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ABSTRACT OF THE THESIS

ASIC life extension through hardware patch interfaces

by

Vladyslav Sergeevich Bryksin

Master of Science in Computer Science

University of California San Diego, 2009

Professor Steven Swanson, Chair

Specialized processor designs and ASICs offer lower power consumption and

greater efficiency compared to general purpose processors. However, the drawback

of specialized hardware designs is the reduction in the generality of workloads that

they are able to handle.

An important characteristic of specialized hardware designs is the inability

to manage changes in the underlying applications. This thesis describes and ana-

lyzes the concept of ASIC patching in the Arsenal design: a mechanism to mitigate

the effects of software evolution for the ASIC that preserves the benefits given by

the specialized hardware. The code changes between versions can be handled by

augmenting ASIC with configurable hardware gadgets and mechanisms to transfer

control flow from the ASIC to a specialized patch processor that executes the code

fragments that differ between versions. Thus, the lifetime of the ASIC is extended

by abstraction of code changes from the original application into patches, and

execution of these patches through one of the proposed patching mechanisms.

The results show that majority of changes in the application test set are

amenable to patching, and that hardware patching mechanism proposed in this

thesis is a viable approach that can handle a wide range of changes in the underlying

application code with reasonable performance overhead.

viii



1 Introduction

1.1 Building patchable specialized processors

Specialized processor designs and ASICs offer lower power consumption and

greater efficiency compared to general purpose processors. However, the drawback

of specialized hardware designs is the reduction in the generality of workloads that

they are able to handle.

Arsenal design aims to achieve performance gains and lower power consump-

tion over a general purpose processor by incorporating 10s to 1000s of specialized

processing elements (SPEs) into one system. These SPEs represent a variety of

hardware designs, from general purpose processors to specialized processors and

ASICs that handle a particular functionality (i.e. DSP algorithms, encryption algo-

rithms, graphics accelerators). The architecture of the Arsenal system is described

in Section 2.

This thesis describes and analyzes the concept of SPE patching in the Ar-

senal design: a mechanism to mitigate the effects of software changes for the SPEs

that preserves the benefits given by the specialized hardware. Thus, the patching

process abstracts the changes in the application into a patch that describes how a

particular change is to be handled by the Arsenal runtime; the runtime, in turn,

determines the appropriate method for execution and configures the SPE with this

patch.

An important aspect of specialized hardware designs is the inability to

manage changes due to the software evolution in the underlying applications. Thus,

faced with a new version of an application that is targeted by a given SPE, the

existing approach in the Arsenal toolchain is to designate this SPE as unsuitable

1
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for this version, and execute it on the general purpose processor. While this is a

viable technique that does not forfeit generality, the benefits of power savings and

potential speedup from executing on a specialized design are reduced. Moreover,

the analysis of changes in the software, described in Sections 1.2 and 5.1, shows

that there exists an ample set of changes between versions that does not require a

fall back on the execution on the general purpose processor. These changes can be

handled by augmenting SPEs with configurable hardware gadgets and mechanisms

to transfer control flow from SPEs only to execute the parts that are different

between versions.

The focus of this thesis is not a recovery from design bugs, but adapting

the SPEs to be resilient to changes in the future versions of the underlying ap-

plications. While the generality of the types of changes that a patch process can

handle is an important characteristic, there is a trade-off between generality and

the performance, power and area aspects of SPEs. On one side of the extreme,

the incorporation into each SPE a way of handling any type of change in place

implies an incorporation of a general purpose processor core into each SPE, which

eliminates the power and area savings of the Arsenal design. On the other side,

a software fall back mechanism on the general purpose processor means that a

single insignificant change can render an SPE unsuitable for a current version of

the application. Thus, one of the goals of the patching process is to find a proper

balance between the performance and power and area for the patching mecha-

nisms. Also, another goal is to establish a balance between sufficient coverage of

types of changes for a given patch mechanism and the overhead that this cover-

age introduces for each mechanism. For a given lifetime of a Arsenal system, the

SPE algorithms might change, and the right balance of these requirements would

exhibit the graceful degradation of performance of the system, where the initial

changes can be handled with insignificant overhead, while cumulative subsequent

changes to the application over time require fall back on a less efficient, but more

general patching mechanisms.

This thesis explores the classification of common changes between soft-

ware versions, design and examination of patching methodologies in the Arsenal
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toolchain, and compares the resulting patchable Arsenal system with the baseline

system.

1.2 Identifying changes in software between ver-

sions

In order to be able to generate SPEs that are able to handle application

changes and display graceful degradation in performance in face of these modifi-

cations, the common types of software changes need to be identified. While it is

impossible to foresee the changes in the applications, an analysis of a set of appli-

cations in their respective domains gives an outlook on the types of changes that

are common and provides an understanding on the patterns of software evolution.

The chosen set of applications reflects the scope that is applicable to the purpose

of SPEs: DSP applications, encoding and decoding, encryption, and other appli-

cations that are amenable to hardware instantiations and spend major fraction of

their time executing inside loop bodies. These applications are well known, have

stable release cycle and include Lame MP3 Encoder [7], an MPEG Audio Layer

III encoder project established in 1998, libjpeg [8], a JPEG encoder/decoder, and

bzip2 [9], a data compression/decompression project that was first released in 1996.

To quantify the amount of changes in software, several metrics important to

the scope of this thesis were used. In the context of the SPEs, the instruction level

analysis of differences allows to identify the corresponding hardware basic blocks

that change accordingly. The changes were broken down into several categories:

data flow, control flow, interface and language changes. Each of these categories

was further refined into smaller categories to target specific constructs, and Sec-

tion 5.1 describes the results of this study. Based on these results, we identified

and developed patching methodologies that are described in Section 4.



2 Background

The Arsenal architecture aims to address the issues of power and architec-

tural scalability due to threshold voltage scaling limitations. While a transition to

multi-core designs is able to mitigate these issues, the problem of utilization of the

whole chip at full frequency will re-emerge in a few generations of process scaling.

The approach that allows to overcome these issues while gaining in performance is

to vary the parts of the die that are active during runtime by combining an array

of massively heterogeneous processors into one system. The diversification of the

specialization of the processors allows to target only specific applications and use

a fraction of a chip at once. The Arsenal system is comprised of processors that

range from general purpose processors to SPEs that target specific applications

and software constructs. This specialization allows to improve power efficiency

and performance while providing a way to execute general purpose applications.

The Arsenal processors are organized into clusters that contain a variable

number of SPEs of mixed sizes and specialization. Figure 2.1 shows an Arsenal

processor consisting of twelve SPE clusters connected to four banks of L2 cache

via a grid-based interconnect.

While the sizes of the SPEs in the cluster depend on the architectural

properties of the SPE and the available area budget in the cluster, the grouping

of the SPEs is determined by the common functionality. Since SPEs that have

related functionality, or can be combined to perform some functionality are likely

to be used together, the co-location of them in the same cluster has a benefit of

sharing the same L1 cache. The inter-cluster grid-based interconnect interfaces

the clusters or complexes with L2 caches and general purpose processors, which

is similar to the designs described in the tiled processors such as RAW [12] and

4
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Figure 2.1: An Arsenal processor.

