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Introduction
The UCSD Computer Architecture research group is preparing to fabricate a prototype of the 

GreenDroid low-power processor architecture. GreenDroid is tiled architecture, with an on-chip mesh 

network carrying all communication between processor cores, requests to I/O devices, and loads and 

stores to main memory. In the prototype device, the on-chip network will not be connected to the device’s 

I/O pins. All network messages heading to I/O devices must be multiplexed and carried over a single 

narrow bus to their destination on a northbridge FPGA or a host PC.

We present the design and implementation of a hardware module which bridges the on-chip mesh 

networks of two chips by transparently relaying messages over a genericized physical link. Viewed from 

inside the chip, it appears that all network nodes are attached to the same network fabric. The processor, 

main memory, and I/O devices communicate through on-chip network messages, unaware that they are on 

separate physical dies. We call this an extended virtual on-chip network: extended across several chips, 

virtual indicating the illusion of seamless connectivity1.

The extended virtual on-chip network preserves the GreenDroid programming model, in which 

all devices are accessible solely through the network, while allowing devices to be implemented in 

different technologies than the processor itself. I/O devices may be implemented in inexpensive, 

reconfigurable FPGAs or emulated in software, rather than built into the expensive prototype chip.

Background: The GreenDroid processor architecture
For the past several process generations, processor architects have been challenged to improve 

performance within fixed power budgets. As CMOS devices scale smaller each year, architects face the 

utilization wall: the percentage of a chip which can actively switch drops exponentially with each 

successive process generation [Venkatesh]. Every 18 months, Moore’s Law provides twice as many 

transistors, but the power required to switch a transistor does not decrease. To use twice as many 

transistors requires twice as much power. Most computer systems (including server, desktop, laptop, and 

1

1 “Virtual” by analogy with virtual private networks: not for their value in enhancing network security, but  
for the illusion they provide of remote devices sharing the same LAN. 



mobile systems) must operate within fixed power budgets. Next year’s chip may bring twice as many 

transistors, but it can only use half of them at full speed.

The UCSD Computer Architecture group’s GreenDroid processor architecture is an attempt to 

tackle the utilization wall using specialized energy-reducing logic cores called conservation cores. The 

GreenDroid processor targets the Android mobile operating system. The Android operating system is 

analyzed and profiled to find blocks of code that consume significant amounts of runtime and hence 

energy. These blocks are automatically synthesized into conservation cores. At runtime, when software 

execution enters a targeted block of code, the CPU pauses and the conservation core runs. The 

conservation core performs the needed computation very efficiently, without spending energy on 

instruction cache, instruction fetch & decode, pipeline registers, bypassing, reordering, or any of the other 

overheads in a general-purpose processor pipeline.

The GreenDroid chip is a collection of conservation cores and general-purpose CPU cores, tiled 

in a two-dimensional tiled array. Figure 1 (borrowed from [Venkatesh]) shows the high-level structure of 

a GreenDroid system. Architecturally, the GreenDroid chip is an evolution of the Raw processor 

architecture [Taylor02]. It is a two-dimensional grid of computation tiles, connected by an on-chip mesh 

network. Each tile contains a general-purpose processor core (used for code not mapped to conservation 

cores), several conservation cores, an L1 data cache, and an on-chip network router. Memory and I/O 

traffic are routed through the network until they reach the edge of the tile array, where they are routed off-
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Figure 1. The high-level structure of a c-core-enabled system A c-core-enabled system (a) is made up of multiple individual tiles (b),
each of which contains multiple c-cores (c). Conservation cores communicate with the rest of the system through a coherent memory system
and a simple scan-chain-based interface. Different tiles may contain different c-cores. Not drawn to scale.

Without the corresponding supply voltage scaling, reduced tran-
sistor capacitances are the only remaining counterbalance to in-
creased transistor frequencies and increasing transistor counts.
Consequently, the net change in full chip, full frequency power
is rising as S2. This trend, combined with fixed power budgets,
indicates that the fraction of a chip that we can run at full speed,
or the utilization, is falling as 1/S2. Thus, the utilization wall is
getting exponentially worse, roughly by a factor of two, with each
process generation.

