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A LANDSCAPE OF THE NEW
DARK SILICON DESIGN REGIME

...................................................................................................................................................................................................................

THE RISE OF DARK SILICON IS DRIVING A NEW CLASS OF ARCHITECTURAL TECHNIQUES

THAT ‘‘SPEND’’ AREA TO ‘‘BUY’’ ENERGY EFFICIENCY. THIS ARTICLE EXAMINES FOUR

RECENTLY PROPOSED DIRECTIONS (‘‘THE FOUR HORSEMEN’’) FOR ADAPTING TO DARK

SILICON, OUTLINES A SET OF EVOLUTIONARY DARK SILICON DESIGN PRINCIPLES, AND

SHOWS HOW ONE OF THE DARKEST COMPUTING ARCHITECTURES—THE HUMAN

BRAIN—OFFERS INSIGHTS INTO MORE REVOLUTIONARY DIRECTIONS FOR COMPUTER

ARCHITECTURE.

......Recent VLSI technology trends
have led to a disruptive new regime for dig-
ital chip designers, where Moore’s law con-
tinues but CMOS scaling provides
increasingly diminished fruits. As in prior
years, the computational capabilities of
chips are still increasing by 2.8� per process
generation. However, a utilization wall1 lim-
its us to only 1.4� of this benefit—causing
large underclocked swaths of silicon area—
hence the term dark silicon.2,3

Fortunately, simple scaling theory makes
the utilization wall easy to derive, helping us
to think intuitively about the problem. Tran-
sistor density continues to improve by 2�
every two years, and native transistor speeds
improve by 1.4�. But transistor energy effi-
ciency improves by only 1.4�, which, under
constant power budgets, causes a 2� shortfall
in energy budget to power a chip at its native
frequency. Therefore, our utilization of a
chip’s potential is falling exponentially by a
jaw-dropping 2� per generation. Thus, if
we are just bumping up against power limita-
tions in the current generation, then in eight
years, designs will be 93.75 percent dark!

A recent paper refers to this widespread
disruptive factor informally as the ‘‘dark sili-
con apocalypse,’’4 because it officially marks
the end of one reality (Dennard scaling5),
where progress could be measured by
improvements in transistor speed and
count, and the beginning of a new reality
(post-Dennard scaling), where progress is
measured by improvements in transistor en-
ergy efficiency. Previously, we tweaked our
circuits to reduce transistor delays and
turbo-charged them with dual-rail domino
to reduce fan-out-of-4 (FO4) delays. From
now on, we will tweak our circuits to mini-
mize capacitance switched per function; we
will strip our circuits down and starve them
of voltage to squeeze out every femtojoule.
Whereas once we would spend exponentially
increasing quantities of transistors to buy
performance, now we will spend these tran-
sistors to buy energy efficiency.

The CMOS scaling breakdown was the
direct cause of industry’s transition to multi-
core in 2005. Because filling chips with cores
does not fundamentally circumvent utiliza-
tion wall limits, multicore is not the final
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solution to dark silicon;3 it is merely indus-
try’s initial, transitional response to the
shocking onset of the dark silicon age. In-
creasingly over time, the semiconductor in-
dustry is adapting to this new design
regime, realizing that multicore chips will
not scale as transistors shrink and that the
fraction of a chip that can be filled with
cores running at full frequency is dropping
exponentially with each process genera-
tion.1,3 This reality forces designers to ensure
that, at any point in time, large fractions of
their chips are effectively dark—either idle
for long periods of time or significantly
underclocked. As exponentially larger frac-
tions of a chip’s transistors become darker,
silicon area becomes an exponentially
cheaper resource relative to power and energy
consumption. This shift calls for new archi-
tectural techniques that ‘‘spend’’ area to
‘‘buy’’ energy efficiency. This saved energy
can then be applied to increase performance,
or to have longer battery life or lower operat-
ing temperatures.

The utilization wall that causes dark silicon
Table 1 shows the derivation of the utiliza-

tion wall1 that causes dark silicon.2,3 It
employs a scaling factor, S, which is the
ratio between the feature sizes of two processes
(for example, S ¼ 32=22 ¼ 1:4x between 32
and 22 nm). In both Dennard and post-
Dennard scaling, the transistor count scales
by S 2, and the transistor switching frequency
scales by S. Thus, our net increase in comput-
ing performance is S3, or 2.8x.

