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Abstract

Many recent parallelization tools lower the barrier for parallelizing
a program, but overlook one of the first questions that a program-
mer needs to answer: which parts of the program should I spend
time parallelizing?

This paper examines Kremlin, an automatic tool that, given a
serial version of a program, will make recommendations to the
user as to what regions (e.g. loops or functions) of the program to
attack first. Kremlin introduces a novel hierarchical critical path
analysis and develops a new metric for estimating the potential
of parallelizing a region: self-parallelism. We further introduce the
concept of a parallelism planner, which provides a ranked order of
specific regions to the programmer that are likely to have the largest
performance impact when parallelized. Kremlin supports multiple
planner personalities, which allow the planner to more effectively
target a particular programming environment or class of machine.

We demonstrate the effectiveness of one such personality, an
OpenMP planner, by comparing versions of programs that are par-
allelized according to Kremlin’s plan against third-party manually
parallelized versions. The results show that Kremlin’s OpenMP
planner is highly effective, producing plans whose performance is
typically comparable to, and sometimes much better than, manual
parallelization. At the same time, these plans would require that the
user parallelize significantly fewer regions of the program.

Categories and Subject Descriptors D.2.2 [Software Engineer-
ing]: Design Tools and Techniques; D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programming

General Terms Measurement, Performance

Keywords Hierarchical Critical Path Analysis, Self-Parallelism,
Parallelism Planner, Parallel Software Engineering

1. Introduction

The emergence of multicore processors has profoundly impacted
the way in which future software performance gains will be
achieved. In order to take advantage of the resources available in
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Figure 1. A Taxonomy of Parallelization Tools. The taxonomy
categorizes parallelization tools based on which of five fundamen-
tal parallelization stages they assist with. Automatically paralleliz-
ing compilers like Polaris [7] and SUIF [12] attempt to perform
all five without programmer assistance, while tools like OpenMP,
Cilk++ [27], and X10 [33] focus on the last two. The paper’s tool,
Kremlin, targets the first two stages.

multicore processors, existing sequential software will need to be
refactored for parallel execution.

The task of parallelizing software has proved to be extremely
difficult. To address this difficulty, recent mainstream tools have
largely emphasized the ease of expressing parallelism; language ex-
tensions such as OpenMP and Cilk++ [27] have greatly reduced the
effort involved in expressing opportunities for parallel execution in
a program. Other tools guide the programmer in debugging perfor-
mance or correctness problems in their parallelized code [4, 14, 35].
While these tools increase the efficiency of parallel programmers,
there is still a need to assist the earlier stages of parallelization,
where programmers must decide how to transform a serial program.
The programmer requires new tools for these earlier stages of paral-
lelization that will complement existing tools and form a complete
toolflow for parallelization.

This paper examines Kremlin, a new tool that, given a serial
version of a program, answers the question: which parts of the
program should I parallelize first?

This question is not altogether unlike the question that gprof
attempts to answer for serial programs: which parts of the program
should I try to optimize first? In this paper, we rethink the design
of a gprof-like tool that applies to the parallelization of serial pro-



grams rather than their serial optimization. Although the motiva-
tion, goals, and user interface are quite similar to gprof, we find
that pursuing parallelism requires a new approach that is quite dif-
ferent, and leads to a tool whose underlying architecture is a total
reboot, as it were, of the underlying architecture of a serial perfor-
mance profiler like gprof.

A Taxonomy of Parallelization Stages To explain Kremlin’s role
in the spectrum of parallelization tools, we introduce a taxonomy
that describes the basic stages involved in parallelizing a program.
Figure 1 shows this taxonomy. Parallelization begins with Paral-
lelism Discovery, which is the process of identifying regions of a
program that have exploitable parallelism. Locating these regions
of the program is especially onerous for large, complex programs
or when—as is often the case—the parallel programmer is not the
original author of the program. The next stage, Parallelism Plan-
ning, determines which subset of these regions should be paral-
lelized. Ideally, this plan would factor in important constraints such
as the number of cores available and the system’s ability to support
different types of parallelism. The third step is Enabling Trans-
forms. These are source-level transformations that the user per-
forms in order to enhance the parallelizability of the code used
in subsequent stages. The parallelization process concludes with
the final two steps of Parallel Code Generation, where parallel or
threaded code is generated, and Runtime Management, where a run-
time system tries to optimize the efficiency of parallel execution.

As shown in Figure 1, automatic parallelizing compilers such as
Polaris [7], RawCC [26], and SUIF [12] seek to automate all of the
stages in the parallelization taxonomy. Although they eliminate the
need for manual intervention, the performance of code generated
by these compilers often pales in comparison with code generated
manually. This lack of performance stems from the difficulty of
many of these steps; in many cases, the compiler cannot effectively
perform them without the benefit of runtime information or without
otherwise unsound semantic changes by the user. While additional
information could potentially improve performance, accomplishing
this integration has proven a difficult problem. Without this addi-
tional input, parallelizing compilers have an all-or-nothing feel: the
compiler either does all of the work or none of it.

An alternative to the fully-automated approach is to separate the
parallelization process into the stages shown in Figure 1 and make
use of parallel programming tools to automate as much of the work
as possible. These tools would relieve most of the burden on the
programmer and allow them to focus on the Enabling Transforms
stage where automated tools are most limited1. Recent tools such
as OpenMP, Cilk++ [27], X10 [33], and Fast Track [17] exemplify
how user-centered tools can improve the productivity of parallel
programmers. These tools provide extensions to standardized lan-
guages that allow a programmer to explicitly specify parallel re-
gions and synchronization points, automatically handling the final
two stages of parallelization. However, by the time a programmer
can utilize these tools, they must have already performed the initial
stages of parallelization without assistance.

Kremlin We have developed Kremlin to aid programmers in both
the parallelism discovery and parallelism planning stages of par-
allelization. Kremlin’s parallelism discovery phase utilizes criti-
cal path analysis [23], or CPA, to quantify the amount of innate
parallelism that exists in a piece of code. Kremlin extends tra-
ditional critical path analysis by automatically incorporating the
nested structure of the program’s regions (e.g. loops and functions)
into its analysis. Kremlin’s hierarchical critical path analysis, or
HCPA, performs critical path analysis across many nested regions

1 Nonetheless, some researchers have developed tools which help perform
specific refactoring tasks in the Enabling Transforms stage [10, 40].

in a program. By comparing the amount of parallelism that exists
in each parent region to the amount that exists in its children, we
are able to localize parallelism to specific regions of the program,
revealing the amount of parallelism in each code region.

To accomplish this, Kremlin introduces a new metric, self-
parallelism, which given a parent region, can factor out the par-
allelism of subregions, much like gprof’s self-time metric factors
out the time spent in subregions. Our results show that HCPA is
highly effective in identifying those code regions that are prime
candidates for parallelization.

In addition to its support for parallelism discovery, Kremlin per-
forms parallelism planning by incorporating hierarchical data from
parallelism discovery as well as additional constraints. The plan-
ner supports the concept of planning personalities, which incorpo-
rates the impact of parallelization system (e.g. OpenMP) and ma-
chine properties. As an example of one such personality, Kremlin
includes an OpenMP planner which has been validated on a multi-
core system with 32 cores.

Our results, acquired by applying Kremlin to serial versions of
the NAS Parallel Benchmark Suite [6], and all of the C-language
Spec OMP2001 [2] benchmarks, show that our approach is quite
effective. Kremlin’s recommendations, which required no manual
intervention, and relied only on information extracted from the se-
rial version of the program, comprise only 3.0% of the original pro-
grams’ region count. Comparing to a 3rd-party parallelized version,
Kremlin required 1.57× fewer regions to be parallelized. In cases
where the recommended parallelization plan was similar, Kremlin’s
performance averaged within 3.8% of manual parallelization, close
enough that applying the saved time to serial optimization would
likely produce a better outcome. In cases where Kremlin’s plan was
significantly different, Kremlin’s plan exceeded the manual plan’s
performance by 85%.

