-
tion of memory requests that allows SDP-ICERs, like ICERs,
to enforce the memory ordering semantics that imperative
programming languages require. To reduce complexity and
save power, SDP-ICERs issue and receive at most one memory
operation per cycle, but they take advantage of the pipelined
SDP memory interface to the L1 cache to support memory
parallelism and improved performance.
Long-latency operations Some sub-operations in a macro
operator, like memory requests, have long or variable latencies.
In our implementation, these include integer division and
floating point operations. SDP-ICERs handle these operations
similarly to memory requests: The macro operator stalls in
a specific fast state until it receives a valid signal from the
corresponding functional unit.
Scheduling There are three key elements to scheduling
for macro operators: estimating the length of the critical
path through the entire macro operator, assigning memory
operations to particular fast states, and enumerating all of the
multicycle paths within the macro operator’s datapath. If the
constraint estimates closely match actual timing, then the CAD
tools can more heavily optimize for power without sacrificing
performance.

Non-memory sub-operators in an SDP-ICER chain together,
which complicates the estimation of delay through any given
sub-operator: Depending on the sequence of sub-operations,
bit-level parallelism may allow the incremental cost of a given
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Workload Description # Coverage Freq. # Slices Slice Regs. Clk. Energy DSPs
SDP-ICERs (%) (MHz) Slices vs. ICERs vs. ICERS vs. ICERs

b-tree [5] Search tree traversal 1 86 231 1308 -14% -13% -36% 0
bzip2 [23] Data compression algorithm 1 73 143 6172 -23% -33% -42% 0
grapht [5] Sparse graph depth-first traversal 1 98 201 998 -18% -18% -28% 3
mcf [23] Single-depot vehicle scheduling 2 42 193 3239 -11% -9% -31% 0
radix [28] Sorting algorithm 1 94 130 3934 -15% -24% -51% 5
viterbi [7] Convolutional code decoder 1 99 176 4583 -10% -31% -52% 0

TABLE I
WORKLOAD DATA ARE SHOWN FOR SEVEN SDP-ICERS REACHING FREQUENCIES OF 130 MHZ OR GREATER FOR SIX IRREGULAR APPLICATIONS.

sub-operation to be much less than its delay in isolation. The
operation scheduler approximates delay reductions due to bit-
level parallelism through a pre-computed lookup table of all
sequences of two dependent sub-operators.

To determine how many fast states a control state will
contain, and to schedule memory operations into particular fast
states, an operation scheduler first estimates the completion
time of each sub-operator under a contention-free resource
model to determine criticality. The operation scheduler then
assigns memory operations to the earliest fast states in which
their inputs will be ready. Since SDP-ICERs issue up to one
memory request per fast cycle, multiple memory operations
ready in the same fast state are scheduled by criticality. The
schedule produced assumes all memory operations will hit in
the L1 cache.

IV. EVALUATING THE IMPACT OF SDP

In this section we describe our methodology and workloads,
and we evaluate the impact of SDP on SDP-ICER efficiency,
performance, and energy-delay product (EDP).

Synthesis, simulation, and power measurement The
SDP-ICER toolchain relies on the OpenIMPACT (1.0rc4) [16]
and LLVM (2.4) [10] compiler infrastructures. It converts
arbitrary C programs into synthesizeable Verilog and modules
for our cycle-accurate simulator. The toolchain uses Synopsys
Synplify (D-2010.03) for synthesis and the Xilinx toolflow
to translate, map, and place and route the SDP-ICER Verilog
onto the Virtex 5 family of FPGAs. The specific device used
is xc5vlx110t-ff1136-3.

Like previous ICER work, we use an energy-efficient,
pipelined MIPS processor derived from the MIT Raw [13]
processor as our soft core. The soft core operates within 20%
of the dynamic power of a resource-equivalent MicroBlaze,
with better instruction throughput. We use the cycle-accurate
simulator modules produced by the toolchain to measure SDP-
ICER performance compared to the soft core. We use traces
from the simulator to measure power by periodically sampling
execution, recording all SDP-ICER control and memory inter-
actions. We then generate a Verilog test harness to drive the
SDP-ICER in the Synopsys VCS (C-2009.06) logic simulator.
This produces an activity file which is used together with the
post-place-and-route designs to measure power consumption
with the Xilinx XPower tool. A similar process generates
power numbers for the soft core using samples from portions
of software execution.

Benchmarks We used our toolchain to automatically gen-
erate seven SDP-ICERs for six applications. Table I describes
each benchmark and shows the following: the fraction of

dynamic execution covered by SDP-ICERs, the minimum
achievable frequency across all SDP-ICERs that the applica-
tion uses, and the FPGA resources each set of SDP-ICERs
requires. Even the SDP-ICERs with the longest critical paths
can run at significantly higher frequencies than the soft core.
For all applications, our automated toolchain achieved at least
42% execution coverage, and 82% on average.
Results Table I shows how SDP reduces resource usage
compared to ICERs. SDP reduces register counts by up to
33%, eliminating many leaves from the clock tree. SDP
improves the average frequency of ICERs by 32%, and all run
at 130 MHz or higher. Clock energy is reduced by up to 52%.
An additional benefit of removing registers is that it improves
logic optimizations across operators, further increasing energy
improvements.

Figure 3 shows the EDP improvement (a-b), speedup (c-
d), and energy breakdown (e-f) for ICERs and SDP-ICERs,
normalized to running the code entirely on the soft core.
Figure 3(a) shows that SDP-ICERs improve EDP by up to
34.76× (16.46× on average) for the specific code that they
target. Figure 3(b) shows results that include the rest of the
application, which runs on the soft core; even here, the SDP-
ICERs improve EDP by 9.79× on average. EDP improvement
for an application is largely dependent on execution coverage:
The more time spent running on the SDP-ICERs, the greater
the speedup and lower the energy.

