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Abstract

Complex “fat operators” are important contributors to
the efficiency of specialized hardware. This paper intro-
duces two new techniques for constructing efficient fat op-
erators featuring up to dozens of operations with arbitrary
and irregular data and memory dependencies. These tech-
niques focus on minimizing critical path length and load-
use delay, which are key concerns for irregular computa-
tions. Selective Depipelining(SDP) is a pipelining tech-
nique that allows fat operators containing several, possi-
bly dependent, memory operations. SDP allows memory
requests to operate at a faster clock rate than the datap-
ath, saving power in the datapath and improving memory
performance. Cachelets are small, customized, distributed
L0 caches embedded in the datapath to reduce load-use la-
tency.

We apply these techniques to Conservation Cores(c-
cores) to produce coprocessors that accelerate irregular
code regions while still providing superior energy efficiency.
On average, these enhanced c-cores reduce EDP by 2× and
area by 35% relative to c-cores. They are up to 2.5× faster
than a general-purpose processor and reduce energy con-
sumption by up to 8× for a variety of irregular applications
including several SPECINT benchmarks.

1 Introduction

Power limitations prevent modern processors from fully
utilizing the large number of transistors that modern process
technologies provide. Recent work [27, 5] has shown that
the percentage of a silicon chip that can be switched at full
frequency is dropping exponentially with each process gen-
eration, and will continue to drop with 3-D integration. This
utilization wall forces designers to ensure that at any point
in time, large fractions of their chips are effectively dark or
dim silicon – that is, not actively used for computation, or
significantly underclocked.

Simply reducing die area to avoid the creation of dark sil-
icon has undesirable consequences. Doing so would freeze

transistor budgets, effectively ending Moore’s Law trend of
increasing integration, thus stifling opportunities for inno-
vation and increasing parallelism. In contrast, heterogene-
ity and specialization are effective responses to the utiliza-
tion wall and the dark silicon problem. The utilization wall
means that the opportunity cost of building specialized pro-
cessors is falling: The silicon area that they consume would
otherwise go unused.

Specialization is especially profitable in extremely
power-constrained designs such as the mobile application
processors that power the world’s emerging computing plat-
forms: cell phones, e-book readers, media players, and
other portable devices. Mobile application processors differ
from conventional laptop or desktop processors in that they
have vastly lower power budgets and in that usage is heavily
concentrated around a core collection of applications.

Mobile designers reduce power consumption, in part,
by leveraging customized low-power hardware implemen-
tations of common functions such as audio and video de-
coders and 3G/4G radio processing. These computations
are highly parallel, regularly structured, and very well-
suited to traditional accelerator or custom ASIC implemen-
tations. The remaining code (user interface elements, appli-
cation logic, operating system, etc.) resembles traditional
desktop code and is ill-suited to conventional, parallelism-
centric accelerator architectures. This code has traditionally
been of limited importance, but the rising popularity of so-
phisticated mobile applications suggests this code will be-
come more prominent and consume larger fractions of de-
vice power budgets. As a result, applying hardware special-
ization to frequently-executed irregular code regions will
become a profitable system-level optimization.

Recent work [27] examined one approach to improv-
ing the energy efficiency of these codes by converting
dark silicon into a collection of energy-saving application-
specialized cores called Conservation Cores, or c-cores.
That approach emphasized energy savings while matching
the performance of a conventional processor, but three fac-
tors limited its performance and energy efficiency gains.
First, synchronization with the memory system restricted



ILP, required large numbers of pipeline registers, and
increased power consumption. Second, L1 cache ac-
cesses consumed significant energy and limited perfor-
mance. Third, the mechanisms for adapting to software
changes increased energy and area use significantly.

This paper introduces two techniques which, unlike
many conventional architectural features, simultaneously
improve both energy efficiency and performance. The first
is a new pipeline design technique called selective de-
pipelining(SDP), to reduce clock power, increase memory
parallelism, and extract ILP by converting each basic block
into a “fat operator”. For the applications examined, these
fat operators could be very complex, covering up to 103
sub-operations including 17 memory requests.