However, to maintain a constant power
envelope, these gains must be offset by a cor-
responding reduction in transistor switching
energy. In both cases, scaling reduces transis-
tor capacitance by S, improving energy effi-
ciency by S. In Dennard scaling, we can
scale the threshold voltage and thus the oper-
ating voltage, which yields another S 2 energy-
efficiency improvement. However, in today’s
post-Dennard, leakage-limited regime, we
cannot scale threshold voltage without expo-
nentially increasing leakage, and as a result,
we must hold operating voltage roughly con-
stant. The end result is a shortfall of S2, or 2�
per process generation. This shortfall multi-
plies with each process generation, resulting
in exponentially darker silicon over time.

This shortfall prevents multicore from
being the solution to scaling.1,3 Although
advancing a single process generation would
allow enough transistors to increase core
count by 2�, and frequency could be 1.4�
faster, the energy budget permits only a
1.4� total improvement. Per Figure 1, across
two process generations (S ¼ 2), designers
could increase core count by 2� leaving fre-
quency constant, or they could increase fre-
quency by 2� with leaving core count
constant, or they could choose some middle
ground between the two. The remaining 4�
potential remains inaccessible.

More positively stated, the true new poten-
tial of Moore’s law is a 1.4� energy-efficiency
improvement per generation, which could be
used to increase performance by 1.4�. Addi-
tionally, if we could somehow make use of
dark silicon, we could do even better.

Although the utilization wall is based on a
first-order model that simplifies many fac-
tors, it has proved to be an effective tool
for designers to gain intuition about the fu-
ture, and has proven remarkably accurate
(see the sidebar ‘‘Is Dark Silicon Real? A Re-
ality Check’’). Follow-up work6-8 has looked
at extending this early work1,3 on dark sili-
con and multicore scaling with more sophis-
ticated models that incorporate factors such
as application space and cache size.

Dark silicon misconceptions
Let’s clear up a few misconceptions before

proceeding. First, dark silicon does not mean
blank, useless, or unused silicon; it’s just

Table 1. Dennard vs. post-Dennard (leakage-limited) scaling.1 In

contrast to Dennard scaling,5 which held until 2005, under the

post-Dennard regime, the total chip utilization for a fixed power

budget drops by S2 with each process generation. The result is an

exponential increase in dark silicon for a fixed-sized chip under a

fixed area budget.

Transistor property Dennard Post-Dennard

D Quantity S2 S2

D Frequency S S

D Capacitance 1/S 1/S

V 2
DD 1=S2 1

) D Power ¼ D QFCV 2 1 S2

) D Utilization ¼ 1/Power 1 1=S2
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silicon that is not used all the time, or at its
full frequency. Even during the best days of
CMOS scaling, microprocessor and other
circuits were chock full of ‘‘dark logic’’
used infrequently or for only some applica-
tions—for instance, caches are inherently
dark because the average cache transistor is
switched for far less than one percent of
cycles, and FPUs remain dark in integer
codes.

Soon, the exponential growth of dark sil-
icon area will push us beyond logic targeted
for direct performance benefits toward
swaths of low-duty cycle logic that exists,
not for direct performance benefit, but for
improving energy efficiency. This improved

energy efficiency can then allow an indirect
performance improvement because it frees
up more of the fixed power budget to be
used for even more computation.

The four horsemen
Recently, researchers proposed a taxon-

omy—the four horsemen—that identifies
four promising directions for dealing with
dark silicon that have emerged as promising
potential approaches as we transition beyond
the initial multicore stop-gap solution. These
responses originally appeared to be unlikely
candidates, carrying unwelcome burdens in
design, manufacturing, or programming.
None is ideal from an aesthetic engineering

4 cores at 1.8 GHz 

4 cores at 2×1.8 GHz
(12 cores dark) 

2×4 cores at 1.8 GHz
(8 cores dark, 8 dim) 

(Industry’s choice) 

75% dark after two generations;
93% dark after four generations

65 nm 32 nm

Spectrum of trade-offs
between no. of cores and
frequency  

Example:

65 nm → 32 nm (S = 2)    

....