WaveScalar [13]. The intra-cluster interconnect connects individual SPEs to the

inter-cluster grid with the constraint that only one SPE within a cluster can be

active at a time. This constraint is only valid for intra-cluster scheduling, while

SPEs from different clusters can execute at the same time.

The memory hierarchy contains L1 caches that are allocated within each

cluster, L2 caches allocated per a set of clusters, main memory, and optional L0

caches that are local to each SPE. A MESI-based coherency protocol ensures co-

herency within all L1 caches, L2 and the main memory, and a release consistency

model is used for the communication between processors through shared memory.

A per application analysis identifies the mappings of the regions of code to

the available SPEs in the system using several metrics that include the profile of the

workload, the performance data for the execution on suitable SPEs, communication

between the regions of code and the power constraints on the workload. The

runtime of the Arsenal processor maps the code to be executed to a set of the

available SPEs and schedules them dynamically by evaluating the contention for

a given SPE, its locality, and the runtime behavior of the application. Thus,

migration of the application is present both statically, by identifying the sequence

of the suitable SPEs, and dynamically, when the runtime status of the system
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determines the set of possible SPE choices.

SPE generation in the Arsenal toolchain is a current focus of our group,

where some SPEs such as general purpose processors and established designs can

be synthesized from existing solutions, while special purpose processors are synthe-

sized automatically from high level languages such as C or C++. This automatic

synthesis approach is based on transformation of the applications into program de-

pendence graph form [14] and merging isomorphic components of the graph. Thus,

the common workloads are analyzed and semantically similar parts are merged to

produce more generic SPEs given the area and power limitations, while reducing

the overall amount of hardware for the Arsenal processor.



3 Related work

The problem of hardware patching is explored in several works, however,

the emphasis of these papers are patching hardware bugs that are not caught

during testing and validation. The authors of [2, 3, 4] propose an inclusion of

programmable hardware in the chip that is able to handle exceptional conditions

by tapping onto key logic signals and comparing these signals to known errata

signatures. Upon encountering a defect, an appropriate action is performed that

can range from flushing a pipeline to dynamic instruction stream patching, replay

after checkpoint or flush, or invocation of the programmable error handler. These

papers address the avoidance and recovery of certain conditions that arise due

to the hardware bugs, and do not address the extension of the functionality and

evolution aspects of hardware.

Ginseng, a dynamic software update implementation for C language [6],

shows the software approach of dealing with applications evolution and patches.

The authors show that, in principle, any program can be patched while running

without the need to stop and restart this application. Ginseng compiler compares

the current version with new releases and generates patches that can be uploaded

during runtime. While this approach does not require any hardware modifications

and therefore is not applicable to hardware patching, it shows that dynamic soft-

ware patching process is practical and guarantees type safety and data coherence.

The authors of RAMA [5] demonstrate a configurable datapath for Systems

on Chip (SoC), where reconfigurable busses between DSP blocks on a MIMD DSP

array architectures are introduced. Thus, the granularity of configuration are DSP

blocks that are dynamically combined in a datapath to implement a variety of DSP

applications, and the configuration is performed on the inter-block level. While the

7
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problem of inter-block configuration is focused on in the Arsenal architecture, this

thesis explores the problem of intra-block level configuration where the granularity

of data flow changes can be on the level of basic blocks of the SPEs.

VEAL, the Virtualized Execution Accelerator for Loops [10], proposes a

generalized loop accelerator whose main goals are a cost and area effective gener-

alization of loop constructs with an abstracted interface that allows to dynamically

map loop bodies to an available accelerator. The tradeoffs between area and per-

formance described in this paper are representative of the balance that this thesis

aims to achieve: sufficient coverage of common code patterns given limited area

without generalization to a general purpose processor.



4 Description of hardware

patching methodologies

Patching methodologies depend on the amount and impact of changes in the

underlying software that can be accommodated by the hardware. An orthogonal

issue to the ability to handle various changes is the tradeoff between performance,

area and power devoted to each mechanism. While delegating patching to the

general purpose processor allows a general way to handle all types of changes since

arbitrary code can be executed, other patching methods offer less general but more

lightweight route to manage application changes.

Without the patching mechanism, if there is a change in the application for

a given SPE, this SPE is considered to be unusable for a given software version,

and the handling of this SPE functionality is delegated to the general purpose

processor. This is due to the fact that SPEs do not support the transfer of control

from an arbitrary basic block to another processor and the transfer back to the

SPE. Consequently, the transfer of the SPE state information from arbitrary point

in the execution and transfer of the new state of this SPE back from the processor

to another arbitrary point is not possible without additional modifications. There-

fore, a software fall back mechanism is a default way to address changes between

application versions in the unpatched version of the Arsenal toolchain.

To enable patching in the Arsenal system, three methodologies are proposed

that target different types and magnitudes of changes between application versions:

SPE gadgets, Specialized Patch Processor and software fallback.

The first method to handle application changes is to add gadgets to the

SPEs to make them more resilient to changes. An SPE gadget is a modification to

9
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modules in the basic blocks that allows a configurable behavior at runtime without

the overhead of interrupting an SPE to execute code on another processor.

When faced with changes in the application that cannot be handled by gad-

gets, an exceptional condition is set on the execution path. With the appropriate

changes to the control and data paths of the SPE that are described below, the

data that contains the state of the SPE can be transferred between the SPE and

a processor. Thus, the SPE can stop execution upon encountering a block of code

that it is unable to execute on existing hardware and transfer its state to a gen-

eral purpose processor. This general purpose processor, in turn, executes the code

that is not present in the default application version of the SPE, modifies state of

the SPE if it is required, and transfers this state back to the SPE so that it can

resume execution. This software fall back mechanism is also feasible in the case

of large changes to the application, where the execution of a patched version on

the SPE with the overhead of transfers of control between SPE and a general pur-

pose processor exceeds the time to execute the application on the general purpose

processor.

While the described software fall back on a general purpose processor design

is able to handle arbitrarily changes in the applications, the drawbacks of this

baseline mechanism are increased power usage, load increase on a general purpose

processor, and potential increase of execution time. A proposed solution is to

delegate the patch handling from a general purpose processor to a Specialized

Patch Processor (SPP). An SPP is an area optimized general purpose processor

that is allocated for a small set of the SPEs within a cluster whose main purpose

is the execution of patches.

4.1 Gadgets

While some changes to the applications might trigger an exceptional condi-

tion due to inability to execute code for some version of the application and require

transfer of control from an SPE, there exists a large subset of changes that can be

handled by augmenting the SPE with gadgets. For instance, if the offset of a field
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in the structure has changed, a gadget that replaces constant offsets in the SPE

with configurable registers to hold the offset of the field allows to set a correct

offset for each version of the application. Thus, the execution of the SPE that

is augmented with gadgets does not incur performance overhead of the context

switch on an exceptional condition if this condition can be handled by a gadget.

The servicing of this condition by a gadget introduces minimal or none overhead

of additional cycles, since gadgets are modifications of existing modules and are a

part of the same basic block as the original module. Thus, even more complicated

gadgets that take several cycles to execute introduce an overhead that is less than

a cost of an interrupt and exception handling on another processor. Nevertheless,

gadgets on the critical path of the execution might increase cycle time.