Second, we incorporate specialized energy-efficient, per-
instruction data caches called cachelets, which allow for
sub-cycle cache-coherent memory accesses. By applying
these techniques to c-cores, we can construct application-
specific coprocessors that efficiently target codes with lit-
tle parallelism and irregular memory behavior. These tech-
niques are fundamental to the design of the coprocessors in
this paper, but can also apply to any architecture that uses
fat operators, such as the “magic” instructions discussed
in [15].

Additionally, we use workload profiling to reduce the
costs of the reconfigurability mechanisms that allow c-cores
to adapt to changes in the software they target. These tech-
niques reduce EDP by 2× and area by 35% relative to prior
work. Compared to an efficient, in-order MIPS processor,
these enhanced c-cores improve, on average, performance
by 1.5×for the function the c-core targets, application per-
formance by 1.3×, targeted function energy-delay-product
by 7.1×, and application energy-delay-product by 2.9×.

The rest of the paper proceeds as follows. Section 2
gives an overview of c-core-based architectures, and pro-
vides context for selective depipelining and cachelets. Sec-
tions 3 and 4 examine the techniques in detail. Section 5
reviews related work, and Section 6 concludes.

2 Architecture overview

In this section, we provide an overview of the Conserva-
tion Core [27] architectural model that we extend. Archi-
tectures based on specialized hardware must address three
issues: 1) how a coprocessor’s memory interfaces with host
system memory, 2) how the system withstands changes to
the software that it targets, and 3) how the coprocessor inte-
grates with the host system’s general-purpose processor(s).
We address each question in turn.

2.1 C-cores

Figure 1(a) shows c-cores integrated into a tiled multi-
core architecture that connects multiple tiles and external

memory via a point-to-point interconnection network. Each
tile (see Figure 1(b)) contains a general purpose processor
(the CPU) that is tightly coupled with multiple c-cores. The
c-cores and the CPU share the tile’s resources, including
the coherent L1 data cache, the on-chip network interface
(OCN), and the combined FPU/Multiplier unit.

The c-core toolchain automatically partitions a program
between the CPU and the specialized hardware according to
a cost model that estimates the benefit of running the code
in dedicated silicon. It generates a hardware specification
that it then synthesizes, places, and routes in 45 nm technol-
ogy. Each c-core targets a frequently executed, or “hot”, re-
gion of an application. They achieve energy and power sav-
ings by using specialized hardware datapaths that eliminate
much of the overhead in conventional processor pipelines,
including instruction fetch, register file accesses, and by-
passing. Each c-core encompasses many basic blocks and
executes one basic block at a time. C-cores clock-gate hard-
ware not needed by the currently executing block. Control
flow edges between blocks in a c-core are fixed, but can
be arbitrary. A set of distributed state machines that closely
mirror the control flow graph of the source program controls
these datapaths, as shown in Figure 1(c). This mirroring al-
lows for precise replication of the semantics of the CPU
execution of the code. These datapaths communicate with
the CPU and other tiles via connections to the shared L1
cache, also shown in Figure 1(d). The CPU executes code
that is not mapped to a c-core. This includes parts of the
application that occur infrequently or that post-date man-
ufacturing of the chip. Execution shifts between the CPU
and the c-cores as an application enters and exits the code
regions that the c-cores support. Finally, c-cores also sup-
port patching, a form of reconfiguration, via a scan chain
interface.

C-cores map readily to domain-specialized chips, but are
also useful within general-purpose systems. The utilization
wall leaves many transistors idle. Rather than underclock
processor cores, or abandon increasing integration, we en-
vision allocating the transistors to c-cores and other spe-
cialized hardware. Any commonly used applications or li-
braries (e.g. windowing systems, GUIs, codecs) are viable
targets.

2.2 Selective depipelining and cachelets

We enhance c-cores by applying techniques that in-
crease operator the efficiency. We call c-cores incorporating
these techniques Efficient Complex Operation Cores (ECO-
cores). ECOcores are a significant extension of c-cores. C-
core datapaths can contain at most one memory operation,
whereas ECOcores can contain fat operators for arbitrary
basic blocks, even those including several dependent mem-
ory operations. ECOcores also have a different focus than
previous c-core work [27]: While both approaches reduce
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Figure 1. A c-core-enabled, tiled architecture A tiled c-core-based system (a) includes several tiles (b) that each
include a general-purpose, in-order processor and several c-cores (c) that target hot regions of code. Internally,
c-cores will implement each basic block (d) using SDP (see Section 3).

energy, ECOcores also aim to accelerate irregular codes,
whereas c-cores offer minimal speedup.