....

....

Figure 1. Multicore scaling leads to large amounts of dark silicon.3 Across two process gen-

erations, there is a spectrum of trade-offs between frequency and core count; these include

increasing core count by 2� but leaving frequency constant (top), and increasing frequency

by 2� but leaving core count constant (bottom). Any of these trade-off points will have

large amounts of dark silicon.

...............................................................................................................................................................................................

Is Dark Silicon Real? A Reality Check

A quick survey of recent designs from multicore outfits such as Tilera,

Intel, and AMD indicates that industry has pursued core count and fre-

quency combinations consistent with the utilization wall. For instance,

Intel’s 90-nm single-core Prescott chip ran at 3.8 GHz in 2004. Dennard

scaling would suggest that a 22-nm multicore version should run at 15.5

GHz, and contain 17 superscalar cores, for a total improvement of 69� in

instruction throughput. Instead, the upcoming 2013 22-nm Intel Core i7

4960X runs at 3.6 GHz and has six superscalar cores, a 5.7� peak serial

instruction throughput improvement. The darkness ratio is thus 91.74 per-

cent versus the 93.75 percent predicted by the utilization wall. The latest

2012 International Technology Roadmap for Semiconductors also shows

that scaling has proceeded consistently with post-Dennard predictions.
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point of view. But the success of complex
multiregime devices such as metal-oxide-
semiconductor field-effect transistors (MOS-
FETs) has shown that engineers can tolerate
complexity if the end result is better. Future
chips are likely to employ not just one horse-
man, but all of them, in interesting and
unique combinations.

The shrinking horseman
When confronted with the possibility of

dark silicon, many chip designers insist that
area is expensive, and that they would just
build smaller chips instead of having dark sil-
icon in their designs. Among the four horse-
men, these ‘‘shrinking chips’’ are the most
pessimistic outcome. Although all chips
may eventually shrink somewhat, the ones
that shrink the most will be those for
which dark silicon cannot be applied fruit-
fully to improve the product. These chips
will rapidly turn into low-margin businesses
for which further generations of Moore’s
law provide small benefit. Below is an exam-
ination of the spectrum of second-order
effects associated with shrinking chips.

Cost side of shrinking silicon. Understanding
shrinking chips requires considering semi-
conductor economics. The ‘‘build smaller
chips’’ argument has a ring of truth; after
all, designers spend much of their time trying
to meet area budgets for existing chip
designs. But exponentially smaller chips are
not exponentially cheaper; even if silicon
begins as 50 percent of system cost, after a
few process generations, it will be a tiny frac-
tion. Mask costs, design costs, and I/O pad
area will fail to be amortized, leading to ris-
ing costs per mm2 of silicon, which ulti-
mately will eliminate incentives to move
the design to the next process generation.
These designs will be ‘‘left behind’’ on
older generations.

Revenue side of shrinking silicon. Shrinking
silicon can also shrink the chip selling
price. In a competitive market, if there is a
way to use the next process generation’s
bounty of dark silicon to attain a benefit to
the end product, then competition will
force companies to do so. Otherwise, they
will generally be forced into low-end,

low-margin, high-competition markets, and
their competitor will take the high end and
enjoy high margins. Thus, in scenarios
where dark silicon could be used profitably,
decreasing area in lieu of exploiting it
would certainly decrease system costs, but
would catastrophically decrease sale price.
Hence, the shrinking-chips scenario is likely
to happen only if we can find no practical
use for dark silicon.

Power and packaging issues with shrinking
chips. A major consequence of exponentially
shrinking chips is a corresponding exponen-
tial rise in power density. Recent analysis of
many-core thermal characteristics has
shown that peak hotspot temperature rise
can be modeled as Tmax ¼ TDP � ðRconvþ
k=AÞ, where Tmax is the rise in temperature,
TDP is the target chip thermal design power,
Rconv is the heat sink thermal convection re-
sistance (lower is a better heat sink), k incor-
porates many-core design properties, and A is
chip area.8 If area drops exponentially, the
second term dominates and chip tempera-
tures rise exponentially. This in turn will
force a lower TDP so that temperature limits
are met, and reduce scaling below even the
nominal 1.4� expected energy-efficiency
gain. Thus, if thermals drive your shrink-
ing-chip strategy, it is much better to hold
your frequency constant and increase cores
by 1.4� with a net area decrease of 1.4�
than it is to increase your frequency by
1.4� and shrink your chip by 2�.