To summarize, this paper makes the following contributions:

• We introduce the technique of hierarchical critical path analy-
sis. Traditional critical path analysis techniques are unable to
localize parallelism to specific code regions, which is a funda-
mental limitation that prevents its widespread use in practical
end-programmer tools. Unlike dependence-testing approaches
that focus on loop bodies, HCPA allows parallelism in serial
program regions to be identified even if the program’s current
form (e.g. loop nesting structure) does not expose it, which can
reveal opportunities where non-intuitive code restructuring can
yield large benefits.

• We introduce a new metric, self-parallelism, which is the criti-
cal step in extending CPA to HCPA. Self-parallelism is able to
quantify the parallelism of a parent region independent of its
children. We show that high self-parallelism is well-correlated
with achieving real parallel speedup. This metric is analogous
to self-time in the gprof profiling tool.

• We develop the concept of a parallelism planner as a key step
in the manual parallelization process; that is to say, because
of the complexity of the task, we believe profilers for parallel
programming should not only provide self-parallelism, work,
and other information about program regions but also combine
these factors with Amdahl’s Law and target system properties
to estimate which regions are worth pursuing.

• We introduce the concept of planning personalities that tai-
lor the planning process based on the target system and lan-
guage. We describe in detail one such personality, a planner
for a multicore processor using OpenMP. Combined with par-
allelism planners, this is a practical way of bridging the gap be-
tween abstract CPA analysis and realistic constraints of today’s
execution environments.



• We demonstrate Kremlin’s OpenMP planner’s ability to pro-
duce concise plans whose performance is typically comparable
to—and sometimes far exceeds—manual parallelization that
required many trial-and-error iterations and was able to take
advantage of post-parallelization measurements. At the same
time, these plans would require that the user parallelize signifi-
cantly fewer regions of the program.

The rest of this paper is organized as follows. Section 2 mo-
tivates the need for improved parallelism discovery and planning
tools, and formalizes these concepts. Section 3 presents a high-level
overview of Kremlin. Sections 4 and 5 describe the implementation
of the profiling and planning aspects of Kremlin. Section 6 demon-
strates the capabilities of Kremlin in identifying parallelism as well
as creating an effective parallelization plan. Related work is de-
tailed in Section 7, and Section 8 concludes.

2. Examining Parallelism Discovery and Planning

In this section we will first motivate the need for tools that discover
and plan for parallelism. We then discuss the challenge of quanti-
fying parallelism in specific parts of a program. Finally, we define
the problem of parallelism planning informally and then formally.

2.1 Motivation

Despite recent research into parallel programming tools, many pro-
grammers still rely on a relatively painful methodology that em-
ploys serial profiling tools such as gprof in order to direct their
parallelization activities. The process starts with a serial hotspot
list, which ranks regions by the amount of time spent inside them.
This list effectively becomes the order that they examine the func-
tions to improve their performance.

It is at this point that the process gets especially onerous. The
programmer starts leafing through the code trying to puzzle through
the dependencies in the code, and the granularity at which to try
to exploit it. Since the programmer has no indication of whether
a hotspot is parallelizable, they frequently give up before they are
able to recognize subtle but large parallelism opportunities, or they
spend excessive amounts of time fruitlessly modifying serial parts
of the code. Alternatively, even if parallelism does exist, it may not
be large enough to yield speedup, or when combined with lower
coverage, the overall speedup may not justify the effort. Finally,
interference between nested parallel regions may prevent speedup.

Our experience watching graduate students struggle to paral-
lelize serial code led us to realize that the inability to quantify paral-
lelism in these program regions was indirectly responsible for large
amounts of wasted time. To our surprise, providing them with a
tool that quantifies parallelism was not quite enough. Rather, paral-
lelization also requires planning tools that help process this infor-
mation and apply both parallel programming system and machine
constraints. With the ability to positively identify the existence of
parallelism, and also to prioritize regions, users can invest their time
more productively, attacking the correct portions of the program.

2.2 Quantifying Parallelism

Amdahl’s Law provides guidance to the programmer by defining
the basic relationship between parallelizability and speedup. Ac-
cording to this law, two factors directly impact speedup: the per-
centage of time spent in a section of code and the amount of paral-
lelism within that code. While gprof and similar tools offer ready-
made solutions for determining the work coverage, quantifying par-
allelism requires additional tools and techniques.

Promise of Critical Path Analysis Approaches One promising
approach for quantifying parallelism is to use a critical path analy-
sis [23], or CPA. CPA is a dynamic analysis that finds the string of

for(i=win..rows -win) {
for(j=win..cols -win) {

currLambda = lambda[i][j];
...
for(k=0.. nFeatures) {

if(features [2][k] < currLambda) {
...
features [0][k] = j;
features [1][k] = i;
features [2][k] = currLambda;

}
} } }

Figure 2. Localizing Parallelism. In this nested loop from the
fillFeatures function in feature tracking, only the innermost loop
(over k) is parallel. Traditional CPA would erroneously report par-
allelism in the outer loops because they contain the innermost.

dependencies that forms a lower bound on the execution time (the
critical path) of a piece of code. The critical path in turn creates
an approximate upper bound on the parallelism available, with the
ideal parallel implementation performing all non-critical operations
in parallel with the critical path operations. The work and critical
path define the average amount of parallelism available according
to the equation p = work/lengthcp. We refer to parallelism cal-
culated with this equation as the total-parallelism.

The basic premise behind Kremlin and other parallelism discov-
ery tools that employ critical path analysis [5, 21–23] is to evaluate
the application’s potential for parallelization under relatively opti-
mistic assumptions based on observation of the program’s dynamic
execution. Most parallelizing compilers, in contrast, must take rel-
atively pessimistic views because they are responsible for guaran-
teeing correctness. For example, parallelizing compilers may not
be able to prove that two pointers do not alias, while a critical path
analysis will at least report that it did not observe such dependen-
cies in the actual execution of the program. The basic idea is to
elevate to the user awareness of the at least circumstantial evidence
of parallelism in the program, so that users can apply their under-
standing of the real application constraints (as opposed to what is
encoded in program source) and refactor to exploit the parallelism.

Critical Path Analysis’s Inability to Localize Parallelism Unfor-
tunately, traditional critical path analysis has not found widespread
use as a parallelism quantification tool for parallel programmers
because it has one important limitation: it cannot localize the par-
allelism to a particular level of the nested hierarchy of a program’s
regions. This limitation is illustrated by a code snippet from the fea-
ture tracking benchmark from the San Diego Vision Benchmark
Suite [20], shown in Figure 2. In this example, only the innermost
loop is parallel. Traditional CPA would only detect that parallelism
exists somewhere among the three loops, not just the innermost.

Localizing Parallelism to Specific Regions Kremlin avoids the
aforementioned limitation through two novel contributions: hier-
archical critical path analysis and a new metric, self-parallelism.
Hierarchical critical path analysis calculates the amount of paral-
lelism within every nested region in a program. Self-parallelism
uses this hierarchical data to factor out the parallelism contributed
by a region’s subregions, much like gprof’s self-time metric fac-
tors out the time spent in a region’s subregions. These two features
combine to help Kremlin localize parallelism to specific regions of
a program. Section 4 will define and explore them more formally.