However, the usefulness of gadgets is limited by several factors. First, ad-

dition of each gadget results in the increase of the SPE area since each original

module is replaced with the module that is augmented with the gadget for all basic

blocks. Thus, an important metric for gadgets is the percentage of each type of

changes in the corpora of profiled applications that each gadget can manage over

the area increase due to the addition of this gadget. Second, the amount of changes

that can be handled by gadgets is restricted. Given limited area available for the

SPE, it is not feasible to include complex gadgets that can handle arbitrary code

execution. Third, configuration of gadgets introduces a performance overhead dur-

ing the initial configuration of the SPE. For each gadget, certain number of bits

needs to be passed to the SPE to set the appropriate configuration for a given

application version. This process is described in Section 4.5. Even though the ini-

tialization of gadgets incurs an overhead of shifting in the configuration values for

each gadget, this initialization is only done when an SPE is configured for a certain

version. All subsequent calls to the SPE do not incur this overhead. Moreover,

SPE initialization also includes the control path scanchain initialization which is

done in parallel with the gadget scanchain.

Given the benefits of gadgets, their range of employment is limited to small

changes in the application between versions. Even though this range can be ex-

tended to handle a wider scope of changes, the limited area budget would make
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this approach impractical.

The gadgets described below are connected to the gadget scanchain and are

initialized during the initial SPE configuration described in Section 4.5. During

the C to Verilog compilation, the modules that can be converted to gadgets are

identified and replaced. Given the results of software differences study described in

Section 5.1, we analyzed the categories that contained the most changes to identify

the ways to make SPEs more resilient to software evolution. While the gadgets

proposed in this thesis target the categories with the most changes, we anticipate

a greater variety of gadgets that target more refined classes. An important aspect

of gadget inclusion is the impact on the area and the performance of the SPE

that is shown in Section 5.2. Thus, a viable direction of gadget design is in-depth

instead of in breadth, that is, to focus more on the efficiency, configurability and

reusability of gadgets instead of creating a wide array of gadgets that can handle

limited functionality.

4.1.1 Configurable offsets for structures

One of the frequent changes in the set of profiled applications is the layout

change in the data structures. These changes include addition or removal of data

structure elements, reorganization and change of levels of indirection in the data

structure. For instance, Table 4.1 shows code changes for structure Foo, where

variable x is removed, v is added, and y and z are switched.

Function decode mcu in libjpeg shows an example of change of levels of

indirection between versions 5 and 6:

- s += state.cur.last dc val[ci];

+ s += state.last dc val[ci];

All offsets for arrays and other data structures in the SPE are converted into

configurable registers during the C to Verilog compilation, and are currently set

to be 32 bit. Figure 4.1 shows a block diagram of a structure access with baseline

and gadgetized modules.

While not a design feature of this gadget, configurable offsets allow to ref-

erence any location on the local stack by manipulating the offset.
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Table 4.1: A sample structure layout that changes between versions

Original code New code

struct Foo{ struct Foo{
int x; int new;

int y; int z;

int z; int y;

Foo *next; char *v;

}; Foo next;

};

Figure 4.1: Data structure calculation with configurable offset register.

4.1.2 Simple ALU for each operation

Another frequently observed type of changes between software versions is

the change of operators. The most common occurrence of operator changes is in

the loop construct operators, conditional statements, and less frequent in the data

flow operator changes. For instance, loop array bounds and operators are changed

in function qdescale zig between libjpeg versions 2 and 3:

- for ( i = 0; i < DCTSIZE2; i++ ) {
+ for ( i = DCTSIZE2 - 1; i >= 0; i– ) {
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Conditional statement operators change in function HuffmanCode between ver-

sions 3.92 and 3.93 of Lame:

- if ( x1 < 0 ) {
+ if ( x1 != 0 ) {

And the data flow operators change in function get bits between versions 1 and 2

of libjpeg:

- get buffer = ( get buffer << 8 ) + c;

+ get buffer <<= 8;

+ get buffer |= c;

The proposed gadget is a replacement of all single operator modules with a simple

ALU that does not include multiply and divide operations.

Figure 4.2: An adder and a configurable ALU.

In the block diagram in Figure 4.2, the adder module is replaced with the ALU

gadget, and the ALU operation select is a 4-bit register that is connected the

gadget scanchain.
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4.1.3 Configurable constants

In addition to changing the operators for conditional statements and loops,

the replacement of all constant values with configurable registers allows fully con-

figurable loop and conditional statements constructs for the cases where constants

are used as loop bounds and compare targets. For instance, a simple loop construct

for ( i = 0; i < MAX N; i++ )

will have an ability to set constants 0, MAX N and operations ”<” and ”++” to

arbitrary values.

4.2 Datapath register placement

Before the description of marshalling gadget, the following sections describe

the placement of the registers to store state of the SPE’s datapath, and the imple-

mentation of scanchains.

The SPE is divided into control path, which represents the state machine

of the SPE, and datapath, which operates on the data. The basic blocks in the

datapath correspond to the states in the control path, where each basic block takes

one to several cycles to execute. The inputs and outputs of the basic block are

the sets of variables that are live accross this basic block, and the values of these

variables are preserved in registers on the basic block boundaries.

The initial design of SPEs in the Arsenal toolchain used register per live

variable allocation scheme. Thus, for each live variable in each basic block of the

datapath, if a variable was live in the end of this block, its value was latched

to a live-out register corresponding to that block. This allocation scheme had a

property that at any point of execution, all live variables state was available in

registers of a current basic block. However, this lead to a large number or registers

that were never accessed. Figure 4.3 shows a diagram of three register placement

designs, where variable x is defined in basic blocks 2 and 3, and used in block 4,

variable y is defined in block 1 and used in blocks 2 and 3, and variable z is defined

in block 4.

An important optimization for the state manipulation was the reduction
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Figure 4.3: A block diagram of 3 register placement designs: unoptimized, register
per access and register per definition.

of the state via elimination of redundant registers. For instance, if variable x is

defined in basic block 1, and written in basic block 10, the registers that latch the

value of x between these blocks are never accessed and can be replaced with wires.

There are two issues related to register placement in the toolchain. First,

whether the registers are considered live-in or live-out for a given basic block, i.e.,

whether the live variables are latched into registers before or after the execution in

the current block. Second, whether a register per definition or register per access

allocation scheme is used, where a register per definition scheme corresponds to

the SSA form, and register per access scheme allocates a new register in the basic

block every time a live variable is defined in one of the predecessors of current basic

block or read in the current block [1]. For the register per access strategy, a register

is considered to be a live-in for the current block since the value is latched before

the read during the execution of this block, and it is latched by the successor nodes

in case of the write. So, compared to the register per definition, it adds registers

for blocks where the variable is read.