The dim horseman
As exponentially larger fractions of a chip’s

transistors become dark transistors, silicon
area becomes an exponentially cheaper re-
source relative to power and energy consump-
tion. This shift calls for new architectural
techniques that spend area to buy energy effi-
ciency. If we move past unhappy thoughts of
shrinking silicon and consider populating
dark silicon area with logic that we use only
part of the time, then we are led to some in-
teresting new design possibilities.

The term dim silicon refers to techniques
that put large amounts of otherwise-dark
silicon area to productive use by employing
heavy underclocking or infrequent use
to meet the power budget—that is, the
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architecture is strategically managing the
chip-wide transistor duty cycle to enforce
the overall power constraint.8,9 Whereas
early 90-nm designs such as Cell and Pre-
scott were dimmed because actual power
exceeded design-estimated power, we are
converging on increasingly more elegant
methods that make better trade-offs.

Dim silicon techniques include dynami-
cally varying the frequency with the number
of cores being used, scaling up the amount of
cache logic, employing near-threshold volt-
age (NTV) processor designs, and redesign-
ing the architecture to accommodate bursts
that temporarily allow the power budget to
be exceeded, such as Turbo Boost and com-
putational sprinting.10

Turbo Boost 1.0. Although first-generation
multicores had a ship-time-determined top
frequency that was invariant of the number
of currently active cores, Intel’s Turbo
Boost 1.0 enabled second-generation multi-
cores to make real-time trade-offs between
active core count and the frequency the
cores ran at: the fewer the cores, the higher
the frequency. When Turbo Boost is enabled,
it uses the energy gained from turning off
cores to increase the voltage and then the fre-
quency of the active cores. This technique,
known as dynamic voltage and frequency
scaling (DVFS), increases power proportional
to the cube of the increase in frequency.

NTV processors. In the past, DVFS was also
used to save cubic power when frequencies
were decreased. However, today, processor
manufacturers operate transistors at reduced
voltages—around 2.5� the threshold volt-
age, an energy-delay optimal point. This
point is right at the edge of an operating re-
gime where frequency starts to drop precipi-
tously as voltage is reduced, which makes
downward-DVFS much less effective.

Nonetheless, researchers have begun to
explore this regime. One recent approach is
Near-Threshold Voltage (NTV) logic,11

which operates transistors in the near-thres-
hold regime slightly above the threshold volt-
age, providing more palatable trade-offs
between energy and delay than subthreshold
circuits, for which frequency drops exponen-
tially with voltage decreases. Researchers have

explored wide-SIMD NTV processors,12

which seek to exploit data parallelism,
along with NTV many-core processors13

and an NTV x86 processor.14

Although NTV per-processor performance
drops faster than the corresponding savings in
energy-per-instruction (5� energy improve-
ment for an 8� performance cost), the perfor-
mance loss can be offset by using 8� more
processors in parallel if the workload allows
it. Then, an additional 5� processors could
turn the energy efficiency gains into additional
performance. So, with ideal parallelization,
NTV could offer 5� the throughput im-
provement by absorbing 40� the area. But
this would also require 40� more free paral-
lelism in the workload relative to the parallel-
ism consumed by an equivalent energy-
limited super-threshold many-core processor.

In practice, for many applications, 40�
additional parallelism can be elusive. For
chips with large power budgets that can al-
ready sustain hundreds of cores, applications
that have this much spare parallelism are rel-
atively rare. Interestingly, because of this ef-
fect, NTV’s applicability across applications
increases in low-energy environments because
the energy-limited baseline super-threshold
design has consumed less of the available par-
allelism. Furthermore, NTV clearly becomes
more applicable for workloads with extremely
large amounts of parallelism.