EDP improvement comes from faster execution and reduced
energy. Figure 3(c) shows that whereas ICERs maintain per-
formance of the soft core, SDP-ICERs achieve a 2.0× speedup
on average. SDP enables a faster clock frequency, greater
memory parallelism, and more compact scheduling, producing
significant speedups while saving clock energy by removing
registers.

Finally, Figures 3(e-f) show a breakdown of energy use
in the system. For the soft core, ICERs, and SDP-ICERs
alike (Figure 3(f)), clock is the largest contributor to energy.
However, with SDP, even though SDP-ICERs run at a faster
frequency than ICERs, the savings from register removal and
decreased run-time allow SDP-ICERs to reduce clock energy
relative to ICERs.

V. RELATED WORK

In this section we discuss trends in other high-level synthesis
frameworks and techniques related to selective depipelining.
We also review other efforts that augment a general-purpose
processor with coprocessors on a reconfigurable fabric.
High-level synthesis High-level synthesis is a very active
area featuring a wide variety of commercial tools [6]. Op-
timization of multi-cycle operations is an ongoing research
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Fig. 3. Benefits of applying selective depipelining to ICERs SDP-ICERs offer energy-delay improvement (a-b, higher is better), speedup (c-d, higher is
better), and energy reduction (e-f, lower is better) over both ICERs and a soft core for targeted functions (a,c,e) and whole applications (b,d,f). All results are
normalized to running entirely on the soft core. Clock power is the single largest energy component, and SDP-ICERs save considerable energy over ICERs
by using SDP to eliminate registers.

topic in high-level synthesis, including techniques to reduce
resource utilization in special cases, such as [15]; these tech-
niques are synergistic with our approach and can be applied
during the synthesis stage.

Frameworks such as AutoESL [30], Impulse C [8], Synop-
sys Synphony/PICO [19], CHiMPS [18], and Altera C2H [11]
build accelerators directly from high-level language source
code. Creating high-performance accelerators with minimal
effort has been the primary goal for most of these tools.
Because they must either infer parallel execution from serial
code or force the programmer to rewrite code in a more
explicitly-parallel language or dialect [24], they tend to face
the same challenges as parallelizing compilers. To overcome
these challenges, a common tradeoff in existing tools is to

compromise on the classes of codes amenable to automation
and backward compatibility with the processor. In contrast,
SDP allows coprocessors to achieve both energy savings and
acceleration even for codes that are difficult to parallelize.
We have applied SDP to an automated toolchain that targets
arbitrary code and produces drop-in replacement hardware.

Selective depipelining SDP [20] is one of many tech-
niques that manipulate operators and registers to create macro
operators and expose bit-level parallelism between datapath
operations. Retiming [12] techniques are common back-end
optimizations in FPGA synthesis tools that move registers
across combinational logic to optimize timing. SDP differs
in both goals and implementation. SDP uses compiler-level
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information to maximize throughput to a highly-multiplexed
memory while minimizing energy in the combinational por-
tions of the circuit. It reduces clock tree energy by completely
eliminating many registers. SDP works within the context of
existing synthesis tools, and requires only support for multi-
cycle paths. SDP is related to microarchitecture techniques
to reduce communication for transient operands, allowing
processors to construct complex operations from simple oper-
ations [21], as well as macro-op scheduling [9], which trans-
forms a series of instructions into a multi-cycle scheduling
unit. Other related techniques reduce register file accesses [17]
or perform architectural retiming [22]. Rather than increasing
operator size, the work in [27] proposed increasing pipelining
to reduce glitching power. However, in our experiments, clock
tree power was the dominant component, so removing registers
was more profitable than reducing glitch behavior.

In many of these techniques, memory operations are not in-
cluded in the macro operations, and operators are rescheduled
across just one or two cycles. SDP works more aggressively
by eliminating many of the pipeline registers between many
dependent datapath components, which directly reduces clock
energy. SDP can construct macro operators with dozens of sub-
operations, including multiple, dependent memory operations.
Compared to other techniques, SDP is a particularly good
fit for the ICER architecture and an FPGA platform because
it can be automatically applied to irregular computations, is
compatible with caching, and directly addresses both memory
timing and clock energy overheads. Furthermore, SDP leaves
memory to run fully pipelined by applying chaining only to
arithmetic operators.
Reconfigurable substrates Many previous projects, such
as GARP [4] and Chimaera [29], have examined the benefits
of augmenting a general-purpose processor with accelerators
built in a reconfigurable fabric. In contrast to the application
of instruction-set extensions [2] to FPGA soft cores [3], SDP-
ICERs move much larger regions of code into low-power,
high-performance custom logic while minimizing communi-
cation with the soft core itself. The work on Warp [25]
examines optimizations for on-the-fly synthesis by performing
dynamic translation of binaries into reconfigurable hardware.
However, Warp employs an additional soft core to run the
high-performance synthesis. The implications of mapping en-
tire programs onto a large hierarchical asynchronous reconfig-
urable fabric have been examined in Tartan [14]. Recent work
on ICERs [1] creates energy-efficient specialized processors
for irregular applications. Whereas ICERs offered little perfor-
mance improvement, SDP allows SDP-ICERs to both reduce
energy and provide significant speed-up for irregular codes.

VI. CONCLUSION

We have evaluated applying the SDP technique to ICERs to
improve both the energy efficiency and performance of irregu-
lar programs. SDP-ICERs provide a 2.62× EDP improvement
over ICERs for targeted code. Relative to a soft core, SDP-
ICERs improve the EDP of whole applications by 9.79×.
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