What Is a Region? Kremlin uses the concept of a region to
denote a region of code whose parallelism is to be measured from
the time that region is entered until the time it is exited. In order
for the self-parallelism metric to work, regions must obey a proper
nesting structure: regions must not partially overlap, but they may
nest or be siblings with the same parent region. Based on this



nesting structure, we can define a dynamic region graph which
shows the relationship between parent and children regions in the
dynamic execution of the program.

Although more arbitrary delineations of regions are possible,
Kremlin places regions around all loops and functions, since they
tend to correspond well to constructs that users understand well and
relate more directly to the process of parallelization.

2.3 Creating a Parallelism Plan

Informally, parallelism planning is the problem of producing a se-
quence of program regions for the programmer to parallelize, or-
dered according to their expected impact on program execution.
While the self-parallelism and self-time metrics improve our abil-
ity to create an effective parallelism plan, factors outside of work
coverage and parallelism will also impact planning. One such con-
straint is the risk of over-parallelizing the program: since parallel
execution often incurs some overhead in terms of work and/or re-
source contention, expressing more parallelism than there are cores
available to exploit can result in slowdown. For instance, we found
that in OpenMP, on our experimental setup, it was seldom profitable
to parallelize a child region of a region that had already been paral-
lelized. Another constraint is that synchronization and data move-
ment costs in the system often affect the smallest parallel region
that can attain speedup.

We now formally define the problem of parallelism planning so
that we may later solve it algorithmically. Let RP be the set of
parallelizable regions in a program P . A parallelism plan creates
an ordering on this set such that the relation defining the ordering,
<, is true for A < B if A should be parallelized before B.

A set of constraints, C, will help to define the ordering on
RP . Examples of these constraints range from architecture-specific
constraints (e.g. the number of cores available), to language-
specific constraints (e.g. inability to express pipeline parallelism
in OpenMP), and even human factors (e.g. the desire to achieve
large speedups as soon as possible). These constraints are com-
bined to form a personality for the planner. A planner personality
may range from detailed (e.g. fine-grained parallelism on a 100-
core Tilera machine) to general (e.g. coarse-grained parallelism),
depending on the goal of the user; detailed planners will have better
performance on targeted systems while broader personalities will
have more robust performance across a broader range of machines.

2.4 Limitations of Kremlin and Other Profile-Based Tools

Needless to say, Kremlin is naturally affected by the same limi-
tations that apply to other profiling tools, like gprof, that make
use of dynamic information that is input-dependent and does not
necessarily predict the program’s execution with other inputs. Our
experience in varying inputs suggests that in many cases, the addi-
tional information gained by dynamic analysis outweighs the draw-
backs. Further, Kremlin supports aggregation of data from multiple
runs, which reduces these risks. Another limitation is that Krem-
lin cannot predict the enhanced parallelism that might be attained
by changing algorithms, although a report of low parallelism may
surprise the user into realizing they need a more parallel algorithm.

CPA-based tools can also be limited by unnecessary dependen-
cies that are still true dependencies. Although no tool can handle
all such cases, Kremlin handles many common cases by breaking
such dependencies via induction and reduction variable analysis.

3. Kremlin Overview

In this section, we overview Kremlin’s user interface and its high-
level system architecture. As shown in Figures 3 and 4, Kremlin
takes in unmodified source code and produces an instrumented bi-
nary. The user executes this binary as they would the uninstru-
mented program. This binary produces a parallelism profile that

$> make CC=kremlin-cc
$> ./tracking data
$> kremlin tracking --personality=openmp

File (lines) Self-P Cov.(%)
1 imageBlur.c (49-58) 145.3 9.7
2 imageBlur.c (37-45) 145.3 8.7
3 getInterpPatch.c (26-35) 25.3 8.86
4 calcSobel dX.c (59-68) 126.2 8.1
5 calcSobel dX.c (46-55) 126.2 8.1
... ... ... ...

Figure 3. Kremlin’s User Interface. After compiling and exe-
cuting the program, Kremlin produces an ordered parallelism plan
based on the selected planner personality. Regions are ordered by
their estimated program speedup. In addition to location, Kremlin
displays the average amount of region-specific parallelism (self-
parallelism) and the execution coverage. Results shown are for the
feature tracking benchmark [20].

Kremlin’s parallelism planner uses, along with the specified plan-
ner personality, to produce a parallelism plan.

Figure 3 also shows the parallelism plan for the feature tracking
benchmark as it would be displayed to the user. The plan presents
an ordered list of regions for the programmer to parallelize along
with the self-parallelism and work coverage of those regions.
Kremlin sorts the list according to decreasing whole-program po-
tential speedup. The list contains only those regions that are ex-
pected to meet a minimum speedup threshold; the programmer can
expect to obtain nearly all the performance benefits possible if they
parallelize all the regions in the list.

Once the programmer has the plan, the basic usage model is that
they visit these regions of code in the specified order and determine
how to expose the underlying parallelism that was detected by
Kremlin. In the event that the user is unable or unwilling to exploit
the parallelism in a region, they can rerun the planner with a list of
excluded regions and receive an updated plan. The results in this
paper were generated without using the exclusion list feature.

Having explained the user’s view of the tool, we now examine
the Kremlin System Architecture, shown in Figure 4.

Static Instrumentation Kremlin’s discovery components are
split into two instrumentation steps: critical path instrumentation
and region instrumentation. The first step helps quantify parallelism
via critical path analysis while the second step helps uncover the
program’s structure and localize parallelism to specific regions.

Both stages of the discovery phase utilize LLVM’s [25] static
instrumentation infrastructure. Static instrumentation has two im-
portant benefits over dynamic instrumentation. First, it allows for
a deeper analysis of the program since the full program source
is available. In our experience, tasks such as identifying induction
variables, reduction variables, and region boundaries are challeng-
ing in dynamic infrastructures such as Valgrind [30] but are easy
when performed statically. Second, by statically inserting instru-
mentation, Kremlin can heavily optimize the code to produce a
more efficient instrumented binary. This helps to lower the over-
head associated with the heavyweight analysis infrastructure re-
quired for hierarchical critical path analysis. Kremlin performs this
optimization after instrumentation occurs so that it does not taint
the analysis.

During the critical path and region instrumentation stages,
Kremlin inserts calls to instrumentation functions that calculate
the critical paths of the program and track region entries and ex-
its. These instrumentation functions are implemented inside the
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Figure 4. Overview of Kremlin System Architecture. Starting
with a program’s source code, Kremlin statically instruments the
code to insert the proper profiling code and extract the region struc-
ture (i.e. region graph) from the program. Running the instrumented
binary produces a parallelism profile for each of the program re-
gions. Combined with the region graph, the parallelism profile is
used by the parallelism planner to provide the user with a specific
list of regions to parallelize (the parallelism plan).

KremLib library. Section 4 provides more details on Kremlin’s
hierarchical critical path analysis.

Linking and Execution Kremlin next links in the KremLib in-
strumentation library to produce the instrumented binary. When
run, the instrumented binary also produces a parallelism profile out-
put file in addition to its normal outputs that contains parallelism
information for each dynamic instance of a program region. Since
regions in a program may be executed many times, Kremlin per-
forms an online, dictionary-based compression to greatly reduce
the size of the parallelism profile.

Kremlin Planner With the parallelism profile and region graph
produced by the discovery phase, Kremlin can begin to create an
effective plan to utilize the parallelism in the program. To begin,
Kremlin combines the profile data with the region graph informa-
tion to calculate, among other things, the self-parallelism and work
metrics for regions in the program, as described in Section 4.3.