NTV presents several circuit-related chal-
lenges that have seen active investigation, es-
pecially because technology scaling will
exacerbate rather than ameliorate these factors.
A significant NTV challenge has been suscep-
tibility to process variability. As operating vol-
tages drop, variation in transistor threshold
due to random dopant fluctuation is propor-
tionally higher, and leakage and operating fre-
quency can vary greatly. Because NTV
designs can expand the area consumption by
approximately 8� or more, variation issues
are exacerbated. Other challenges include the
penalties involved in designing low-operating
voltage static RAMs (SRAMs) and the
increased interconnection energy consump-
tion due to greater spreading across cores.

Bigger caches. An often-proposed dim-silicon
alternative is to simply allocate otherwise
dark silicon area for caches. Because only a
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subset of cache transistors (such as a word-
line) is accessed each cycle, cache memories
have low duty cycles and thus are inherently
dark. Compared to general-purpose logic, a
level-1 (L1) cache clocked at its maximum
frequency can be about 10� darker per
square millimeter, and larger caches can be
even darker. Thus, adding cache is one way
to simultaneously increase performance and
lower power density per square millimeter.
We can imagine, for instance, expanding
per-core cache at a rate that soaks up the
remaining dark silicon area: 1.4 to 2�
more cache per core per generation. How-
ever, many applications do not benefit
much from additional cache, and upcoming
TSV-integrated DRAM will reduce the
cache benefit for those applications that do.

Computational sprinting and Turbo
Boost. Other techniques employ ‘‘temporal
dimness’’ as opposed to ‘‘spatial dimness,’’
temporarily exceeding the nominal thermal
budget but relying on thermal capacitance
to buffer against temperature increases, and
then ramping back to a comparatively dark
state. Intel’s Turbo Boost 2.0 uses this
approach to boost performance up until the
processor reaches nominal temperature, rely-
ing on the heat sink’s innate thermal capaci-
tance. ARM’s big.LITTLE employs four
A15 cores until the thermal envelope is
exceeded (anecdotally, about 10 seconds),
then switches over to four lower-energy,
lower-performance A7 cores. Computational
sprinting carries this a step further, employ-
ing phase-change materials that let chips ex-
ceed their sustainable thermal budget by an
order of magnitude for several seconds, pro-
viding a short but substantial computational
boost. These modes are especially useful for
‘‘race to finish’’ computations, such as web-
page rendering, for which response latency
is important, or for which speeding up the
transition of both the processor and its sup-
port logic to a low-power state reduces en-
ergy consumption.

The specialized horseman
The specialized horseman uses dark sili-

con to implement a host of specialized co-
processors, each either much faster or much
more energy efficient (100 to 1,000�) than

a general-purpose processor.1 Execution
hops between coprocessors and general-
purpose cores, executing where it is most ef-
ficient. The unused cores are power- and
clock-gated to keep them from consuming
precious energy. Unlike dim silicon, which
tends to focus on manipulating voltages, fre-
quencies, and duty cycles as ways to manage
power, specialized logic focuses on reducing
the amount of capacitance that needs to be
switched to perform a particular operation.

The promise for a future of widespread
specialization is already being realized: we
are seeing a proliferation of specialized accel-
erators that span diverse areas such as base-
band processing, graphics, computer vision,
and media coding. These accelerators enable
orders-of-magnitude improvements in en-
ergy efficiency and performance, especially
for computations that are highly parallel.
Recent proposals have extrapolated this
trend and anticipate that the near future
will see systems comprising more coproces-
sors than general-purpose processors.1,7 This
article refers to these systems as coprocessor-
dominated architectures, or CoDAs.

As specialization usage grows to combat
the dark silicon problem, we are faced with
a modern-day specialization ‘‘Tower of
Babel’’ crisis that fragments our notion of
general-purpose computation and eliminates
the traditional clear lines of communication
between programmers and software and the
underlying hardware. Already, we see the
deployment of specialized languages such as
CUDA that are not usable between similar
architectures (for example, AMD and Nvi-
dia). We see overspecialization problems be-
tween accelerators that cause them to become
inapplicable to closely related classes of com-
putations (such as double-precision scientific
codes running incorrectly on a GPU’s non-
IEEE-compliant floating-point hardware).
Adoption problems are also caused by the ex-
cessive costs of programming heterogeneous
hardware (such as the slow uptake of Sony
PlayStation 3 versus Xbox). Moreover, spe-
cialized hardware risks obsolescence as stan-
dards are revised (for example, a JPEG
standard revision).