ECOcores improve energy efficiency and performance
over other systems designed to execute irregular code by
leveraging two architectural techniques. The first technique,
selective depipelining, is a novel pipelining scheme that sig-
nificantly improves performance and reduces energy con-
sumption by eliminating two important sources of waste in
the generation of complex operators. It reduces both un-
necessary clock power and time wasted due to poor align-
ment of operators within cycles. We show that we can pack
dozens of operations, including multiple, dependent mem-
ory operations, into a single, efficient, logical clock cycle.
We show that this technique works for blocks with many,
potentially dependent, operations, with high performance,
and without requiring asynchronous logic. The second tech-
nique, cachelets, is a new type of small, distributed, co-
herent L0 data cache that specializes individual loads and
stores to reduce common case memory latency. In the fol-
lowing sections, we describe our two techniques in detail
and highlight the unique challenges of irregular codes.

3 Selective depipelining

Selective depipelining, or SDP, takes advantage of the
fact that memory and datapath sub-operations within a com-
posite fat operation have different needs. Datapath opera-
tors are inexpensive to replicate, whereas the memory inter-
face is inherently centralized. SDP bridges the gap between
these disparate requirements. SDP allows memory to run at
a much higher clock frequency than the datapath. The fast
clock effectively replicates the memory interface in time (by
exploiting pipeline parallelism), while the datapath runs at a
slower clock rate, saving power and leveraging ILP by repli-
cating computation resources in space. Using SDP, we have
been able to efficiently construct fat operations encompass-

ing up to 103 operators including 17 memory requests.
With SDP, ECOcores execute faster and consume less

energy than a general-purpose processor, or even other
special-purpose hardware such as [27]. SDP improves per-
formance by enabling memory pipelining and exploiting
ILP in the datapath. SDP reduces static and dynamic power
because the datapath requires fewer pipeline registers and
synthesis can use smaller, slower gates.

Datapath organization Under SDP, we organize datap-
ath operators according to the basic blocks in a program’s
CFG, and one basic block executes for each pulse of the
slow clock. During a slow clock cycle, only the control path
and the currently executing basic block are active. The exe-
cution of a basic block begins with a slow clock pulse from
the control unit. The pulse latches live-out data values from
the previous basic block and applies them as live-ins to the
current block. The next pulse of the slow clock, which will
trigger the execution of the next basic block, will not occur
until the entire basic block is complete.

For each basic block, there is one control state, and each
state contains multiple substates called fast states. The
number of fast states in a given control state is based on
the number of memory operations in the block and the la-
tency of the datapath operators. This means that different
basic blocks operate at different slow clocks. During the
execution of the basic block, the control unit passes through
fast states in order. Some fast states correspond to mem-
ory operations. For these, the ECOcore sends out a load or
store request to the memory hierarchy. The ECOcore also
includes a register to receive the result of loads. Unlike the
registers between basic blocks, these registers latch values
on fast clock edges. These are the only registers within a ba-
sic block. The ECOcore remains in the fast state receiving
from memory until the memory operation completes.

While most operations are scheduled at the basic block
level, memory accesses and other long-latency operations



are scheduled with respect to the fast clock for pipelining.

Pipelined memory operations ECOcores enforce the
memory ordering semantics that imperative programming
languages require. ECOcores require in-order completion
of memory requests to reduce complexity and save power,
but they also pipeline the interface to support memory par-
allelism and improved performance.

Every load and store occurs in two steps: request and
response. A request consists of an address and, for stores,
the value to be stored. When the datapath generates a new
request, the ECOcore sends it to the memory hierarchy and
continues performing other operations in parallel.