Experimental results To quantify the current impact of the uti-
lization wall, we synthesized, placed, and routed several circuits
using the Synopsys Design and IC Compilers. Table 2 summarizes
our findings. For each process, we used the corresponding TSMC
standard cell libraries to evaluate the power and area of a 300 mm2

chip filled with 64-bit operators to approximate active logic on a
microprocessor die. Each operator is a 64-bit adder with registered
inputs and outputs, which runs at its maximum frequency in that
process. In a 90 nm TSMC process, running a chip at full frequency
would require 455 W, which means that only 17.6% of the chip
could be used in an 80 W budget. In a 45 nm TSMC process, a
similar design would require 1225 W, resulting in just 6.5% uti-
lization at 80 W, a reduction of 2.6× attributable to the utilization
wall. The equations in Table 1 predicted a larger, 4× reduction. The
difference is due to process and standard cell tweaks implemented
between the 90 nm and 45 nm generations. Table 2 also extrapolates
to 32 nm based on ITRS data for 45 and 32 nm processes. Based on
ITRS data, for the 32 nm process, 2401 W would be required for a
full die at full frequency, resulting in just 3.3% utilization.

Process 90 nm TSMC 45 nm TSMC 32 nm ITRS

Frequency (GHz) 2.1 5.2 7.3
mm2 Per Op. .00724 .00164 .00082
# Operators 41k 180k 360k
Full Chip Watts 455 1225 2401
Utilization at 80 W 17.6% 6.5% 3.3%

Table 2. Experiments quantifying the utilization wall Our ex-
periments used Synopsys CAD tools and TSMC standard cell li-
braries to evaluate the power and utilization of a 300 mm2 chip
filled with 64-bit adders, separated by registers, which is used to
approximate active logic in a processor.

Discussion The effects of the utilization wall are already indi-
rectly apparent in modern processors: Intel’s Nehalem provides a
“turbo mode” that powers off some cores in order to run others
at higher speeds. Another strong indication is that even though na-
tive transistor switching speeds have continued to double every two
process generations, processor frequencies have not increased sub-
stantially over the last 5 years. The emergence of three-dimensional
(3D) CMOS integration will exacerbate this problem by substan-
tially increasing device count without improving transistor energy
efficiency.

For scaling existing multicore processor designs, designers have
choices that span a variety of design points, but the best they can do
is exploit the factor of S (e.g., 1.4×) reduction in transistor switch-
ing energy that each generation brings. Regardless of whether de-
signers a) increase frequency by a factor of 1.4×, b) increase core
count by 1.4×, c) increase core count by 2×, and reduce frequency
by 1.4×, or d) some compromise of the three, the utilization wall
ensures transistor speeds and densities are rapidly out-pacing the
available power budget to switch them. Conservation cores are one
mechanism for addressing this issue: Specialized silicon can trade
area for energy efficiency and enable systems with higher through-
put.

3. Conservation cores: System overview

This section provides an overview of c-core-enabled systems. It de-
scribes the composition of a prototypical c-core system and the c-
core synthesis process. Then, it outlines our approach to compila-
tion and handling target application program changes.

3.1 Basic hardware architecture

A c-core-enabled system includes multiple c-cores embedded in
a multi- or many-core tiled array like the one in Figure 1(a).
Each tile of the array contains a general purpose processor (the
“CPU”), cache and interconnect resources, and a collection of
tightly-coupled c-cores. The c-cores target hot regions of specific
applications that represent significant fractions of the target sys-
tem’s workload. The CPU serves as a fallback for parts of applica-
tions that are not important enough to be supported by the c-cores
or that were not available at the time of the manufacture of the chip.