After calculating the self-parallelism for each region, Kremlin
designs an ordered plan for the programmer that describes which
regions should be parallelized. Kremlin uses both coverage and
self-parallelism to estimate the speedup associated with paralleliz-
ing specific regions, using this speedup information to order the
regions. Kremlin uses planning personalities that incorporate both
target- (e.g. OpenMP) and machine-specific parameters in order to
improve accuracy; detailed discussion resides in Section 5.

4. Parallelism Discovery

As we discussed earlier, traditional critical path analysis is poor
at localizing parallelism to specific code regions. The following
subsections describe how Kremlin performs an enhanced form of
analysis, hierarchical critical path analysis, and how our new self-
parallelism metric is calculated. They also describe a compression
technique that reduces the resource requirements of the system.

4.1 Critical Path Analysis

This section describes aspects of hierarchical critical path analy-
sis, including how Kremlin calculates critical path lengths using
shadow memory and how it handles both false dependencies and
control dependencies.

Calculating Critical Path Length With Shadow Memory Critical
path analysis calculates parallelism by quantifying both the amount
of work done and the minimum time needed to do that work (i.e. the

cp
i cp

i
...

cp(R) = n * cpi
cp

i

cp
i

...

cp(R) = cpi

SP (SERIAL) = 
n * cpi

n * cpi

= 1 SP (PAR) = 
n * cpi

cpi
= n

Figure 5. Examples Demonstrating Self-Parallelism (SP) Met-
ric. SP identifies the parallelism local to a region by relating its
critical path to the sum of its children’s critical paths and its self-
work. Shown in the example are SP calculations for two regions;
one whose children must execute serially, and one whose children
can execute in parallel.

length of the critical path). The ratio of work to critical path length
indicates the average number of instructions that can be executed
in parallel in the ideal case. Kremlin efficiently determines both of
these values through the use of shadow memory [30, 45].

Kremlin’s shadow memory infrastructure works by tracking the
earliest possible time that a value stored in a memory location can
be calculated. This “availability time” is a function of the longest
string of operations required to calculate that value. Kremlin calcu-
lates the availability time of each operation by looking up the times
of all instructions it depends upon, finding the maximum value,
and then adding the operation’s latency. Kremlin tracks true data
and control dependencies but factors out false dependencies such
as anti and output dependencies.

Kremlin utilizes two techniques to limit the overhead associated
with shadow memory: dynamic allocation of shadow memory and
shadow register tables for local variables. Dynamic shadow mem-
ory allocation is enabled by the use of a two-level table that equally
splits the whole address space. Kremlin allocates table entries only
when they are needed, utilizing calls to malloc and free as sig-
nals of the need to allocate or deallocate. Kremlin uses directly
addressable shadow register tables for all local variables. This re-
duces access time for the common case of reading from local rather
than global variables.

Resolving False and Easy-to-Break Dependencies A major chal-
lenge for any critical path analysis infrastructure is to mitigate the
effects of false and easy-to-break dependencies. Many of these
false dependencies, such as unnecessary reuse of a variable, are
eliminated by the use of SSA form in LLVM’s IR. However, the
easy-to-break dependencies associated with induction and reduc-
tion variables are more challenging. These types of dependencies
can create the false impression of seriality in an otherwise parallel
region. Kremlin statically identifies these dependencies and breaks
them by using a special shadow memory update rule that ignores
the dependency on their old value.

Managing Control Dependencies Kremlin performs static con-
trol dependence analysis to identify which values a basic block is
control dependent upon. Unfortunately, static analysis cannot fully
resolve all control dependencies. Kremlin handles control depen-
dencies through the use of a control dependence stack similar to
one proposed in [42]. Kremlin pushes a dependency onto the con-
trol stack at the beginning of a control dependent region, popping it
off when exiting that region. Availability times in the control stack
can only increase. Therefore, Kremlin incorporates control depen-
dencies by checking only the top of the stack.



4.2 Hierarchical Shadow Memory

Hierarchical analysis introduces a new requirement to the shadow
memory infrastructure described earlier: we must run separate criti-
cal path analyses across each nested dynamic region, and thus must
effectively maintain many versions of the shadow memory. When
we enter a new region, for the purposes of that region, we start at
time = 0, work = 0, ignoring any dependencies that the parent
region is aware of and is tracking. As we execute instructions in
the program, we update the dependency times in the shadow mem-
ory and the work count for each active region. When we exit a new
region, we record a summery of a dynamic region. This summary
contains the static region ID, the total work in the region, and the
critical path length.

To implement shadow memory for the evolving set of dynam-
ically nested regions as the program runs, each location in the
shadow memory and register tables is associated with a set of avail-
ability times rather than just one. This set expands when a region is
entered and shrinks when a region is exited.

Kremlin optimizes hierarchical shadow memory performance
by maintaining a fixed-sized array of shadow data for every mem-
ory location. Kremlin assigns a region to a slot based on its depth
in the region graph. For instance, the main function (the root in the
graph) might occupy slot 0, while its children will use slot 1, and
so on. A command line flag can vary the range of region depths that
are collected, facilitating parallel data collection for the HCPA.

This assignment method leads to multiple regions at the same
depth being mapped to the same slot—although they will never use
it at the same time—and therefore Kremlin must provide a mecha-
nism to avoid data reuse across region boundaries. Kremlin solves
this problem by assigning a unique ID to every region instance
and tagging every shadow memory write with the ID of the writer.
Kremlin compares the tag with the ID of readers, discarding the
data if there is a mismatch and assuming time 0 instead.

4.3 Self-Parallelism

Kremlin incorporates both the parallelism information and the
program’s structure to calculate a region’s self-parallelism. Self-
parallelism factors out the parallelism that comes from subregions
to determine the amount of parallelism specific to a region.

Kremlin uses the following equation to determine SP (R), the
self-parallelism of a region R:

SP (R) =

∑n

k=1
cp(child(R, k)) + SW (R)

cp(R)
(1)

where n is the number of children of R, child(R, k) is the kth child
of R, and cp() is the critical path length of the region. SW (R)
represents the amount of work that is performed exclusively in
region R (i.e. self-work) and is calculated by the equation:

SW (R) = work(R)−

n∑

k=1

work(child(R, k)) (2)

Self-parallelism factors out the children’s parallelism by sum-
ming the critical path lengths of the children rather than their work,
thereby eliminating the parallelism that would otherwise come
from the children. Self-parallelism adds work exclusive to the re-
gion to capture any remaining parallelism outside of the children.

The self-parallelism metric also allows Kremlin to estimate
the speedup from parallelizing a region, R. If the execution time
of a R is ET (R), then the execution time after the region is
parallelized will be bounded by ET (R)/SP (R). This lower bound
on execution time of a parallelized region is used by the planner
when determining which regions will bring the largest speedup.

To illuminate the effectiveness of self-parallelism, we will ex-
amine the self-parallelism in two cases, shown in Figure 5: a region

with n children that can execute in parallel, and a region where all
n children must execute serially due to dependencies. For simplic-
ity, we assume that parent regions have no self work and that all
children have the same measured critical path length, cpi.

For the parallel region, its measured critical path will be equal
to a single child (i.e. cp(R) = cpi). Thus, the computed self-
parallelism, will be n∗cpi

cpi
= n; this is as expected because its

parallelism is equal to the number of children. Now consider a
parent whose child regions must be executed completely serially. In
this case, the measured cp(R) will be equal to n∗cpi and therefore
the computed self-parallelism will be

n∗cpavg

n∗cpavg
= 1; again, this is

expected because it cannot overlap execution of the regions.
In addition to resolving simple cases like these, the SP heuris-

tic also computes reasonable upper-bounds estimates on self-
parallelism for cases where there is self-work in the parent node,
and where there are dependencies between child regions that allow
partial overlap in execution.