Insulating humans from complexity. These
factors speak to potential exponential
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increases in design, verification, and pro-
gramming effort for these CoDAs. Combat-
ing the Tower of Babel problem requires
defining a new paradigm for how specializa-
tion is expressed and exploited in future pro-
cessing systems. We need new scalable
architectural schemas that employ pervasively
specialized hardware to minimize energy and
maximize performance while at the same
time insulating the hardware designer and
programmer from such systems’ underlying
complexity.

Overcoming Amdahl-imposed limits on
specialization. Amdahl’s law provides an ad-
ditional roadblock for specialization. To
save energy across the majority of the com-
putation, we must find broad-based special-
ization approaches that apply to both
regular, parallel code and irregular code.
We must also ensure that communicating
specialized processors doesn’t fritter away
their energy savings on costly cross-chip
communication or shared-memory accesses.

Recent efforts. The UCSD GreenDroid
processor (see Figure 2)3,15 is one such
CoDA-based system that seeks to address
both complexity issues and Amdahl limits.
GreenDroid is a mobile application processor
that implements Android mobile environment
hotspots using hundreds of specialized cores
called conservation cores, or c-cores.1,9 C-cores,
which target both irregular and regular code,
are automatically generated from C or C
source code, and support a patching mecha-
nism that lets them track software changes.
They attain an estimated �8 to 10� energy-
efficiency improvement, at no loss in serial
performance, even on nonparallel code, and
without any user or programmer intervention.

Unlike NTV processors, c-cores need not
find additional parallelism in the workload to
cover a serial performance loss. Thus, c-cores
are likely to work across a wider range of work-
loads, including collections of serial programs.
However, for highly parallel workloads in
which execution time is loosely concentrated,
NTV processors might hold an area advantage
because of their reconfigurability.

Other specialized processors such as the
University of Wisconsin-Madison’s DySER16

and the University of Michigan’s Beret17

propose alternative architectures that exploit
specialization like c-cores, but focus on
improving reconfigurability at the cost of
energy savings. Recent efforts have also
examined the use of approximate neural-
network-based computing as an elegant
way to package programmability, reconfi-
gurability, and specialization.18

The ‘‘deus ex machina’’ horseman
Of the four horsemen, this is by far the

most unpredictable. ‘‘Deus ex machina’’
refers to a plot device in literature or theater
in which the protagonists seem increasingly
doomed until the very last moment, when
something completely unexpected comes
out of nowhere to save the day. For dark sil-
icon, one deus ex machina would be a break-
through in semiconductor devices. However,
as we shall see, the breakthroughs that would
be required would have to be quite funda-
mental—in fact, we most likely would have
to build transistors out of devices other
than MOSFETs. Why? Because MOSFET
leakage is set by fundamental principles of
device physics, and is limited to a subthresh-
old slope of 60 mV/decade at room temper-
ature; this corresponds to a reduction of 10�
leakage current for every 60 mV that the
threshold voltage is above the Vss, which is
determined by properties of thermionic
emission of carriers across a potential well.
Thus, although innovations such as Intel’s
FinFET/TriGate transistor and high-K
dielectrics represent significant achievements
maintaining a subthreshold slope close to
their historical values, they still remain with-
in the scope of the MOSFET-imposed limits
and are one-time improvements rather than
scalable changes.

Two VLSI candidates that bypass these
limits because they are not based on thermal
injection are tunnel field-effect transistors
(TFETs),19 which are based on tunneling
effects, and nanoelectromechanical system
(NEMS) switches,20 which are based on
physical relays. TFETs are reputed to have
subthreshold slopes on the order of
30 mV/decade—twice as good as the ideal
MOSFET—but with lower on-currents
than MOSFETs, limiting their use in
high-performance circuits. NEMS devices
have essentially a near-zero subthreshold
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slope but slow switching times. Both TFETs
and NEMS devices thus hint at orders-
of-magnitude improvements in leakage but
remain untamed and fall short of being
integrated into real chips.