Within a tile (Figure 1(b)), the c-cores are tightly coupled to
the host CPU via a direct, multiplexed connection to the L1 cache,
and by a collection of scan chains that allow the CPU to read and

Figure 1. The high-level structure of a conservation-core-enabled system. A c-core-enabled system (a) 
is made up of multiple individual tiles (b), each of which contains multiple c-cores (c). Conservation 
cores communicate with the rest of the system through a coherent memory system and a simple scan-
chain-based interface. Different tiles may contain different c-cores.



chip to various I/O interfaces. Each link in the on-chip network is a full-duplex 32 bit wide channel. 

Messages are sent as one or more 32-bit data words.

All communication, including IPC, device I/O, and main memory access, travels as messages on 

the on-chip network. The main memory controller responds to read and write request messages. 

Peripheral I/O devices also communicate with messages on the on-chip network. The on-chip network 

serves roughly the same functions that PCI and HyperTransport/QuickPath do in modern PCs: they are 

the fabric linking together all devices in the system, including the CPU.

Project Overview
The GreenDroid research group plans to fabricate a prototype in silicon, sharing the die and the 

design effort with the UC Santa Cruz architecture group [Renau]. Research designs from both universities 

will share common power, clock, test, and debug resources. A common ring bus will connect all designs 

to each other and to I/O resources. The ring bus is called MURN (“Multi-University Research Network”).

The GreenDroid design has its own on-chip network design and its own I/O assumptions 

(discussed above). In order for GreenDroid to fit into the common chip and interoperate with its 

neighbors from Santa Cruz, its on-chip network must be adapted to run on the MURN bus. Each network 

port around the edge of the GreenDroid tile array will be connected to a virtual channel. Traffic for all 

virtual channels will be multiplexed over the MURN bus, as many TCP streams are multiplexed over an 

Ethernet link. (See Figure 2).

Striving to be good computer scientists, when presented with a challenge, we attempt to 

generalize our solution to cover all possible future challenges of that type [Munroe]. We have not simply 

modified the GreenDroid on-chip network to run over the MURN bus. Instead, we have designed a 

modular adaptor that can transport the GreenDroid network over any physical interface. This is our 

contribution: A hardware module which connects to many GreenDroid on-chip network ports on one side, 

and on the other connects to a MURN bus; traffic on the network ports will be carried over the MURN 

bus to a matching remote module. We call this module the io_master2.

3

2 io_master: I/O = input/output; master as in bus master: a device which can both initiate and respond to bus 
transactions. Also, in another sense, it is “in charge of” many I/O links.



System Design

Outside the io_master

The full GreenDroid system comprises the GreenDroid prototype chip, a “northbridge” FPGA, 

and a host PC. Figure 3 is a diagram of the system.

The prototype chip will be fabricated in collaboration with researchers at UC Santa Cruz. It 

contains several research designs from UCSC, the GreenDroid design from UCSD, and shared power, 

clock, and I/O resources. The “northbridge” FPGA is so called because it serves approximately the 

function of the northbridge chip in PC chipsets: it connects the CPU to main memory, some fast I/O 

devices, and to a southbridge for slower I/O devices. In the GreenDroid system the FPGA connects to the 

GreenDroid CPU, it contains a DRAM controller for main memory, it may contain a basic graphics 
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Figure 3: The complete GreenDroid prototype system comprises prototype chip including GreenDroid 
design, northbridge FPGA including memory controller, and host PC.
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adapter, and it connects to the host PC. The host PC controls GreenDroid: it loads programs into the chip, 

starts them, and monitors their progress. The host PC also provides several emulated I/O devices, and 

performs filesystem requests for the GreenDroid programs. (That is, when a GreenDroid program reads 

and writes files, it’s actually reading and writing the host PC’s files. This allows us to run complex test 

programs on the GreenDroid prototype without the burden of first porting an entire operating system).

The GreenDroid design is only one module of several in the research prototype chip. It does not 

have direct access to the chip’s I/O pins. It can communicate over the MURN ring bus to the other 

research designs and to some sort of off-chip interface.

The MURN bus will be responsible for communicating between chip and FPGA. We presume 

there will be an IP core or ready-to-use source code for the FPGA.