4.4 Compressed Representation

Performing whole-program shadow memory tracing and region
analysis is nominally a compute- and memory- intensive endeavor.
In order to manage both execution time and storage requirements,
Kremlin employs a novel compressed trace representation that en-
ables the planning algorithm to operate on the data without actually
decompressing it (analogous to [36] but in a different domain). In
this subsection, we describe our implementation and quantify its
benefits.

Runtime Compression Technique Kremlin produces a paral-
lelism profile for each dynamic region that is executed. The number
of regions is based on the program structure – deeply nested loops
can lead to a large number of regions – and the input to the instru-
mented program and can quickly grow to multiple gigabytes for
some programs. Kremlin takes advantage of the fact that many of
the region summaries are identical and therefore compression can
be used. This reduces not only the amount of data that needs to
be written to disk during the instrumented program’s execution but
also the amount of data that needs to be processed by the planner.

Kremlin utilizes a dictionary-based compression algorithm.
When the flow of execution exits a region, Kremlin checks the tuple
of 〈static region, critical path, work, children〉 for
the region against the current alphabet of unique regions. If there
is no match, a new character is added to the alphabet. If there is a
match, the associated character is used. The alphabet necessarily
starts with leaf regions. For children, Kremlin summarizes child
regions via a sorted list of characters, representing compressed re-
gions, and their frequencies. Thus, the children used in the tuple are
defined in terms of the existing alphabet rather than the raw region
info. Starting from the leaves, the alphabet expands to regions that
contain only leaves for children and so on to the root (i.e. main).

When the Kremlin planner makes use of the trace files to cal-
culate self-parallelism, it does not need to decompress the data;
instead, it operates on each character in the dictionary’s alphabet
directly. Kremlin exploits the dictionary representation’s ability to
summarize the critical path and work across recursively nested re-
gions. This can accelerate the calculation of self-parallelism be-
cause each dictionary entry essentially summarizes repetitive se-
quences of large numbers of dynamic regions; processing each
character therefore corresponds to processing thousands of dy-
namic regions.

Benefits We have found that this approach is quite effective. Our
original log sizes for the NPB benchmarks [6], using the W inputs,
ranged from 750 MB to 54 GB, and averaged 17.9 GB. After
compression, they were reduced to between 5 KB and 774 KB,
with an average of 150 KB. This was a net average reduction



of ∼119,000x for log size, and a typically proportional factor
for planning time – from minutes to small fractions of a second.
Code instrumented with our infrastructure, which is not heavily
optimized, is currently about 50× slower than gprof-instrumented
code; however the parallelism discovery process can be sped up by
running instrumentation of disjoint code regions in parallel.

5. Parallelism Planning

In this section we will discuss Kremlin’s OpenMP planning per-
sonality, and briefly overview a Cilk++ planning personality.

5.1 OpenMP Planner

OpenMP is a popular parallel programming environment with
a strong focus on parallelization of loops. Programmers insert
pragma statements into their source code and the OpenMP com-
piler generates the necessary threaded code for them to run. While
it does support nested parallelism, the overhead is often too high
for it to be effective: the number of execution contexts available is
often not enough to handle the extra threads that are spawned and
thus the cost of spawning new threads is never amortized. Further-
more, OpenMP requires the programmer to transform loops into
parallel (i.e. DOALL) loops in order to achieve good performance.

Kremlin contains a planner that takes into account the major
constraints associated with OpenMP. The planner disallows nested
parallel regions to avoid the performance penalty we observed on
our experimental setup. OpenMP supports reduction variables in
parallel loops, but they have significant overheads [8]. We found
that the amount of work in a region should be large enough to
amortize these costs. For instance, reduction-based loops in the
SPEC OMP2001 [2] benchmarks art and ammp have too little
work to overcome overheads. On the other hand, ep, from the
NAS Parallel Benchmarks [6] (“NPB”), has a reduction-based main
function that should be parallelized because it has ample work.

Based on these constraints for OpenMP planning, we can for-
mulate the problem as follows. Given a region graph G, select a set
of regions to parallelize, R, such that in any multi-node path, P , in
G there is at most one node in R (i.e. |P ∩ R| ≤ 1). The optimal
solution will minimize the time required to execute the program.

OpenMP Planning Algorithm A naive algorithm for determining
which regions to parallelize would be to repeatedly select the region
with the largest potential speedup among all regions considered for
parallelization. When a region is selected by the planner, any region
that can reach or can be reached from a selected region would then
be excluded from consideration to avoid nested parallelization. In
some cases, this algorithm may lead to optimal results but in many
cases it is suboptimal. For example, a parent region might have the
highest single potential speedup, but collectively, a set of its child
regions could offer a higher combined speedup. A greedy algorithm
would select the parent, precluding the more optimal solution of
selecting the set of child regions. Specifically, this problem was
observed in two of the NPB benchmarks: ft and lu.

Kremlin’s OpenMP planner employs a bottom-up dynamic-
programming algorithm. At each level, if we have an optimal plan
for parallelizing all of the children, we can make an optimal plan for
parallelizing the current node by comparing the expected speedup
of the parent versus the cumulative expected speedup of paralleliz-
ing the children according to their optimal plan. At the leaves, we
select the node by default if it has expected positive speedup.

Additional Constraints for OpenMP and Machine Overheads
As part of Kremlin’s support for planner personalities, Kremlin
can be configured with a few parameters that attempt to capture the
system’s ability to exploit parallelism. In shared memory and large-
scale NUMA machines using runtime schedulers, the cost of data

movement and synchronization can be relatively high compared
to finer-grained research machines, which impairs their ability to
exploit regions with fine-grained parallelism or synchronization.

Clearly many parameters could be incorporated to try to more
accurately model the underlying system. However, we would gen-
erally prefer to have relatively simple parameters that are useful
across a range of systems. As a result, we strove for parameters
that are expressed in a relatively architecture-independent fashion.

For the OpenMP planner personality, we found that it was effec-
tive to use a set of three threshold parameters. The first is a thresh-
old that determines a minimum level of self-parallelism for a region
to be exploited. This mechanism indirectly accounts for the over-
head of the the OpenMP scheduler and also the cost of migration
between nodes. The second and third thresholds are the minimum
required ideal whole-program speedup due to a DOALL region
and due to a DOACROSS region. We differentiate between these
two kinds of regions because DOACROSS regions are much more
synchronization intense (and thus less likely to pay off), and re-
quire more programmer effort, and so require a higher ideal whole-
program speedup to be justified. As discussed in Section 4.3, Krem-
lin identifies DOALL loops by checking for equivalence between
self-parallelism and iteration count. In this paper, we employ 5.0
as the cutoff for self-parallelism, 0.1% speedup for DOALL loops
and 3% speedup for DOACROSS loops. Our sensitivity analysis
suggests that Kremlin is not particularly sensitive to minor varia-
tions in the settings of these parameters.

Our initial prototype of the OpenMP planner also included the
number of cores as a constraint. This initial version capped the
speedup of any region at the number of cores available. However,
we found that including this constraint had a negative impact on
plan quality. With this cap in place, the planner could not differ-
entiate between regions with self-parallelism of N (the number of
cores) and those which much higher self-parallelism. Our results
suggest that high self-parallelism is correlated with large speedup:
a region with much higher self-parallelism likely has more oppor-
tunities to amortize parallelization overhead and more flexibility in
restructuring to improve memory locality.

5.2 Cilk++ Planning Personality

Kremlin also contains a Cilk++ [27] planner that accounts for
Cilk++’s support for nested- and finer-grained parallelism. It em-
ploys the same self-parallelism metric as the OpenMP planner but
with lower thresholds for self-parallelism and ideal speedup, ac-
counting for Cilk++’s lower underlying costs; it also uses a nesting-
aware planning algorithm.