In the case of a register per definition, a register is considered to be a live-out

for the current block, which has a property that if there is a variable declaration in

the basic block, the value of this variable is available in that basic block, instead of

one of the successor nodes in the register per access scheme. Another property of

this allocation scheme is that the number of basic blocks that have live-out registers
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can be minimized, which reduces the number of inputs into the multiplexer to select

a particular basic block scanchain. The datapath scanchain mechanism is described

in Section 4.3, and allows the marshalling gadget to get and set the value of any

live-out register in the SPE. Given that execution of blocks of code does not imply

locality (i.e. it is not the case that a block of code that is added to a new version

of the application will need only current basic block live-out values), the tradeoff

of more registers for more locality increases the area of the SPE for a marginal

benefit. Given the advantages of the reduction of number of registers in the SPE,

and simplicity of the SSA form, a register per definition scheme is implemented

in the current toolchain where registers are also placed after φ functions. The φ

functions generate a new definition of the variable depending on the flow of control

into the φ node. Thus, at any point of execution, there is only one last definition

of any register and it is stateless since addition of registers after φ nodes eliminates

the need to keep track of the control flow to find that definition

4.3 Datapath, control and gadget scanchains

The datapath registers are implemented as shift registers that have a regular

input the width of the register, and a shift input and output of a variable width that

have priority over regular input. All datapath registers in the SPE are connected by

circular scanchains, where the number of scanchains placed in the design depends

on the area and performance tradeoff. Increase in the bus width of shift wires

decreases the time to shift the register contents in or out, while increasing the area

of the design. During normal execution the registers receive data via conventional

input, whereas, in the shift mode, the values of all registers on a given scanchain can

be scanned out and scanned in by enabling scanchain shift. The circular connection

of the scanchain allows scanchain rotation with the values of the registers preserved,

while each of the register values can be set via normal input.

Similarly, the registers for the gadget and control paths are implemented

as shift registers connected in a scanchain. These scanchains are not circular since

the shift mode is only used during the initialization of the SPE to set the values
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for the gadget registers and control path edge exception registers. Furthermore,

the shift registers for gadgets and control path do not have a conventional input,

since these values are set once during the SPE initialization. Thus, the current

design employs three types of scanchains: datapath, gadget and control, where

the datapath scanchain is used to transfer state between the SPE and the patch

processor, and control and gadget scanchains provide a way to configure the SPE

for a given application version.

4.4 Marshalling Gadget

The marshalling gadget serves as an interrupt dispatcher for the SPE. Upon

encountering an exceptional condition (i.e., a patch that needs to be executed on

the SPP), the control needs to be transferred to another processor along with the

state of the SPE and an interrupt number, and the execution on the SPE needs to

be stalled. Exceptional conditions for a particular version of the application are

identified during patch generation and set during the initial SPE configuration.

Once the exceptional condition is resolved, the marshalling gadget transfers the

modified state to the SPE and resumes execution. The marshalling gadget is

coupled with the external I/O interface that handles the communication between

the SPEs and other processors in the Arsenal system.

The marshalling gadget employs scanchains as a primary way to transfer

SPE state. While the marshalling gadget is designed to handle exceptional con-

ditions, the semantics that it provides allow making function calls from the SPE,

where the address of the function as well as the arguments are transferred to the

processor.

4.4.1 Configurable control path

This section describes the modifications to the control path that enable

transfer of control between SPEs and SPP.

In the baseline Arsenal architecture, the control path is represented as a

finite state machine (FSM), where nodes correspond to basic blocks and edges
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correspond to data and control conditions. In order to execute a patch on the SPP,

the SPE has to interrupt its execution and transfer control to the patch processor.

To enable patching at an arbitrary node, a bidirectional edge is added for each node

in the control FSM to the marshalling gadget with an exceptional condition that

enables transitions on these edges. Upon encountering an exception, the control is

transferred to the marshalling gadget that gathers the state needed for execution

of the patch, marshals this state over the interface to the SPP, waits for SPP

completion signal, marshals the new state to the SPE and resumes execution by

transitioning on the edge to next basic block.

The patching is done on the edges of the FSM. Edge patching has a property

that if a basic block has been modified, only the incoming and outgoing edges of

this block have to be patched. Moreover, blocks are executed atomically in a sense

that we know upon executing state n and before the transition to node m that all

operations in state n have completed and committed, and none of the operations

state m have started. For instance, Figure 4.4 shows a control flow graph, where

node Z has and edge to A, and node A has edges to node B and C.

Figure 4.4: Modified edges in case of node change, addition or removal.
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Lets first consider cases where corresponding application code for node B is changed

in way that it cannot be executed on the original hardware, or if node B is removed

in the new version of the application. Then, only edge AB is marked as exceptional

condition, since there is no more edges incoming to B, and the outgoing edges will

never be taken. If path A->C is taken, the execution proceeds in a normal way and

there is no overhead of interrupt. If path A->B is taken, basic block A is executed

completely and corresponding live registers are written. Then the execution is

stalled and control is transferred to the marshalling gadget. The last case of node

modification is a node addition, which implies the addition of a new edge as well.

Lets consider an example where node A has two edges to node B and C, and a new

block D with a corresponding edge AD is added. In order for this to happen, there

has to have been a change in the logic of node A to include new edge, therefore,

node A has been modified and the patching will be done on the edges incoming

into A.

Thus, each state in the control path FSM includes 1-bit shift registers con-

nected together in a scanchain that are placed for each transition from current

control block and indicate if particular edge is to be taken. If this exception bit

is set for some edge out of the control block, then, instead of transitioning to the

next state, transition to marshalling gadget takes place. The initialization of the

scanchain is done during the initial configuration of the SPE for a given application

version and is described in Section 4.5.

4.4.2 State manipulation based on scanchains

The inputs and outputs of the datapath scanchains are statically routed

from each SPE to the patch processor that are located within the same cluster,

and the shift control on the datapath scanchains is done by the SPP. If the patch

processor is located on another cluster, the datapath scanchains are connected to

the SPE cluster arbiter. The SPE cluster arbiter, in turn, multiplexes all the input,

output and shift enable wires to the SPEs in the cluster, and is configured by the

patch processor to select the appropriate SPE for communication. Therefore, each

datapath scanchain in the SPE has three connections to either the SPP or the SPE
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cluster arbiter: input, output and shift enable, where the width of input and out-

put shift wires is configurable. The number of scanchains per SPE is configurable

as well and depends on the number of available connections on the patch processor

side as well as the area and performance considerations. While smaller number

of scanchains minimizes the number of interconnects between the SPEs and the

SPP, the average time to access the contents of a register increases. Figure 4.5

shows the block diagram of two SPEs that contain two scanchains each connected

to the shift controller on the patch processor that is located on the same cluster.

The shift controller consists of a set of shift registers whose input, output and

shift enable lines are connected to the datapath scanchains on the SPE. Through

a set of instructions described in Section 4.4.3, the patch processor is able to select

scanchains on one of the SPEs, rotate each scanchain, read and write values to it.

Thus, this mechanism provides an abstraction to the patch processor that it is able

to access any register in the SPE cluster through a set of shift registers allocated

on the SPP.

Figure 4.5: Block diagram of SPE cluster interconnect.

The registers that contain information relevant to the control state of the
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SPE, such as, exception patch index in the interrupt table, edge number that

caused the exception and the pointer to the local stack, are placed on the state

scanchain that is connected to the state shift register in the SPP shift controller.