Inside the io_master

The io_master comprises many submodules. We will discuss them in the order an outbound 

message would pass through them.

Arbitrator: Many ports connect to the io_master. If several ports try to send a message at the 

same time, the arbitrator chooses a winner. The policy is round-robin. The arbitrator is also responsible 

for counting credits for flow control: it will not accept a message until the destination has buffer space 

available to accept the message. See the discussion of flow control below.

Encoder: The message is encoded into a “packet”. Each packet contains the data message and the 

port number it was sent from. Some packets are used for flow control (see the discussion below).

Serializer: The packet is sliced into several “frames”. The size of each “frame” is a property of 

the physical layer. Ethernet and RS-232 use 8-bit frames. MURN is expected to use 72-bit frames. A 

packet may span frames, and one frame may contain the end of one packet and the beginning of the next.

Physical layer transmitter: The frames are transmitted on the physical layer.

Physical layer receiver: The frames are received from the physical layer by a remote io_master.

Flow control FIFO: There is a large FIFO (first-in first-out queue) which buffers all incoming 

frames. If the deserializer and decoder are running slowly and cannot accept new data, the flow control 

FIFO will fill. Some physical layers do not perform hop-by-hop flow control, so if the deserializer cannot 

5



accept new data, the physical layer may simply drop a frame. Ethernet, especially, works this way. In the 

GreenDroid on-chip network, drops are not permitted. The flow control FIFO is sized to ensure it can 

accept bursts up to the maximum number of credits (see discussion of flow control, below) across all 

ports, so that the io_master will always accept data from the physical layer, and hence avoid drops.

Deserializer: Data from several frames is concatenated. Enough frames are buffered to sum to a 

maximum-length packet. When requested by the decoder, a packet is dequeued from the deserializer.

Decoder: The decoder examines the frames buffered in the deserializer and attempts to recognize 

valid packets. When enough data has arrived to form a full packet, the decoder asks the deserializer to 

dequeue the entire packet. If packets vary in length (see discussion of encoding overhead below), the 

decoder is responsible for identifying the length of the packet. The decoder pulls the message data and 

port number out of the packet.

Receiver Buffers/Demultiplexer: The received packet data is buffered in a FIFO for its 

destination port. These buffers allow some ports to run slowly without delaying packets for other ports. 

Large buffers allow many messages to be in flight between sender and receiver, which can improve link 

utilization and throughput. (See the discussion of flow control below.)

Synchronizer: When the link between two io_masters becomes active, they perform a 

synchronization process. At the end of the synchronization process, the first bit of the first valid packet 

will be in the first bit position of the deserializer, ready for the decoder to decode it. During 

synchronization, each io_master transmits repeating patterns onto the physical layer, and detects and locks 

onto the patterns transmitted by the other.

Discussion
During the development and testing of the io_master, we met many challenges and made design 

decisions to overcome them. We will discuss three challenges: flow control across the link; maximizing 

performance by minimizing encoding overhead; and independence from any specific physical layer.

6



Flow control

GreenDroid’s on-chip networks use credit-based flow control. The receiving side of a link has a 

buffer for incoming messages. The sending side has a counter of how many buffer slots (credits) are 

available. Each time the sender sends a message, it decrements its credit counter; when the counter 

reaches 0, the sender stops sending and waits. Each time the receiver accepts a message from the buffer, it 

replies to the sender, incrementing the credit counter. This method of flow control is simple to implement, 

makes efficient use of buffer space, and if round-trip time is known, permits full utilization of the link 

[Taylor05]. Credits and buffers allow many messages to be in flight from sender to receiver, which makes 

good use of the link. If the receiver stops processing messages, they will queue up in the buffer without 

being dropped. The sender stops sending data just as the buffer fills. When the receiver begins processing 

messages again, it drains the buffer at high speed. As the buffer empties, credits are returned to the sender, 

which begins sending again. Since the number of credits needed is based on the round-trip time, credit-

based flow control is most useful for links with known, fixed round-trip times.