In the response step, the control unit waits if necessary
for the load value or store confirmation. Fast-clock regis-
ters save load values for use by dependent operators in the
datapath. By splitting memory accesses into two phases,
an ECOcore can initiate up to one memory request (load or
store) and receive up to one memory response (load value
or store confirmation) on every cycle. Memory operations
complete in order, but multiple outstanding requests can be
in flight at any time.

Long-latency operations In addition to memory opera-
tions, some non-memory operations (such as integer divi-
sion and floating point operations) also have a long and/or
variable latency. ECOcores handle these long-latency op-
erations just like memory requests: They wait in a specific
fast state for a valid signal from the corresponding func-
tional unit.

SDP example Figure 2 illustrates SDP over one basic
block. C source is shown at right, alongside a timing di-
agram, control flow graph (CFG) and datapath for the im-
plementation of that code. The datapath contains arithmetic
operators and load/store units for individual operations from
the original program. The timing diagram shows how the
datapath logic can take multiple fast cycles to settle while
the datapath makes multiple memory requests.

The figure demonstrates how SDP saves energy and im-
proves performance. In a traditional pipeline, the registers
at fast clock boundaries would latch all the live values in
the basic block. SDP is more effective than merely clock
gating because it eliminates registers altogether, reducing
latency, area and energy. It also eliminates many leaves
from the clock tree, reducing clock tree area, capacitance
and leakage. Eliminating registers also allows for more flex-
ible scheduling of operations and removes the set-up, hold-
time, and propagation delays that registers introduce. Also,
having a very slow “slow clock” and only having one ba-
sic block active at a time enables an extremely aggressive
clock-gating approach: In addition to leaf-level gating, we
can gate all branches of the tree going to other basic blocks,
and within the active basic block, each register will only be
active once per dynamic execution.

3.1 Implementation

Since ECOcore-based chips will contain tens to hun-
dreds of ECOcores, it is infeasible to select and design each
ECOcore by hand. Instead, a toolchain automatically se-
lects and synthesizes placed-and-routed ECOcores from a
target code base. This section describes the toolchain and
the synthesis process.

SDP implementation SDP relies on a fast clock for mem-
ory and a separate slow clock for the datapath of each basic
block. The fast clock operates at the system frequency of
1.5 GHz. The slow clock signals come from the ECOcore’s
control unit, which tracks the flow execution through the
ECOcore at basic block granularity.

Many signals in the basic block can safely take the entire
minimum execution time to propagate through the block.
However, the inputs to memory operations need to propa-
gate more quickly because they must be ready on the fast
clock boundary where the operation issues to memory. For
instance, in Figure 2, the path from input i through the in-
crement and compare can take up to eight fast clock cycles,
while the path from B to the first load must complete in
a single cycle. Similarly, the result of the third load has
just 2 cycles to propagate to the store in fast state 1.8. Our
toolchain generates these multi-cycle constraints and passes
them to the synthesis toolchain.

Scheduling To generate multi-cycle constraints, an op-
eration scheduler estimates the number of fast states each
register-register, register-memory, and memory-register
path within the basic block requires. If the scheduler is too
conservative, the ECOcore will waste time in unnecessary
fast cycles, resulting in slower performance. If the sched-
uler is too aggressive, the back-end CAD tools will not be
able to meet timing requirements, causing the ECOcore to
run at a slower clock frequency. Thus, the benefits of SDP
are sensitive to the accuracy of the multi-cycle constraints.

To determine how many fast states a control state will
contain, the operation scheduler calculates a minimum exe-
cution time for the block, in terms of fast clock cycles. This
number is the maximum of the number of memory oper-
ations in the block and the critical path through the block
divided by the fast clock period. For this calculation, the
tool chain assumes that all memory operations will hit in
the L1 cache. To achieve maximum performance, the ECO-
core scheduler must accurately estimate the number of fast
states required for the critical path through each basic block
and assign memory operations to the earliest fast states in
which their inputs will be ready.