Upon encountering an exceptional condition in the SPE, the control is trans-

ferred to a marshalling gadget. The marshalling gadget asserts the SPP interrupt

and transfers the interrupt vector index to the SPP. This interrupt number corre-

sponds to the exception patch for a given version of the SPE, and is sent to the

SPE by the runtime during the initial SPE configuration. The exception patch

is described in Section 4.5. After the interrupt number transfer, the control is

delegated to the patch processor and marshalling gadget waits until SPP signals

completion. The interrupt handler on the SPP dispatches the appropriate excep-

tion patch based on the interrupt index. The patch processor then scans out the

value of the offending control edge in the SPE by rotating the state scanchain and

reading the value. Based on the value of this edge, the patch processor either starts

executing if it does not require any state from the SPE, or starts reading required

register contents from scanchains. Since the length of the scanchain and position

of each register is known, the SPP initializes counters that are associated with

shift registers in the shift controller to rotate the scanchains such that the required

values are visible on the patch processor. The scanchain rotations are done in

parallel, thus, if the patch needs register values from more than one scanchain, the

SPP issues rotate instructions on these scanchains and blocking read instructions

to get the values. The shift registers in the patch processor have data valid bits

that are asserted once the associated counters reach zero, i.e. once the scanchain is

rotated properly, which provides blocking register read and write semantics. Once

the patch processor scans out the required state, it executes the code associated

with a given edge exception. If the state of the SPE has been modified during the

patch execution, the patch processor patches the modified registers via the same

mechanism of scanchain rotations and register writes. The return state of the SPE

is scanned back to the state scanchain, and, finally, the SPP asserts done signal.

Upon receiving done signal, marshalling gadget sets the next state of the control

path FSM to the value returned from SPP and resumes the execution on the SPE.
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4.4.3 Specialized Patch Processor

An SPP is a general purpose processor that is customized to handle excep-

tional conditions in the SPEs due to changes in the software. The design goal of

an SPP is a small, RISC style processor that is dedicated to a limited set of SPEs,

thus providing reduced communication latencies compared to the general purpose

processor, and a customized interface to SPEs for state information transfers. The

current implementation of the SPP is an execution core on the RAW tile [15] that

is allocated per cluster of the SPEs. Each RAW tile in the RAW tiled microproces-

sor design contains fetch unit,data and instruction caches for the execution core,

switch processor with the Scalar Operand Network (SON) logic, and trusted and

untrusted cores with the generalized transport networks logic. The execution core

is similar to a conventional MIPS style pipeline with floating point unit and sup-

ports a classical MIPS ISA. The size of a raw tile in the 180 nm process is 16 mm2,

where an execution core without the FPU takes up approximately 15% of the area.

Thus, a rough approximation of the size of this core is 2.4 mm2 in the 180 nm,

or 0.6 mm2 in the 90 nm process. While this design provides an approximation

for the requirements of the SPP and is present in the Arsenal toolchain, it is not

area optimal and includes extra hardware that is specific to the RAW implemen-

tation. Given the fact that patch execution is an exceptional condition, with the

nominal frequency of occurrence and the number of instructions to execute, the

area and power requirements for the SPP outweigh the performance requirements.

According to MIPS [11], an area-optimized implementation of the M4K core has

a die area of 0.12 mm2, typical power consumption of 0.04-0.15 mW/MHz, and a

worst case maximum clock speed of 200-414 MHz, when implemented in a TSMC

90 nm process. M4K core is a classical 32 bit RISK core that supports full MIPS

ISA, with the 5 stage pipeline, no on-chip data or instruction cache, integer ALU

with multiply and divide units, MMU, and an SRAM interface. The area of this

design is on the order of a small SPE, thus allowing a placement of a general pur-

pose core in each one of the clusters. Since the L1 cache is present on the cluster,

the SPP shares the data caches with the rest of the intra-cluster SPEs, while the

instruction cache is not shared and located off-chip. The size of the instruction
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cache was determined by the analysis of the number of instructions of the code

fragments in Section 5.1, where the code fragment is defined to be a block of code

that is either introduced or removed in the new version of the application. Thus,

this is a measure of the maximum number of instructions in a contiguous block

that an SPP will need to execute. Even though the maximum number of instruc-

tions in the CDF of block instruction sizes on Figure 5.5 exceeds 1024, blocks of

code of this size are infrequent and indicate a drastic change to the underlying

application. Thus, faced with the revamp of the algorithm, the software fallback

to a powerful general purpose processor is a more likely scenario. The majority

of the block instruction sizes fall within a range of 16 to 32 instructions, therefore

the size of the instruction cache in the SPP is set to be 128 bytes with an area of

approximately 0.018 mm2 [16].

The ISA modifications of the RAW execution core reflect the architectural

changes to accommodate requirements for the SPP. Four instructions were added

to control the scanchain registers on the SPP side with instruction format shown

on Figure 4.6, where the immediate field is used to reference scanchain register

number, and $rt for a general purpose register.

Figure 4.6: Scanchain instruction format.

The signal instruction either sets the configuration register to the value in

$rt that holds the SPE number if Immediate is non-zero, or sends a signal to the

SPE if immediate field is zero. The configuration register is a select on either

the multiplexer for the data and shift enable signals if patch processor is located
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on the same cluster, or on the SPE cluster arbiter, if patch processor is located

on separate cluster. Move from scanchain instruction, mfsc, moves word from

one of the scanchain registers in immediate field to a general purpose register $rt.

Move to scanchain instruction, mtsc, moves word from a general purpose register

$rt to a scanchain register number in immediate field. The scanchain rotate left

instruction, scrl, rotates scanchain number set in immediate field by number of

bits in $rt.

4.5 Patch generation and deployment

The Arsenal compiler generates the configuration patch that contains ini-

tialization information for each SPE, and an execution patch for the SPP that is

invoked to handle exceptional conditions.

Since the architecture of the SPE is known, and the structure of the SPE

corresponds to the structure of the code, generation of the patch is based on the

comparison of basic blocks of the SPE and the control and data flow graphs. Given

two versions of the application with graphs G and G’ and an SPE that was built for

graph G, two basic blocks B ∈ G and B’ ∈ G’ match if the registers and data flow

dependencies of these blocks have a one to one correspondence. The basic block

matching of set of constructs S that can be handled by gadgets (i.e. operators,

constant values, etc) is delegated to gadget matcher that returns a match if this

set is identical. If the set S differs, but can be patched by gadgets in the basic

block B, the match is returned and a basic block configuration patch is generated

for the basic blocks in question. This patch contains the initialization values for

the gadgets. Finally, if the differences between basic blocks cannot be localized

by gadgets, the blocks are marked as non matching. The control flow matching is

done on the edges of the graph. Given an edge e = (u,v) ∈ G, and edge e’ =(u’,v’)

∈ G’, there is a match between e and e’ if the source basic blocks u and u’, and

destination basic blocks v and v’ match, and the edge label (u,v) matches (u’,v’).

The mismatches produced by this algorithm are incorporated into the execution

patch, which handles the new parts of the code that cannot be executed on the
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SPE. Since patching is done on the edges of the graph, the execution patch maps

the edge transition to the new code that is to be executed. The data dependencies

of the new code are mapped to the datapath basic block scanchains so that the

appropriate scanchains can be both scanned out from the SPE and scanned in to

the SPE if the SPP execution affected the state of some variables in the SPE.