In the extended virtual network, both data messages and returned credits are sent as packets. Our 

initial io_master implementation uses a virtual credit return channel, using an unallocated port number. 

Credit return packets are a bit vector with three3 bits per port, counting how many credits are now 

available to the sender on each port. Credit return packets are generated by the demultiplexer (which 

aggregates credits returned from the receiving ports) and processed by the arbitrator (which counts credits 

available to send).

A naive implementation would send a large number of credit return messages: in the worst case, 

one credit return message per data message, for overhead of 50%! We would like to decrease this 

overhead. Our first improvement is to return several credits in each message: each port returns up to 7 

credits (expressed in 3 bits). This decreases credit return overhead to 12.5%. For very high-throughput 

links, we would like to decrease overhead even further. Our proposed second improvement is credit 

decimation: each bit in the credit return packet indicates the return of many credits. The decimation 

7

3 Adjustable at design time.



factor4 is a design-time parameter describing how many credits are returned: the bit value is multiplied by 

2^(decimation factor). For example, at a decimation factor of 4, each credit return message may indicate 

between 0 and 7*16 = 112 credits (3 bits encodes up to 7; credits are returned 2^4 = 16 at a time). Due to 

the loss of precision, credit decimation will waste some space in the receive buffer: up to 1 * 

2^(decimation factor) entries may be underutilized. We consider it a good tradeoff to exchange precious 

link bandwidth for relatively cheap die area.

Encoding overhead

The io_master multiplexes many types of network traffic onto a variety of physical layers. Since 

the GreenDroid processor accesses its main DRAM memory over the on-chip network, cache line reads 

and writes will be carried over the io_master. Software performance is extremely sensitive to main 

memory latency. We wish to maximize memory performance, even over very slow physical layers. In 

order to maximize performance (maximize throughput and minimize latency), we will attempt to 

minimize the overhead of packet encoding.

All packets must be encoded to travel over the physical link. At minimum, the receiver must 

recover the port number and message data. The trivial encoding thus uses 36 bits: 32 bits for data identity 

encoded + 4 bits for port number5, for 12.5% overhead.

Table 1: Trivial data packet encoding for 0xDEADBEEF sent by port 8

port number (4 bits) data (32 bits)

1000 110111101010110110111110111011111

 Credit return packets use a bit vector of 3 bits per port to return up to 7 credits per port. 

Credit return packets are differentiated from data packets by using a reserved channel number. Each credit 

return packet is nearly as big as a data packet. Overhead depends on how frequently return packets are 

sent and how many credits they return—see the previous section in flow control.

8

4 It should rightly be called the “decimation exponent”, but we consider this to be a less euphonious term.

5 This is calculated at design time based on how many ports are actually connected to the io_master. We anticipate 
the prototype chip will need 12 ports, therefore 4 bits for port number.



Table 2: Simple credit return packet encoding for (0, 1, 0, 3, 0, 0, 3, 0, 1, 0) credits on ports 
(0, ... 9). Port number 11, in this example, is allocated to the credit return virtual channel.

port number (4 bits)  credits (3*10=30 bits)

1011 000 001 000 011 000 000 011 000 001 000

If there are credits to return from many channels at the same time, the bit vector is an efficient 

representation. However, if only one or a few channels are in use, most of the bits will be wasted as 

zeroes. A proposed alternative encoding for credit return packets includes a port number and count of 

credits to return on that port. This can reduce the packet size to 11 bits, a reduction of 67%.

Table 3: More efficient credit return packet encoding for 3 credits on port 6

port number (4 bits) credits (3 bits) credit port number (4 bits)

1110 011 1010

Finally, we have designed a dense encoding that can even save the bits allocated to port number. 