Kremlin was originally developed with a Cilk++ planner, which
was used by a group of graduate students in a recent parallel ar-
chitecture class. Although students found the tool useful, the rel-
ative lack of a large, established Cilk++ benchmark suite (and In-
tel’s acquisition of CilkArts) barred us from performing a quantita-
tive evaluation for publication, motivating the development of the
OpenMP planner.

5.3 Developing Planning Personalities

Planning personalities provide an avenue for the user to tailor plan-
ning recommendations to different systems. Underlying the devel-
opment of new planning personalities is a fundamental tension be-
tween accuracy and portability. The designer of a planning person-
ality must decide the level of architectural independence that is part
of the personality. Architectural independence is a desirable prop-
erty for portability, allowing the planning results to be useful over
a wide range of systems, but may need to be sacrificed in order to
attain sufficient accuracy.

The development of the OpenMP and Cilk++ personalities pro-
vided some insight into the portability-accuracy trade-off. These



Benchmark MANUAL Kremlin Overlap Reduction

ammp 6 3 2 2.00x

art 3 4 1 0.75x

equake 10 6 6 1.67x

bt 54 27 27 2.00x

cg 22 9 9 2.44x

ep 1 1 1 1.00x

ft 6 6 5 1.00x

is 1 1 0 1.00x

lu 28 11 11 2.55x

mg 10 8 7 1.25x

sp 70 58 47 1.21x

Overall 211 134 116 1.57x

(a) Plan Size Comparison
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(b) Relative Speedup of Kremlin Compared to MANUAL with Absolute Speedup

Figure 6. Evaluation of Kremlin-Based Parallelization. Table (a) shows MANUAL plan sizes are significantly larger (1.57× on average)
than Kremlin plan sizes. Surprisingly, the majority of regions in Kremlin plans are overlapping with MANUAL. Even though Kremlin
proposes substantially smaller number of regions to a user, (b) demonstrates that the resulting performance is generally quite close to the
manually-parallelized versions, ranging from 12% slower to 85% faster. Note that Kremlin formulated its plans solely by examining the
execution of the unmodified serial code. In order to reduce the experimental effects of different effort levels and different programmers for
hand tuning, we evaluated the plans for Kremlin by using the parallelized code regions in the manually-parallelized version. In the case of
SP and IS, Kremlin’s recommendations were significantly different, so we had to manually apply those optimizations.

personalities required that we model only fundamental parame-
ters of the parallel machines: synchronization costs, loop type,
and region granularity. These parameters are likely to port well to
other parallelization systems, reducing the work necessary to de-
velop new planners for these other systems. We found that while
machine-specific parameters such as cache size, page size, and
memory bandwidth do influence parallel performance, and influ-
ence how code should be transformed, they have limited impact
on the set of regions that should be parallelized. These machine-
specific parameters therefore are of greater import during the En-
abling Transform stage in Figure 1 than during the Planning stage.

6. Experimental Evaluation

We evaluated Kremlin using all 8 programs in the NAS Parallel
Benchmarks (NPB) [6] and all 3 C-language programs in the SPEC
OMP2001 [2] benchmark suite. For NPB, we used the third-party
OpenMP manually-parallelized version of these programs [1] as
a point of comparison for Kremlin’s ability to create an effective
parallelization plan. For SPEC OMP2001, we ran our tool on the
corresponding serial versions of the programs in the SPEC 2000
benchmark suite, and then compared Kremlin’s plans against those
parallelized by humans in the SPEC OMP2001 versions. For art
and ammp, SPEC OMP versions benefit from serial optimizations
compared to their SPEC 2000 counterparts [38]. To exclude the
effect of serial optimizations, we applied those optimizations on the
SPEC 2000 code before running Kremlin. Our evaluation included
only third-party benchmarks that have preexisting parallel versions
to facilitate comparison and to make our results more credible. The
programs vary greatly in terms of speedup (1.5x to 25.89x, Figure
6(b)), but low coverage, low parallelism, parallelization overhead,
and other factors significantly reduce the percentage of regions that
are good candidates for parallelization (Figure 9).

One might expect that iterative, trial-and-error manual paral-
lelization would do significantly better than Kremlin, because the
user has the benefit of performing iterative runtime measurements
as they incrementally parallelize the program. We found that paral-
lelization with Kremlin came surprisingly close in terms of perfor-
mance on all but two benchmarks, and in those cases, it did much
better. At the same time, it achieved these results with substantially
smaller numbers of regions that needed to be parallelized.

6.1 Methodology

We first ran Kremlin on the unmodified, serial versions of the
benchmarks to generate a parallelism plan for each program. The
resulting plan was used to create a parallelized version of the serial
program. In cases where Kremlin’s parallelism plans recommended
regions that had also been parallelized in the third-party, manually-
parallelized version of the benchmark (“MANUAL”), we reused
the parallelized regions from the MANUAL version. This allowed
us to control for variances in performance that could result from
slightly different parallel implementations of the same region.

To generate and evaluate parallelism plans, the ‘W’ input set
was used for NPB benchmarks while the ‘train’ input was used for
SPEC OMP. Kremlin relies on dynamic analysis and therefore may
be affected by varying inputs. To test for input-related sensitivi-
ties, we reused the parallelized program based on the ‘train’ input
parallelism plan to measure the speedup numbers for SPEC OMP
benchmarks with the larger ‘ref’ input. We found that Kremlin-
based parallelization remained equally competitive on both input
sizes, despite requiring a much smaller set of parallelized regions.

Program performance was tested on 32-core system (8 × AMD
8380 Quad-core processors) with 256GB of memory running on the
Linux 2.6.18 Kernel. Programs were compiled with gcc version 4.1
with OpenMP and -O3 flags specified. We executed the programs
using configurations of 1, 2, 4, 8, 16, and 32 cores. As is typical for
these kinds of systems, performance can decline as locality effects
start to trump the benefits due to parallelization. For each parallel
version, we determined the configuration with the best performance
and report that number.

6.2 Evaluation of Parallelism Planning

Kinds of Parallelism Found and Transformations Implied Krem-
lin detects parallelism of all forms: nested-loop-parallelism includ-
ing DOACROSS and DOALL, pipelined parallelism between loops
and functions, ILP, and thread and task-level-parallelism. All of
these exist in our benchmark suite, although Kremlin only recom-
mends regions that are predicted profitable to parallelize according
to the planner and personality in use.

Exposing the parallelism detected by Kremlin required user
transformations such as: privatization; loop restructuring, fusion
and interchange; insertion of OpenMP constructs; and refactoring



of code and data structures to eliminate false sharing and con-
tention. These transformations range in difficulty from trivial to
difficult, that is, from requiring less than an hour of work to re-
quiring several hours. As we will show in the following sections,
Kremlin is able to significantly reduce the number of regions that
must be parallelized, thereby significantly reducing the total effort
needed to parallelize the program. Kremlin also provides a mech-
anism whereby the user can specify a set of regions that are too
difficult to parallelize and rerun the planner, which recomputes the
optimal plan excluding that region.

Plan size comparison Kremlin seeks to focus the programmer’s
efforts on a small subset of regions that have the most poten-
tial for speedup from parallelization. To test Kremlin’s effective-
ness in this regard, we compared Kremlin’s recommended regions
(“plans”) to the set of regions that were parallelized in the third
party-parallelized version of the benchmark suite, referred to as
MANUAL. Figure 6(a) provides this plan size comparison.