The ECOcore approach to scheduling accounts for both
widely varying operation latencies (from 10 ps for a NAND
to over 1 ns for a multiply) and the degree to which bit-
level parallelism in back-to-back operations can reduce the
latency of a sequence of operations. For example, consider
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Figure 2. Example datapath and timing diagram demonstrating SDP within one control state Under SDP, non-
memory datapath operators chain freely within a basic block, while memory operators and associated receive regis-
ters align to fast clock boundaries.

a multiply followed by an add. At 45 nm, a single 32-bit
add takes approximately 0.31 ns, and a single 32-bit mul-
tiply takes 1.12 ns, resulting in a naı̈ve estimate of 1.43 ns
for the combined operation. However, after CAD tool op-
timizations the chained multiply-plus-add operation takes
only 1.14 ns (a savings of 20%). A pre-computed lookup ta-
ble of all sequences of two back-to-back operators approxi-
mates the effects of bit-level parallelism.

Patching ECOcores, like c-cores, are patchable. Analyz-
ing the programs in Table 1 shows an opportunity to re-
duce the patching overheads present in [27]: In our work-
loads, 87% of all compile-time constants can be represented
by 8 or fewer bits. Thus, we can use smaller configurable
registers to represent constants with little risk of reducing
generality. This allows us to reduce patching area and en-
ergy overheads in ECOcores by 43% and 70%, respectively,
without significantly impacting our ability to adapt to soft-
ware changes.

Synthesizing ECOcores The ECOcore toolchain extends
the c-core [27] toolchain, and uses the OpenIMPACT
(1.0rc4) [20], CodeSurfer (2.1p1) [7], and LLVM (2.4) [17]
compiler infrastructures. It can process arbitrary C pro-
grams and automatically selects parts that are a good match
for conversion into hardware.

Our toolchain generates synthesizeable Verilog and au-
tomatically processes the design in the Synopsys CAD tool
flow, starting with netlist generation and continuing through
placement, clock tree synthesis, routing, and post-route op-
timizations. For synthesis, we target a TSMC 45 nm GS
process using Synopsys Design Compiler (C-2009.06-SP2)

and IC Compiler (C-2009.06-SP2). We configure the tools
to optimize for speed and power.

Simulation and power measurement We use a cycle-
accurate simulator to measure ECOcore performance com-
pared to a general-purpose MIPS processor without ECO-
cores. The toolchain automatically generates simulator
models for ECOcores. The simulator measures power by
periodically sampling execution, tracing the ECOcore’s in-
puts and outputs. Traces drive the Synopsys VCS (C-
2009.06) logic simulator and Synopsys PrimeTime (C-
2009.06-SP2). PrimeTime computes static and dynamic
power for each sampling period.

We derive processor and clock power values for other
system components from specifications for a MIPS 24KE
processor in a TSMC 45 nm process [18] and component
ratios for Raw reported in [16]. We assume a MIPS core
frequency of 1.5 GHz with 0.10 mW/MHz for CPU opera-
tion. We use CACTI 5.3 [29] for I- and D-cache power.

Modeling memory performance To quickly explore a
wide range of memory architectures, we have developed
an energy, performance, and area model for the ECOcore
memory hierarchy. For large (>2KB) cache arrays, we use
data from CACTI [29] for all three metrics. We also in-
clude extra wire delay for reaching the arrays based on our
place-and-routed ECOcore designs. In Section 4, we ex-
plore the use of very small caches. We model these as ar-
rays of latches and use values from measurements of arrays
synthesized in our ASIC tool flow.
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Figure 3. ECOcore performance and efficiency Baseline ECOcores provide significantly better energy-delay
(top), using SDP to achieve lower latency (middle), and energy usage (bottom) compared to c-cores.
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Figure 4. Application performance and efficiency with ECOcores Energy-delay (top), application latency
(middle), and energy (bottom) improvements from using ECOcores can be large, with latency reductions of
up to 35% and average EDP reductions of more than 2×. The benefits of ECOcores increase with higher
application coverage.