This encoding uses the first several bits as a packet type code, with more common packet types encoded 

in fewer bits, in the spirit of Huffman coding. To avoid sending port numbers, this encoding uses channel 

prediction, which we believe to be a novel contribution6. Both sender and receiver implement a channel 

predictor, a small logic block akin to a standard processor’s branch predictor. The channel predictors learn 

the stream of channels that are currently in use, and make a prediction for the channel of the next 

message. The two predictors are identical and run in lockstep with each packet, so they will always make 

the same prediction. If the sender’s predictor correctly predicts the channel number of the next packet to 

be sent, the channel number will not be encoded into the packet. The receiver, seeing this, uses its 

(identical) prediction to route the packet. Channel numbers are only sent on mispredictions. Even a very 

low prediction rate will save some bits: at pure chance, 1/N correct predictions will save log(N)/N bits per 

packet. In practice we anticipate much higher prediction rates, as the predictor adapts to which channels 

are heavily used and which are inactive.

9

6 Credit for channel prediction goes to Professor Taylor, not to this author.



Table 4: Length-optimized encoding.

prefix suffix credit? data?  new c chan? new d chan? length

00 whitespace 2

01 32b data Y 34

10 32b data Y 34

1100 4b chan, 32b data Y Y Y 40

1101 4b chan, 4b chan, 32b data Y Y Y Y 44

1100 4b chan Y Y 8

111100 none Y 6

 We have designed the io_master’s encoder and decoder to be self-contained modules. 

Only the encoder and decoder module know the details of packet formats; the other modules either deal 

with a stream of encoded bits, or with the unencoded credit counts, port numbers, and message data. This 

decreases the design effort to try novel encodings and evaluate their performance. We anticipate the final 

implementation of the io_master will be able to switch at runtime between several encodings, as traffic 

flow varies.

Physical layer independence

We have designed the io_master to function independently of the physical layer it runs over. 

There is a very simple, general interface between io_master and physical layer; any link that can present 

this interface can carry GreenDroid on-chip network traffic. The io_master sees the physical layer as a 

channel of “words” of fixed bit width that are conveyed to the remote io_master as they were sent, 

without reordering or loss. Words are fixed in size for a particular physical layer, but different physical 

layers may have different word sizes. RS-232 serial (UART) uses 8-bit words. Our initial gigabit Ethernet  

implementation uses 8-bit words written into 64-byte frames. We anticipate that MURN will transmit 72-

bit words.
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Implementation
We have implemented the io_master in SystemVerilog HDL and merged it into the GreenDroid 

source code. GreenDroid was synthesized for a Xilinx Virtex-5 FPGA. During development, we also 

tested the io_master in Synopsys VCS simulation.

On the host PC, we have written a software io_master module in C++ and merged it into the 

GreenDroid test infrastructure, which was largely inherited from the Raw processor.

We have tested the io_master with several test programs, including MCF and VPR from the 

SpecCPU benchmark suite, and Autocorrelation, Cjpeg, and Viterbi from EEMBC. These programs are 

copied from the host to the GreenDroid’s instruction memory (over the gigabit Ethernet io_master), then 

they perform file and console I/O (again over the io_master), and load and store cache lines from a 

software-emulated main memory device (also over the io_master), then finally return their results to the 

host (over the io_master). The programs run to completion and produce correct results.

Conclusion
The utilization wall demands processor architects to design novel microarchitectures to continue 

improving performance and power consumption. However, practical concerns when fabricating prototype 

chips can impose design constraints. The GreenDroid processor was designed to send all I/O and memory 

traffic over an on-chip mesh network to I/O controllers placed around the perimeter of the tile array. 

When the GreenDroid prototype chip is fabricated, it will not have direct access to the chip’s I/O pins, but 

must route all its I/O over a relatively narrow ring bus. To connect the GreenDroid processor to a 

northbridge FPGA and a host PC requires a hardware component that can transport on-chip network 

messages over a different physical layer. We present the design and implementation of such a hardware 

component: the GreenDroid io_master. The io_master tunnels many on-chip network ports over RS-232, 

Ethernet, MURN ring bus, or another physical layer, and presents the abstraction of a single seamless 

mesh. By extending the on-chip network across dies, we may implement I/O devices and test software in 

convenient FPGA and PC environments, while preserving the GreenDroid programming model.
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