Across all of the regions in the benchmarks, the MANUAL
version included 1.57× more regions than the plan provided by
Kremlin. For small benchmarks (e.g. ep, ft, and is) there was
little room for improvement, but larger, more complex benchmarks
showed larger savings compared to the average. At the extreme end,
lu’s manually-parallelized plan size was 2.55× the size of Kremlin.
The programmer using Kremlin would have had far fewer regions
to parallelize than the original third party parallelizers2.

Performance comparison with MANUAL Next, we evaluated the
speedup of parallelized versions based on Kremlin’s parallelism
plan against the MANUAL version. Figure 6(b) shows the results
of this comparison. The Kremlin version of sp and is performed
significantly better (1.85×, 1.46×) than MANUAL as Kremlin
was able to identify parallelism that was missed in the MANUAL
version. In this case, Kremlin recommended a coarse-grained par-
allelization, requiring privatization and refactoring. Other bench-
marks saw a slight degradation in performance, averaging about
3.8%. Kremlin generally selected the same regions as MANUAL,
but decided to stop earlier because of the diminishing returns.

To gain additional insight, Figure 7 shows the marginal benefit
attained by applying each of the recommendations, in order, from
Kremlin’s plans. Also shown in the graphs are the marginal benefits
of regions parallelized in MANUAL but not recommended by
Kremlin (regions to the right of the dotted line).

In a large majority of cases, regions not recommended by Krem-
lin but parallelized by MANUAL provide negligible benefit. Ad-
ditionally, we can see that, although Kremlin’s plans are well-
prioritized overall, the incremental contribution of a parallelizing
a region can be somewhat noisy. For instance, in several cases,
the second recommended region attains a much higher incremen-
tal speedup than the first recommended region—this is because as
more of the program is parallelized, less data migration happens
in the NUMA machine. Often it is groups of regions that must be
parallelized before any speedup is observed.

Overall, Kremlin does an excellent job of eliminating regions
that offer little benefit. Even for those few regions that were elim-
inated by Kremlin but had some marginal benefit, the benefits are
slight. Given the savings in the number of regions parallelized by
Kremlin, we suspect that the programmer could easily make up the
difference by applying serial optimizations rather than attempting
to parallelize the additional regions.

2 Programmer effort metrics for the Enabling Transforms part of paralleliza-
tion is clearly a hard problem. We have also explored other metrics, like
lines of code, as proxies for programmer effort in Kremlin, since it could
perhaps be a better proxy for parallelization complexity. However, our im-
pression from the benchmarks is that, at least, for OpenMP, region count is
a better, albeit imperfect, approximation of programmer effort.

Fraction of Kremlin Plan Applied

First First First All
Benchmark 25% 50% 75% 100%

ammp 74.7 % 100.0 % 100.0 % 100.0 %
art 100.0 % 100.0 % 100.0 % 100.0 %
equake 82.5 % 89.2 % 99.0 % 100.0 %
bt 48.9 % 85.8 % 92.2 % 100.0 %
cg 84.9 % 86.7 % 93.5 % 100.0 %
ep 100.0 % 100.0 % 100.0 % 100.0 %
ft 44.7 % 78.9 % 100.0 % 100.0 %
is 100.0 % 100.0 % 100.0 % 100.0 %
lu 45.8 % 84.0 % 95.4 % 100.0 %
mg 35.6 % 73.0 % 79.5 % 100.0 %
sp 9.6 % 62.1 % 94.5 % 100.0 %

average
56.2 % 86.4 % 95.6 % 100.0 %

benefit

marginal
average 56.2 % 30.2 % 9.2 % 4.4 %
benefit

Figure 8. Marginal Benefit of Region Parallelization. A well-
prioritized parallelism plan will show decreasing marginal benefits
as more of the recommended regions are parallelized. This table
shows the average marginal benefit of 25% increments in the frac-
tion of regions parallelized. The final row shows that a majority
(56.2%) of benefit comes from the first 25% of regions with the
following intervals showing decreasing average marginal benefits.
This suggests that Kremlin’s parallelism planner is effective at re-
gion prioritization.

Effectiveness of Region Prioritization An important aspect of
planning is to ensure not only that the regions with the most benefit
are selected but also that they are prioritized correctly. The planner
attempts to place regions with the largest benefit at the beginning of
the plan. Meeting this goal maximizes the productivity of the pro-
grammer by focusing their efforts where they are most valuable.
To evaluate the effectiveness of the ordering produced by Kremlin,
we measured the fraction of total realized execute time reduction at-
tained by following increasing portions of Kremlin’s plans, includ-
ing the first 25%, first 50%, first 75%, and all 100% of the plan. We
would expect well-prioritized plans to generally produce monoton-
ically decreasing benefits for each additional fraction that is added.
As shown in Figure 8, Kremlin’s plans are well-prioritized. The first
25% of the plans average 56.2% of the benefit, the next 25% aver-
ages 30.2% of the benefit, while the following 25% yields 9.2%,
and the last 25% yields 4.4% of the benefit.

Influences on Plan Size Next, we evaluated how plan size is
reduced as additional information is taken into account. The factors
that we looked at were work coverage, self-parallelism, and usage
of the full OpenMP planner personality. Figure 9 illustrates the
impact of each of these factors on the programs. Programmers
that take into account only work information (e.g. a gprof-based
approach) would be left with an average of approximately 59%
of the total regions to analyze and attempt to parallelize. With the
addition of self-parallelism information for each region, the average
plan size is cut to 25.4% of all regions. Finally, when using the
full planner an average of only 3.0% of the regions are included in
the plan. As we have shown in Figure 6, despite only parallelizing
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Figure 7. Effectiveness of Region Prioritization. Kremlin provides a list of regions prioritized by their estimated speedup so that users
can maximize their productivity. The graphs above show the marginal decrease in execution time, relative to the original program run time,
as each region in Kremlin plan is parallelized. We also included regions that were filtered out in the Kremlin plan but were chosen to be
parallelized by the expert third party (MANUAL). These regions are shown to the right of the dotted line. As the graphs illustrate, little
benefit came from regions that were parallelized by the third-party but that were not suggested by Kremlin.

a fraction of the regions, Kremlin achieves performance that is
comparable to the highly-tuned MANUAL version.

Effectiveness of Self-Parallelism Metric To determine the ability
of self-parallelism’s ability to reduce the number of parallelism
false positives (i.e. serial regions that are reported as being parallel),
we calculated the self-parallelism and total-parallelism numbers for
all 2535 regions that appear in the benchmarks, and classified them
according to whether their parallelism is greater than or less than
(“high” or “low”) a threshold value of 5.0.

The total-parallelism metric identified 25.8% of regions as hav-
ing low parallelism, while the self-parallelism metric identified
58.9% of regions as having low parallelism, a reduction of 2.28×.

7. Related Work

Parallelism Discovery and Dependence Testing Approaches for
parallelism-related profiling have generally fallen into two cate-
gories: critical path analysis (CPA) and dependence testing. Crit-
ical path analysis dates back several decades, with early important
works including [5, 23]. These approaches measured the number
of concurrent operations at each time step along the critical path
of the program. More recent work includes application of CPA to
Java [13] as well as a modified CPA for the purpose of function-
level parallelism in Java programs [32]. Unlike these approaches,
Kremlin’s hierarchical critical path analysis is able to localize par-
allelism within nested program regions, and provide concrete guid-
ance on which program regions to parallelize.

Allen et al. [3] performed static analysis of Fortran programs
in an attempt to automatically identify the correct granularity of
parallelism for a target architecture. Kremlin is also able to iden-
tify the proper granularity of parallelism through the use of self-
parallelism and planning personalities. However, the work in [3]
was limited to structured, Fortran code; Kremlin is able to work
with unstructured code that contains pointers which cannot be ana-
lyzed statically. Furthermore, Kremlin focuses on enabling the user
to parallelize complicated code with which automatic parallelizing
compilers have traditionally struggled.