Workload Description # ECOcores Coverage Avg. Slow clock ECOcores Area ECOcores +Patch Opt. Area
% MHz mm2 mm2

bzip2 [26] Data compression algorithm 1 76 366.74 0.27 0.18
cjpeg [14] JPEG image compression 3 75 116.73 0.31 0.18
djpeg [14] JPEG image decompression 3 77 85.32 0.33 0.21
mcf [26] Single-depot vehicle scheduling 3 82 302.41 0.28 0.17
radix [30] Sorting algorithm 1 94 120.38 0.17 0.10
sat solver [?] Stochastic local search SAT solver 2 66 215.20 0.30 0.20
twolf [26] Placement & connection of transistors 4 49 252.20 0.20 0.13
viterbi [11] Convolutional code decoder 1 98 259.07 0.22 0.12
vpr [26] Place and route algorithm 1 61 684.93 0.37 0.23

Table 1. ECOcore Workloads We built 19 ECOcores running at 1.5GHz for 9 irregular applications, covering the
majority of execution. Patching optimizations significantly reduce area.

3.2 Evaluating SDP

In this section we describe our workloads and evaluate
the impact of SDP on ECOcore efficiency, performance, and
energy-delay product.

Table 1 describes the nine applications for which we
have created ECOcores. For each, our toolchain uses execu-
tion profiles to identify the most time-consuming functions
and loop bodies in the application. The toolchain then ap-
plies aggressive function inlining and loop body outlining
to isolate these portions of the program for conversion into
ECOcores.

We evaluate SDP and its associated scheduling and logic
optimizations compared to c-core and software implemen-
tations of our workload. Figure 3 shows energy-delay prod-
uct (EDP), and its two components (execution time and en-
ergy), for the portions of the applications executed on ECO-
cores. We normalize results to the baseline single-issue low-
power MIPS processor executing the same function. In ad-
dition to the baseline ECOcore design, we also present num-
bers for c-cores and an ECOcore with reduced patchability
overheads (“+Patch Opt.”). Since the ECOcore execution
model is basic block based, benchmarks with larger basic
blocks show greater improvements. We do not currently
perform loop unrolling, but these results indicate it may be a
fruitful optimization for ECOcores, at the expense of some
additional area. The ECOcores not only outperform both
the MIPS baseline and c-cores, but they are substantially
more energy-efficient than c-cores. On average, the ECO-
core baseline has a speedup of 1.27 relative to MIPS and
1.47 relative to c-cores. The baseline ECOcore reduces en-
ergy for covered execution by 80% over MIPS and by 33%
over c-cores.

Figure 4 shows how these performance and efficiency
gains are translated to the application level, where ECO-
cores offer an average EDP improvement of 59%.

4 Cachelets

Our measurements (see Figure 6) show that load-use la-
tency, and equivalently, L1 hit time, in an ECOcore is a

limiting factor for its performance. On average, L1 cache
hits account for 30.8% of total time on the critical execution
path for an ECOcore. Thus, reducing the load-use penalty
should significantly improve ECOcore performance.

In conventional processors, all loads and stores go to a
single cache since all load and store instructions execute on
a small set of load/store functional units, but ECOcores can
optimize load and store operations in isolation. ECOcores
use small, very fast, distributed L0 caches called cachelets
to reduce average memory latency. Cachelets provide sub-
cycle load-use latency, 6× faster than the L1. Cachelets
contain one to four cache lines and are tightly integrated
into the ECOcore data path. Each ECOcore may have
several cachelets. Each cachelet serves a fixed subset of
these static operations, all of whose accesses go through the
cachelet. Cachelets are fully coherent, and an inclusive L1
backs all lines in cachelets. Operations that have not been
statically mapped to a cachelet communicate directly with
the L1.

Both the MIPS and ECOcore baselines have a 3-cycle
load-use latency to the L1. The small size and datapath in-
tegration of cachelets combine to offer hit times of half a
cycle (based on synthesis results), reducing common case
memory latency by 83%. Figure 5 shows how an ECO-
core with cachelets communicates with the L1 cache and
shows the internal structure of a cachelet. In the figure, two
communicating memory operations share a single, one-line
cachelet, while a third accesses the L1. Internally, cachelets
share many similarities with small full-scale caches, such
as tags, comparators, and word select muxes, but they use
latches rather than SRAMs to store data.

Below, we present a simple coherence protocol for
cachelets, explore alternatives for deciding what types of
cachelets to instantiate, and evaluate their impact on perfor-
mance and EDP.