Thus, the exception patch is invoked by the exceptional condition on the

SPE. Upon receiving the edge ID from the SPE, the exception patch on the SPP

knows which basic block triggered the exception, and what code needs to be exe-

cuted. It acquires the state, if needed, from the SPE, executes the code, patches

the affected state, if any, back to the SPE and sets the appropriate return state in

the control graph of the SPE.

The configuration patch is invoked during the SPE configuration. The run-

time dynamically maps SPEs to execute code that is found suitable for a given

SPE. All SPEs contain a version number that indicates an application version that

SPE is currently initialized to. When the SPE is allocated, the runtime checks its

version number and, if the application and SPE versions do not match or the SPE

is executed for the first time, configures the SPE with the corresponding version

patch. This configuration patch comprises of the current version number and ini-

tialization data for control path and gadget scanchains. Since data path scanchain

contains only runtime information, it is not included in the configuration patch.

All subsequent runs of this application version do not require configuration, unless

another version is executed in between. Thus, the cost of initial SPE configu-

ration is amortized over all subsequent calls to this SPE. The patch deployment

mechanism for each scanchain is implemented as a simple FSM that initializes the

counter to the number of bits in the patch, sets the shift enable signal for the regis-

ters on the scanchain, and shifts in values until counter reaches 0. Both scanchains

are initialized in parallel, however, the initialization time depends on the amount

and complexity of the gadgets and on the number of edges in the control graph of

the SPE. Thus, initialization time is the maximum of the times to initialize each

scanchain. The layout of a configuration patch is shown in Figure 4.7, where offset

indicates the offset of the gadget scanchain path, and size1, size2 indicate the size
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in bits of control and gadget scanchains patch respectively.

Figure 4.7: Configuration patch layout.

Runtime can dispatch SPE configuration in a blocking manner, where the

runtime sends the configuration patch along with the rest of the arguments to the

SPE, or in a non-blocking manner, where the runtime sends configuration patch to

the SPE and continues execution, while SPE fetches patch information and initial-

izes scanchains. However, non-blocking patch deployment requires either buffering

on the SPE side, or reducing the amount of information that runtime needs to send

to the SPE. The first approach can be implemented by allocating message queues

for the SPEs that buffer the patch information. The second approach can be han-

dled by communicating through a memory interface, where the runtime sends only

the pointer to the configuration patch and resumes execution, and the SPE loads

the patch via load units and feeds it into scanchains. The current version supports

non-blocking patch deployment via memory interface, where the runtime sends the

pointer to the configuration patch along with the rest of the arguments to the SPE.

4.6 Example of execution on a configurable ASIC

This section gives an example of function execution on a baseline SPE and

on the configurable SPE that includes marshalling gadget, SPE configuration mod-

ule and 3 types of gadgets: ALU for each operation, configurable data structure

offsets, and configurable constants. The source of the sample function is listed

below, where the code marked with ”-” is the code removed in the new version,

and code marked with ”+” is the code added to the new version.
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typedef struct {
int num;

+ int err; //change of the offset of foo.res

int res;

}struct baz;

int sample function(int n, struct baz *foo) {
int i, sum;

- sum = 0;

+ sum = 1;

for ( i=1; i<=n; i++ ){
- sum <<= i;

+ sum += i; //operation change from << to +

}
foo->res = sum;

foo->num = n;

+ if ( sum <= 0 ){ //block of code addition

+ fprintf(stdout, ”Foobaz!\n”);

+ }
return sum;

}

Figure 4.8 shows a simplified block diagram of the baseline ASIC, where

the control and data paths are shown separately. Dotted lines indicate basic block

or cycle boundaries. This baseline ASIC is only capable to execute the original

version of the sample function, and takes the software fallback approach to execute

the new version.
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Figure 4.8: Block diagram of a baseline SPE.

The execution per basic block proceeds as follows:

state = 1. Arguments int n and struct baz *foo are latched to n cb1 and foo cb1,

return pointer is saved in ret ptr cb1.

next state =2

state = 2. Initial assignment:

i cb2 = 1

sum cb2 = 1

Loop bounds check:

cmp1 = (1 > n cb1)

next state = (cmp1 ? 4:3)
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state = 3. Loop body:

sum cb3 = sum cb3 << i cb3

i cb3 = i cb3 + 1

Loop bounds check:

cmp2 = (i cb3 <= n cb1)

next state = (cmp2 ? 4:3)

state = 4. Store of sum cb3. //foo.res = sum;

st4Address = foo cb1 + 4

st4Value = sum cb3

next state = 5

state = 5. Store of n cb1. //foo.num = n;

st5Address = foo cb1 + 0

st5Value = n cb3

next state = 6

state = 6. Store of return value. //return sum;

st6Address = ret ptr cb1 + 0

st6Value = sum cb3

next state = 7

state = 7. Final state. Done signal is asserted.

New version of the function has several changes: the offset of int res in

struct foo changes due to addition of member int err, initial value of int sum

changes, operands change from ”<<” to ”+” in sum <<= i;, and a block of

code is added that includes a conditional statement and a function call. The

execution on the configurable version of the SPE is shown for the new version

of the program, highlighting the points where execution paths differ. Figure 4.9

shows the control path FSM and datapath of the configurable SPE version, where

the added hardware is drawn with dashed lines. This figure does not include the

gadget and control path scanchains and SPE initialization hardware. The datapath

registers in basic blocks 1, 2 and 3 are converted to shift registers and form three

scanchains.



31

Figure 4.9: Block diagram of a configurable SPE.

The SPE first loads the configuration patch to set the appropriate values

in the datapath gadgets and the exception bits on the edges of the control path.

Since the addition of the code block cannot be handled by the SPE, the exception

bit is set on the edge e = (CB5, CB6), and the rest of the exception bits are set to

zero. The datapath values to be loaded are shown in Table 4.2, where the values

that changed between versions are marked with ”*”.
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Table 4.2: Datapath values of the configuration patch.

Version 1 Version 2 Comments

const i = 1 const i = 1 32b initial value for int i

*const sum = 0 const sum = 1 32b initial value for int sum

const cmp1 = 1 const cmp1 = 1 32b constant in 1 > n cb1 comparison

const inc = 1 const inc = 1 32b constant in i cb3 += 1

*opsel ALU1 = ”<<” opsel ALU1 = ”+” 4b ALU operation in sum cb3 = sum cb3 (opsel ALU1) i cb3

opsel ALU2 = ”+” opsel ALU2 = ”+” 4b ALU operation in i cb3 = i cb3 (opsel ALU2) 1

opsel ALU3 = ”>” opsel ALU3 = ”>” 4b ALU operation in cmp1 = 1 (opsel ALU3) n cb1

opsel ALU4 = ”<=” opsel ALU4 = ”<=” 4b ALU operation in cmp2 = i cb3 (opsel ALU4) n cb1

*offset res = 4 offset res = 8 32b constant for foo->res offset

offset num = 0 offset num = 0 32b constant for foo->num offset

The execution per basic block proceeds as follows:

state = init. If the SPE executes a given version for the first time, the configuration

patch is loaded and shifted to the gadget and control scanchains.

next state = (initDone ? 1: init)

state = 1. Arguments int n and struct baz *foo are latched to n cb1 and foo cb1,

return pointer is saved in ret ptr cb1.

next state =2

state = 2. Initial assignment:

i cb2 = const i

sum cb2 = const sum

Loop bounds check:

cmp1 = (const cmp1 (opsel ALU3) n cb1)

next state = (cmp1 ? 4:3)

state = 3. Loop body:

sum cb3 = sum cb3 (opsel ALU1) i cb3

i cb3 = i cb3 (opsel ALU2) const inc

Loop bounds check:

cmp2 = (i cb3 (opsel ALU4) n cb1)

next state = (cmp2 ? 4:3)

state = 4. Store of sum cb3. //foo.res = sum;

st4Address = foo cb1 + offset res
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st4Value = sum cb3

next state = 5

state = 5. Store of n cb1. //foo.num = n;

st5Address = foo cb1 + offset num

st5Value = n cb3

After the execution of this basic block, the control is transferred to the

marshalling gadget to handle the inserted block of code in the new version.

next state = marshalling gadget

state = marshalling gadget.