Realizing the importance of the fourth
horseman, a recent $194 million DARPA/

MARCO STARnet program is funding
four centers, each focusing on a key direction
for beyond-CMOS approaches: developing
electron spin-based memory computation
devices (C-SPIN), formulating new in-
formation-processing models that can lever-
age statistical (that is, nondeterministic)
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Figure 2. The GreenDroid architecture, an example of a coprocessor-dominated architecture
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beyond-CMOS devices (SONIC), engineer-
ing nonconventional atomic scale engineered
materials (FAME), and creating new devices
that extend prior work on TFETs to operate
at even lower voltages (LEAST).

Evolutionary design principles for dark
silicon

While researchers work to mature the new
ideas represented by the four horsemen, what
principles should guide today’s designs that
must tackle dark silicon? Listed below is a
set of evolutionary, rather than revolutionary,
dark silicon design principles that are moti-
vated by changing trade-offs created by
dark silicon:

� Moving to the next generation will pro-
vide an automatic 1.4� energy-efficiency
increase. Figure out how you will use it.
As a baseline, chip capabilities will
scale with energy, whether it is allocated
to frequency or more cores. You can in-
crease or decrease frequency or transis-
tor counts, but transistors switched per
unit time can increase by only 1.4�.

� The next generation will create a large
amount of dark area. Determine, for
your domain, how to trade mostly dark
area for energy. If the die area is fixed,
any scaling is going to have a surplus
of transistors. Which combination of
the four horsemen is most effective in
your domain? Should you go dim—
more caches? Underclocked arrays of
cores? NTV on top of that? Add accel-
erators or c-cores? Use new kinds of de-
vices? Shrink your chip?

� Pipelining makes less sense than it used to.
Figure out if faster transistor delays will
allow you to fit more in a pipeline stage
without reducing frequency. Pipelining
increases duty cycle and introduces addi-
tional capacitance in circuits (registers,
prediction circuits, bypassing, and clock
tree fan out), neither of which is dark sil-
icon friendly. Reducing pipeline depth
and increasing FO4 depths reduces
capacitive overhead. Note, too, that exces-
sive pipelining and frequency exacerbates
the gap between processing and memory.

� Architectural multiplexing and logic shar-
ing are becoming increasingly questionable

optimizations. See if they still make sense.
Sharing introduces additional energy
consumption because it requires sharers
to have longer wires to the shared logic,
and it introduces additional perfor-
mance and energy overheads from the
control logic that manages the sharing.
For example, architectures that have
repositories of nonshared state that
share physical pipelines (such as large-
scale multithreading) pay large wire
capacitances inside these memories to
share that state. As area gets cheaper, it
will make less sense to pay these over-
heads, and the degree of sharing will de-
crease so that the energy cost of pulling
state out of these state repositories will
be reduced.

� Multiplexing and RAMs that facilitate
sharing of program data are still a good
idea. Keep them. If different threads of
control are truly sharing data, multi-
plexed structures, such as shared RAM,
or crossbars, are often still more efficient
than coherence protocols or other
schemes.

� Architectural techniques for saving tran-
sistors should only be applied if they do
not worsen energy efficiency. Transistors
are getting exponentially cheaper, and
we can’t use them all at once. Why
are we trying to save transistors? Lo-
cally, transistor-saving optimizations
make sense, but an exponential wind
is blowing against these optimizations
in the long run.

� Power rails are the new clocks. Design
with them in mind. Ten years ago, it
was a big step to move beyond a few
clock domains. Now, chips can have
hundreds of clock domains, all with
their own clock gates. With dark silicon,
we will see the same effect with power
rails; we will have hundreds and
maybe thousands of power rails in the
future, all with their own power gates,
to manage the leakage for the many het-
erogeneous system components.

� Heterogeneity results from the shift from a
1D objective function (performance) to a
2D objective function (performance and
energy). Design with the shape of this
function in mind. The past lacked in
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heterogeneity, because designs were
largely measured according to a single
axis—performance. To first order, there
was a single optimal design point. Now
that performance and energy are both
important, a Pareto curve trades off per-
formance and energy, and there is no
one optimal design across that curve;
there are many optimal points. Optimal
designs will incorporate several such
points across these curves.