Coherence The ECOcore execution model requires a co-
herent memory system, so the coherence protocol must
extend to cachelets. In order to provide such low la-
tency, cachelets must be distributed: Synthesis experiments
showed that, for a single shared L0, multiplexing across
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Figure 5. Cachelet architecture With cachelets, memory operations with good locality will be mapped to local, low-
latency memories while other operations continue to interface directly to the L1.

all memory operations in an ECOcore would have higher
latency than a cachelet access. Likewise, making each
cachelet a full-fledged cache from the protocol’s perspec-
tive is not practical because the coherence controller and
state machines for the cachelet would be much larger than
the cachelet itself. This, and the distributed nature of the
cachelets, differentiate them from an L0 cache.

To provide cachelet coherence at minimal cost, we al-
low cachelets to “check out” cache lines from the shared L1
cache. To check out a cache line, the cachelet issues a fill
request to the L1 cache. The L1 acquires exclusive access to
the line and returns its contents to the cachelet. The cachelet
now has exclusive access to the line. If another cachelet, the
general-purpose core, or another processor in the system at-
tempts to access that line, the L1 detects this and forcibly
reclaims the line from the cachelet.

To perform a reclamation, the L1 freezes the ECO-
core to prevent concurrent updates to the cachelet, copies
the cachelet’s contents back into the L1, invalidates the
line in the cachelet, and completes the coherence request.
The ECOcore can then continue execution, potentially re-
acquiring the line if it needs it again.

Since it requires halting ECOcore execution, eviction
is a heavy-weight operation. We minimize costs through
profiling and careful assignment of cachelets to mem-
ory operations (described below). Additionally, when an
ECOcore finishes executing, the ECOcore implements a
cachelet flush mechanism that writes back the contents of
all dirty cachelets in the ECOcore and invalidates all lines
in cachelets.

Cachelet selection Judicious assignment of cachelets to
static memory operations is essential for good performance.
Including too many cachelets increases ECOcore area re-
quirements without significantly improving performance,
whereas including too few limits performance gains. Like-
wise, we must avoid operation-to-cachelet mappings that

would result in poor hit rates or frequent coherence traffic.
We have developed two strategies for selecting which

cachelets to instantiate. The first strategy, called private per-
forms an LRU-stack-based [4] cache simulation in which
every memory operation has a dedicated cache. The simu-
lation reveals how many lines the cachelet needs in order to
significantly reduce the miss rate for that operation. The
simulation includes coherence misses, so operations that
share data with other memory operations are unlikely to re-
ceive a cachelet. The private strategy includes a cachelet if
it would require fewer than 4 lines, and would have a hit
rate of at least 66%.

The second strategy, called shared, analyzes the com-
munication patterns and assigns a shared cachelet to com-
municating sets of memory operations. It forms transitive
closures of communication operations within an ECOcore,
partitioning operations into sets such that, during an invo-
cation of an ECOcore no operation in one set accesses any
line of memory that any operation in another set accesses. It
uses the same LRU-stack analysis as in the private strategy
to determine whether to include a cachelet and how big it
should be.

Cachelet evaluation We measured the impact of adding
cachelets to ECOcores using both strategies. On average,
the private scheme produces 8.4 cachelets per ECOcore
and shared produces 6.2. In the shared case, each cachelet
served an average of 10.3 memory operations. No single
ECOcore utilized more than 28 total lines of cache across
its cachelets, and on average used fewer than 16 total lines.
Area overheads for private and shared are 13.4% and 16.8%,
respectively.

Figure 6 shows the impact of cachelets on ECOcore per-
formance (top), application performance (middle), and ap-
plication EDP (bottom). The first bar in each series depicts
a baseline ECOcore without cachelets (the “+Patch Opt.”
bar from Figures 3 and 4), and the second and third bars
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Figure 6. Cachelet performance and efficiency The addition of cachelets greatly reduces latency and further
improves EDP.



present the private and shared strategies, respectively. The
fourth bar shows results for a limit study for cachelet ben-
efits assuming a 0.5-cycle, 32-KB L1. Both the private
and shared cachelet approaches offer performance benefits,
but the private strategy covers fewer critical memory op-
erations, due to frequent communication between memory
operations. The shared strategy realizes 66% of the perfor-
mance potential seen in the limit study.