Kulkarni et al. [22] used a critical path based analysis to bring
insight into the parallelism inherent in the execution of irregular
algorithms. In contrast to Kremlin’s focus on localizing parallelism
to concrete code regions via HCPA, Kulkarni’s approach attempts
to transcend the details of the implementation and to quantify
the amount of latent parallelism in irregular programs that exhibit
amorphous data parallelism.

Cilkview [14] is a recent tool that takes an already-parallelized
Cilk++ program and estimates how that program’s performance
will change as the number of cores is increased. Similar to Krem-
lin, Cilkview leverages runtime information, and analyzes runtime
dependencies in the program. However, Cilkview examines depen-
dencies between pre-parallelized threads in a work-queuing run-
time system rather than between instructions.

Another approach to parallelism-related profiling has been to
use dependence testing to uncover the dependencies between dif-
ferent regions in the program. pp [24] is an early important work



that proposed hierarchical dependence testing to estimate the paral-
lelism in loop nests. Notable recent works include Alchemist [43]
and SD3 [19], which reduces runtime and memory overhead of de-
pendence testing through the use of parallelization and compres-
sion. Although dependence testing and Kremlin’s HCPA share sim-
ilar goals, Kremlin focuses on localizing and quantifying paral-
lelism across many different, nested program regions rather than
establishing independence of pre-existing regions. As a result, it
can identify more nuanced forms of parallelism even though sig-
nificant transformation is required to expose it. Dependence test-
ing is generally more pessimistic and sensitive to existing program
structure.

A number of works have used dependence testing to deter-
mine the probability that specific dependencies will occur [39, 41].
DProf [41] uses a compiler to identify may dependencies and then
determine the probability that these dependencies will occur. von
Praun et al. [39] introduced the dependence density metric to de-
scribe the probability that two random tasks would have a depen-
dency. Both of these approaches target optimistic concurrency such
as TLS or transactional memory.

The main difference between Kremlin’s parallelism discovery
and dependence testing frameworks is in the stage of parallelization
(Figure 1) that profiling targets. Kremlin’s parallelism discovery is
meant to quantify the parallelism in a fashion that is not as strongly
tied to the program’s current structure, exposing hidden sources of
parallelism. In contrast, dependence testing-based approaches are
more aligned with the enabling transforms stage of parallelization
as they enable identifying specific changes that need to be made
to enable parallelism. In the absence of discovery and planning
tools, [43] orders regions by total execution time. An interesting
possibility would be to augment [43]’s approach with the improved
analysis provided by Kremlin. ParaScope [18] used static analysis
to expose difficult-to-analyze dependencies to the user so that they
could circumvent them via refactoring.

The discovery phase takes advantage of a compression scheme
that resembles whole-program path compression schemes [44]. We
achieve much higher compression levels because we do not need to
store information about the relative ordering of child subregions.

Parallelism Planning The task of parallelism planning has been
mostly overlooked in the context of manual parallelization. Outside
of manual parallelization, automatic parallelizing compilers such
as SUIF [12] and Polaris [7] implicitly perform planning. Because
these tools do not target user-assisted parallelization, their planning
phases focus on finding thresholds for profitable exploitation.

Speculative parallelization systems [31, 34] have created new
opportunities for compilers to exploit parallelism even in the face
of difficult-to-analyze code, or infrequent dependencies that result
in overly conservative execution. These systems typically have a
memory speculation system, often in special hardware but some-
times in software, which removes the burden of proving the cor-
rectness of potential parallelizations, allowing the compiler to focus
on selecting the parallelizations that maximize performance. TLS
compilers [9, 11, 29, 31, 37, 46] also benefit from detecting par-
allelism and often use dynamic critical path or dependence testing
analyses in order to establish regions which are likely to be prof-
itable for TLS-style execution. Kremlin’s HCPA can be used in a
complementary manner by providing a way to guide programmers
in restructuring their code to improve parallelism for execution on
TLS. This can enable an even larger class of transformations than
these systems natively support.

Recent work by Tournavitis et al. [38] provides a semi-automated
approach to parallelization. This approach automates parallelism
discovery using a form of dependence testing and uses machine
learning to pick a set of regions to be parallelized. The selected
regions are automatically annotated with OpenMP pragmas. The
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Figure 9. Evaluating Plan Size Reduction Due to Each of
Kremlin’s Planning Components. Plans based only on work cov-
erage comprised 58.9% of all regions on average. Using self-
parallelism to eliminate low parallelism regions cut this more than
half (25.4%, on average). Finally, using the full OpenMP planner
personality, the plan size was reduced to only 3.0% of the total re-
gions.

presumption is that the user will verify the correctness of the par-
allelization. While this approach has promise, it is limited by the
compiler’s ability to perform the Enabling Transforms phase of
parallelization. In contrast, Kremlin has a more optimistic view of
parallelism and is able to report regions with parallelism even if the
compiler is not up to the task of exploiting it automatically.

Systems such as SUIF Explorer [28] and CAPO-Paraver [16]
share Kremlin’s focus on empowering the user during paralleliza-
tion. SUIF Explorer’s novelty focuses around its use of static inter-
procedural program analysis including pointer analysis and slicing;
its use of dynamic analysis is very briefly described but appears
to detect the absence or presence of memory dependencies within
loops, and to provide time profiles for regions. CAPO-Paraver ex-
tends the CAPO parallelizing compiler to allow it to insert instru-
mentation that helps the user understand the load balancing prop-
erties of parallelized code. A short paper on Kremlin appeared in
PPoPP [15].

8. Conclusion

Kremlin strives to simplify the task of parallelization by address-
ing the question: what parts of the program should I spend time
parallelizing? Beginning with unmodified serial source code and
sample inputs, Kremlin produces a list of regions in the order that
they should be parallelized.

At the heart of Kremlin is an extension of the critical path anal-
ysis technique. Critical path analysis, which was invented in 1988,
is rarely used in current-day performance profiling tools. In this
paper, we extend that work by proposing the hierarchical critical
path analysis (HCPA) technique, the self-parallelism metric, and
the idea of using a planner algorithm that models the execution of
the program on the machine. Given how conceptually straightfor-
ward HCPA appears to be, it seems surprising that it has not been
proposed earlier, closer to the inception of CPA in the 80’s. Al-
though HCPA appears in retrospect to be straightforward, the “hard
part” of the research is making the jump from the output of the
HCPA algorithm to the creation of an effective parallel plan. The
self-parallelism metric and planner concept are the key steps in do-
ing this, and took many people-years of iteration for us to arrive
at. One of the challenges with this research is figuring out exactly
what information is needed to make meaningful recommendations,
and how to decimate the information at each stage of the process. A
valid approach must work without the collection of traces that are
proportional to the execution time of the program, which can easily
amount to terabytes. Further optimization detail is required for cre-



ating the multi-versioned shadow memory data-structures and rules
that enable HCPA to run quickly and with low overhead.

Kremlin’s results are very strong. Typically, by examining only
the original serial code, the tool beats iterative parallelization by
experts. It reduces the number of unnecessarily parallelized regions
by 1.57x, attains better average performance, and in two out of the
eleven benchmarks, improves speedups substantially by factors of
1.86x and 1.46x. Our results also show that Kremlin is effective
at prioritizing regions: 56.2% of the benefit is captured in the first
quarter of recommendations, and 86.4% comes from the first half
of recommendations. All of these results suggest that Kremlin is
likely to be highly effective at reducing programmer effort.
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