These rules of thumb will guide our exist-
ing designs along an evolutionary path to be-
come increasingly dark silicon friendly—but
what then of more revolutionary approaches?

Insights from the brain: a dark technology
Perhaps one promising indicator that low-

duty cycle, ‘‘dark technology’’ can be mas-
tered, unlocking new application domains, is
the efficiency and density of the human
brain. The brain, even today, can perform
many tasks that computers cannot, especially
vision-related tasks. With 80 billion neurons
and 100 trillion synapses operating at less
than 100 mV, the brain embodies an existence
proof of highly parallel, reliable, and dark
operation, and embodies three of the
horsemen—dim, specialized, and deus ex
machina. Neurons operate with extremely
low-duty cycles compared to processors—at
best, 1 kilohertz. Although computing with sil-
icon-simulated neurons introduces excessive
‘‘interpretive’’ overheads—neurons and transis-
tors have fundamentally different properties—
the brain can offer us insight and long-term
ideas about how we can redesign systems for
the extremely low-duty cycles and low voltages
called for by dark silicon. Here are some of
these properties, which may give us insight
on more revolutionary extensions to the evolu-
tionary principles proposed in the last section:

� Specialization. As with the specialized
horseman, different groups of neurons
serve different functions in cognitive
processing, connect to different sensory
organs, and allow reconfiguration,
evolving with time synaptic connec-
tions customized to the computation.

� Very dark operation. Neurons fire at a
maximum rate of approximately 1,000

switches per second. Compare this to
arithmetic logic unit (ALU) transistors
that toggle at three billion times per
second. The most active neuron’s activ-
ity is a millionth of that of processing
transistors in today’s processors.

� Low-voltage operation. Brain cells oper-
ate at approximately 100 mV, yielding
CV 2 energy savings of 100� versus
1-V operation, in a clear parallel to
the dim horseman’s NTV circuits.
Communication is low swing and low
voltage, saving large amounts of energy.

� Limited sharing and memory multiplex-
ing. Any given neuron can switch only
1,000 times per second, by definition,
so it must have extremely limited shar-
ing, because a point of multiplexing
would be a bottleneck in parallel pro-
cessing. The human visual system starts
with 6M cones in the retina, similar to
a 2-megapixel display, processes it with
local neurons, and then sends it on the
1M-neuron optic nerve to the visual
cortex. There is no central memory
store; each pixel has a set of its own
ALUs, so to speak, so energy waste
due to multiplexing is minimal.

� Data decimation. The human brain
reduces the data size at each step and
operates on concise but approximate
representations. If using 2 megapixels
suffices to handle color-related vision
tasks, why use more than that? Larger
sensors would just require more neu-
rons to store and compute on the
data. We should ensure that we are pro-
cessing no more data than necessary to
achieve the final outcome.

� Analog operation. The neuron performs
a more complex basic operation than
the typical digital transistor. On the
input side, neurons combine informa-
tion from many other neurons; and
on the output, despite producing rail-
to-rail digital pulses, encode multiple
bits of information via spikes timings.
Could this suggest that there are more
efficient ways to map operations onto
silicon-based technologies? In RF wire-
less front-end communications, analog
processing enables computations that
would be impossible to do at speed
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digitally. However, analog techniques
might not scale well to deep nanometer
technology.

� Fast, static, ‘‘gather, reduce, and broad-
cast’’ operators. Neurons have fan out
and fan in of approximately 7,000 to
other neurons that are located signifi-
cant distances away. Effectively, they
can perform efficient operations that
combine vector-style gather memory
accesses to large numbers of static-
memory locations, with a vector-style
reduction operator and a broadcast.
Do more efficient ways exist for imple-
menting these operations in silicon? It
could be useful for computations that
operate on finite-sized static graphs.

Recently, both the EU and US govern-
ments have proposed initiatives to enable
greater studies of the computational capabil-
ities of the brain. Although brain-inspired
computing has already come and gone sev-
eral times in the brief history of manmade
computers, dark silicon may cause these
approaches to become increasingly relevant.

A lthough silicon is getting darker, for
researchers the future is bright and ex-

citing. Dark silicon will cause a transforma-
tion of the computational stack and provide
many opportunities for investigation. M I CR O
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