Adding cachelets to SDP reduces ECOcore latency by
13%, application latency by 10%, and application EDP by
4%. In total, the benefits of ECOcores with SDP, patching
optimizations and cachelets provide average improvements
for covered code of 7.1× in EDP and a speedup of 1.5×. At
the application level, this translates to an average speedup
of 1.33× and an average application EDP reduction of 66%.

5 Related work

Specialized coprocessors are a subject of increasing in-
terest. Recent work has targeted accelerators for computa-
tions such as cryptography [31], signal processing [10, 13],
vector processing [2, 8], physical simulation [1], and com-
puter graphics [19, 3, 21]. Many of the ASIC-like acceler-
ators [6, 12, 32] have focused on using modulo scheduling
to exploit regular loop bodies that have ample loop paral-
lelism and easy-to-analyze memory access patterns. Among
these, the work in [12] and [32] design circuits with limited
flexibility by incorporating limited programmability, or by
merging multiple circuits into one, respectively. ECOcores
differ in that they target the more general class of irregular,
hard-to-parallelize computations that are not well-suited to
modulo scheduling.

Conservation cores [27] are automatically-generated,
application-specific hardware designed to improve appli-
cation energy efficiency. While c-cores are very energy-
efficient and offer a patching-based model for preserving
longevity, previous work did not focus on performance, and
offered minimal speedup. In contrast, ECOcores focus on
both energy efficiency and performance, which both SDP
and cachelets provide. ECOcores also improve upon the
patching-based model for longevity, using bitwidth analysis
on compile-time constants to reduce patching overheads.

Several designs have leveraged the bit-level parallelism
that SDP exposes between datapath operations. The ap-
proach presented in [25] schedules multiple dependent op-
erators back-to-back in the same cycle to help physical syn-
thesis meet frequency targets. The approach in [22] uses the
technique to reduce register file accesses for sequential code
regions. Finally, the work in [9] moves datapath operators
across pipeline registers to prevent short path-related false
positive timing errors. These techniques reschedule oper-
ators across just one or two cycles. SDP applies this tech-
nique more aggressively, eliminating most pipeline registers

between datapath components and can incorporate dozens
of operations, including many memory operations, into a
single fat operation spanning a single slow-clock cycle. Fur-
thermore, SDP applies chaining only to arithmetic opera-
tors, leaving memory to run fully pipelined.

ECOcores provide a higher-performing and more-
efficient memory system, with pipelined access and in-
tegrated cachelets. The CHiMPS multi-cache architec-
ture [23] uses several application-specific caches and en-
forces coherence via flushing, but the purpose, sizing, and
implementation of CHiMPS multi-cache differs from the
cachelet approach. CHiMPS aggregates 4-KB block RAMs
on an FPGA into caches backing different regions of mem-
ory in order to provide memory parallelism and to simplify
the memory interface for a C-like programming model. In
contrast, cachelets utilize small caches with between one
and four lines that reduce the average hit time and access
energy by eliding accesses to the L1.

Both the cachelet and SDP techniques apply broadly.
SDP allows accelerators to greatly reduce clock energy and
improve performance by implementing complex operators
that include cache accesses. This approach can be used,
for example, to generate the “magic” instructions discussed
in [15]. Cachelets reduce the average cost of cache accesses
to a fraction of L1 latency. Both custom datapath archi-
tectures that support caching, such as [28], and more con-
ventional processors with static instruction based cluster-
steering [24] can apply the cachelet technique.

6 Conclusion

We have presented ECOcores, an extension of c-cores
that improve the performance and energy efficiency of ir-
regular programs. ECOcores use two techniques to reduce
energy consumption and improve performance compared
to both a general purpose processor and existing work on
similar specialized hardware. First, ECOcores use SDP
to efficiently construct and clock complex operators capa-
ble of containing dependent memory references. Second,
cachelets reduce L1 hit times while maintaining a coherent
memory interface. Together, these techniques speed up the
code they target by 1.5×, improve EDP by 7.1× and speed
up the whole application by 1.33× on average, while reduc-
ing application energy-delay by 66%.
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