The marshalling gadget asserts the SPP interrupt, sets the exception edge

number e = (CB5, CB6), and transfers the interrupt handler pointer to the SPP.

The SPP loads the exception patch, scans out the edge number that caused ex-

ception, and dispatches to the handler of that edge number. The state required by

the exception patch is the value of variable sum located in sum cb3 register. The

SPP rotates scanchain 2 that has sum cb3 register, reads the value, and executes

the inserted block of code. Since none of the SPE registers were modified, the

SPP does not need to transfer modified state back, and only needs to to resume

execution on the SPE in appropriate state by setting next state = 6 on the control

scanchain and rotating it. Once the patch processor finishes, it asserts the spp-

Done signal and SPE resumes execution.

next state = (sppDone ? next state : marshalling gadget)

state = 6. Store of return value. //return sum;

st6Address = ret ptr cb1 + 0

st6Value = sum cb3

next state = 7

state = 7. Final state. Done signal is asserted.

Thus, given a code change between versions, the SPE is able to execute

the new version by updating gadget configuration and setting appropriate edge

exceptions for the changes that cannot be handled by gadgets.
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5.1 Identifying application changes between ver-

sions

The study of software evolution between subsequent releases aims to iden-

tify the frequently changing software constructs that are representative of the set

applications targeted by the Arsenal architecture. The application set consisted

of Lame MP3 Encoder, an MPEG Audio Layer III encoder, libjpeg, a JPEG en-

coder and decoder, and bzip2, a data compression/decompression project. We

downloaded the latest releases that spanned several years, where libjpeg version

set comprised of 11 versions (1-6b), Lame included 19 versions (3.88-3.92v2), and

bzip2 included 6 versions (1.0.0-1.0.5).

All versions of the selected applications libjpeg, Lame and bzip2 were com-

piled with profiling and debugging support. Since instantiation of some application

function in hardware requires an execution on the SPE to provide a performance

benefit over executing this function natively, the functions that comprise the 95%

of the total execution time were selected. We produced a list of differences per

function between subsequent versions for all versions, where each change was man-

ually classified. Each line of code was annotated with the static instruction count

using PIN binary instrumentation tool [17] to estimate the footprint of the block

of code that differs between versions on the instruction cache of the SPP.

Each change was classified along two dimensions, where the first one is an

addition removal, or a change of the code in a newer version. All of these cases can

cause an exceptional condition on the SPE if they cannot be handled by gadgets,

34
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where the affected basic blocks are bypassed and the values for the blocks along

the execution path are patched to the SPE. The second dimension targets the

instruction level analysis of differences to identify the changes on the basic block

level. Each affected statement was assigned to one or more categories: data flow,

control flow, operator, interface and language changes, memory accesses, declara-

tions, function calls, and code block addition and removal. These categories further

subdivide into subcategories to target specific constructs. The language changes

correspond to high level changes that are purely software constructs and do not

affect the hardware instantiation. For instance, function scope changes, type cast-

ing and typedef declarations are examples of language changes. Interface changes

account for addition and removal of the arguments to functions. Memory accesses

are counted only for the first reference of data structure members and non-local

variables between function calls. The declarations category includes only vari-

able declarations without initialization. Operator addition, removal and change is

placed in the operators category. Differences in loop constructs and conditional

statements were broken down into control flow loops and control flow branches

categories. The dataflow differences were classified into major and minor differ-

ences, where a major difference indicated that the statement was added, removed

or changed substantially, whereas a minor difference indicated that the statement

was modified while preserving the semantics and the meaning of the original state-

ment. For instance, function calc noise shows major dataflow addition and minor

dataflow change between versions 3.96v1 and 3.97 of Lame.

Major: + noise = calc noise core c( cod info, &j, l, step );

Minor: - prev noise->step[sfb] = step;

+ prev noise->step[sfb] = s;

The classification categories are not exclusive, thus, one change might be counted

more than once if it is representative of several categories. Thus, an addition of a

statement in function reverse DCT between versions 4 and 4a of libjpeg

+ compptr = cinfo->cur comp info[ci];
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was counted as 1 major dataflow, 2 memory accesses and 2 operator additions.

Addition or removal of several statements was classified as a block of code

if it contained at least one control flow statement. The number of additions or

removals of statements, function calls, loop constructs and conditional statements

inside the block of code, as well as the number of static instructions per block of

code was noted. Finally, if the function changed substantially between versions, it

was classified as an overhaul and the changes in this function were not included in

the total count.

Figure 5.1: Categories of changes as a percentage of total changes in libjpeg.

Figures 5.1, 5.2 and 5.3 show the percentage of the total number of changes

for each category of differences for libjpeg, Lame and bzip2 respectively. Figure

5.4 shows the cumulative number of changes per category for all applications in

the test set.

These figures show that libjpeg and Lame have analogous results with the

majority of changes being in the operators, minor dataflow and memory accesses.

All of the categories shows similar percentage and ranking relative to each other.

On the other hand, bzip2 shows an example of stable project that has only 44
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Figure 5.2: Categories of changes as a percentage of total changes in Lame.

Figure 5.3: Categories of changes as a percentage of total changes in bzip2.

changes compared to 687 changes in libjpeg, and 1843 changes in Lame. Since we

analyzed the versions of bzip2 after the 1.0 version, these results might not reflect

the software evolution of a startup project.
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Figure 5.4: Cumulative number of changes per category for all applications in the
test set.

Figure 5.5 shows the cumulative distribution function of the number of

static instructions per code block or statement in libjpeg, Lame and bzip2.

Figure 5.5: Cumulative distribution function of number of static instructions per
added and removed blocks of code and statements.

Majority (87.7%) of the block lengths are less than 32 instructions, while
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less than 1% of block lengths exceed 512 instructions. Given the infrequency of long

blocks of code, and the fact that addition or removal of a sizable block indicates a

major change to the function, the estimate of the footprint on the I-cache of the

SPP was based on the instruction lengths below 32 instructions.

Another observation is that code addition is more common than code re-

moval, which could suggest that code evolution involves more rewriting and addi-

tion of the new code, than old code elimination.

Figure 5.6 shows the CDF of the percentage of function versions with at least

one change over the total number of versions that include a given function. Only

5.8% of the functions have changes in more than half of this function’s versions,

and 20.5% of the functions do not change at all.

Figure 5.6: A percentage of function versions with changes.

The results show that majority of the changes are minor with the average

length of added statements and blocks in the range of a few static instructions,

which confirms the fact that the software evolution is mostly incremental, and

the code changes are gradual. These incremental changes in the code evolution
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reasserted our hypothesis that software is amenable to patching. However, there

exists a subset of changes that is not practical to be handled by patching mecha-

nisms. When faced with drastic changes in the function code, the ratio of the code

that can be still executed on the SPE and the added code that is executed on the

patch processor might be favorable to the software fallback mechanism. Out of

a corpora of 756 versions of functions analyzed, 23 versions were overhauled, and

out of 68 functions, 16 were changed substantially between subsequent versions at

least once. Thus, on a function block level, the changes can be describes as minor

and major. While patching mechanisms are applicable to the minor changes, the

major changes represent structural or algorithmic shifts in the underlying applica-

tion, where either the execution on the SPE is no longer feasible, or the SPE does

not correspond semantically to the new functionality of the procedure.

This study is a preliminary investigation that was conducted on a limited set

of an applications with the intent to identify the trends and paths of the software

evolution, and an in-depth study is needed to validate the findings on a larger set

of workloads and prove full generality of the results. However, this study gave us

an indication that software patching is viable which served us as a basis for the

exploration of the hardware patching capabilities.

5.2 Simulation results

This section discusses the methodologies and results we used to evaluate

ASIC patching methodologies. All results are based on six configurations: Base-

line (the non-patched version of the ASIC), MG (the patch enabled version that

includes marshalling gadget and initialization logic to load configuration patch),

GadgetALU (MG configuration plus configurable ALU gadget), GadgetConst (MG

configuration plus configurable registers for constants gadget), GadgetOffset (MG

configuration plus configurable registers for data structure offsets gadget), and

FullPatching (MG configuration plus all of the gadgets). The MG configuration

allows SPEs to handle software changes via the exception mechanism, whereas all

subsequent configurations employ gadgets to mitigate effects of application changes
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whenever it is possible with the ability to trigger exception upon a condition that

cannot be handled by gadgets. To evaluate performance of the execution handling,

we used the execution core of the RAW tile as a patching processor with 32KB

L1 instruction cache, 32KB L1 data cache and simulation frequency of 950 Mhz.

The width of datapath, gadget and control scanchains was set to one bit. We used

90nm CAD flow for design synthesis.

This work relies on the complex toolchain that currently lacks the maturity

to provide cycle time data for full scale applications. In the interest of providing

concrete results, the performance aspects of patching methods are shown on the

sample function SPE described in Section 4.6, and preliminary area and frequency

results are shown for scale bitcount SPE from Lame. Table 5.1 shows the synthesis

results for the sample function SPE that contains 4 ALU gadgets, 4 constant

register gadgets and 2 data structure offset register gadgets.

Table 5.1: Area and frequency of sample function SPE.

Configuration Area, mm2 Frequency, Mhz

Baseline 0.02646 288.34232

MG 0.06435 288.5753

GadgetALU 0.07599 247.91135

GadgetConst 0.06898 291.5962

GadgetOffset 0.06492 285.8613

FullPatching 0.08859 246.54832

The move from baseline configuration to the MG configuration increased the

ASIC size 2.4 times. This increase is mainly due to the inclusion of the marshalling

gadget and initialization modules that, when synthesized separately, occupy 0.026

mm2 combined. Thus, there is a constant area increase that, for a full scale ex-

ample, is less prominent. However, the non-constant part of area increase depends

on the complexity of the SPE, namely, the number of registers to hold the edge

exception bits, and the conversion of datapath registers to shift registers assigned

to scanchains. Table 5.2 shows the simulation results for version 1 and 2 of the

sample function SPE. Since version 2 of the function has changes that utilize all of

the gadgets and the block of code that requires execution on the patch processor,
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the simulation results are shown only for the fullPatching configuration.

The cold start execution time includes the initialization of the SPE, while

subsequent executions take the same number of cycles as the baseline SPE. Given

the fact that the SPE only executes inside the loop body for 7 cycles, the con-

figuration time dominates the runtime in this simple example. The execution of

the second version of sample function takes 41 cycles of SPE execution, 8 cycles

to trigger the exception and transfer interrupt number to the patch processor, 288

cycles for SPE initialization on the first execution, and the rest of the time is taken

to handle the exception on the patch processor.

Table 5.2: sample function SPE simulation results.

Version 1 Version 2

Configuration Total cycles Initial Subsequent Total cycles Initial Subsequent

exec. cycles exec. cycles exec. cycles exec. cycles

Baseline 82 41 41 N/A N/A N/A

MG 138 97 41 N/A N/A N/A

GadgetALU 167 126 41 N/A N/A N/A

GadgetConst 304 263 41 N/A N/A N/A

GadgetOffset 183 142 41 N/A N/A N/A

FullPatching 370 329 41 4981 3115 1866

Table 5.3 shows the area and frequency of the SPE for scale bitcount func-

tion in version 3.94b of Lame. In version 3.96 two function calls are added in the

beginning of the function that require execution on the patch processor:

+ assert( all scalefactors not negative( scalefac, cod info->sfbmax ) );

Thus, the baseline SPE becomes unusable after version 3.96, whereas the patchable

SPE is able to execute eleven versions of this function. The scale bitcount SPE has

43 configurable ALUs, 38 configurable constant registers and 8 configurable offset

registers.

The frequency decreases between the baseline and different patching con-

figurations range within 1.6% and 10.8%, and the area increase due to inclusion

of patchable hardware ranges within 34.1% and 104.9% for scale bitcount SPE.
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Table 5.3: Area and frequency of scale bitcount SPE.

Configuration Area, mm2 Frequency, Mhz

Baseline 0.28213 266.30449

MG 0.37842 261.96526

GadgetALU 0.52368 249.14047

GadgetConst 0.43002 256.10162

GadgetOffset 0.38778 260.62028

FullPatching 0.57833 240.20562

Currently, gadget substitutions are done for every construct to achieve a wide cov-

erage of code changes, which results in a large number of gadgets that are not

utilized in the patching capacity. This leads to modest frequency decreases and

noticeable increases of the SPE area. Code analysis that identifies the constructs

that are likely to change to be replaced with gadgets while leaving stable code

sections intact can improve the performance of SPEs and preserve the benefits of

configurable hardware.



6 Conclusion

This thesis presented the design of ASIC patching methods that extend the

lifetime of the ASIC when faced with changes in the underlying application in the

context of the Arsenal architecture. The resilience to software evolution is achieved

by modification of the SPE with hardware gadgets that allow configurable runtime

behavior, and mechanisms to transfer control and data between the SPE and the

patch processor. If the application changes cannot be handled by gadgets, the

flow of control is transferred to the patch processor that can access any register in

the SPE complex via scanchain interfaces, execute the required code and resume

execution on the SPE.

The results of study of software evolution on a set of sample applications

show that software is amenable to patching, and that majority of changes in ap-

plications are localized, small and incremental. We demonstrated that differences

between software versions can be abstracted in patches that allow SPEs synthe-

sized from base application version to execute future versions of this application.

The results show that hardware patching mechanisms can handle a wide range

of changes in the underlying application code with reasonable performance over-

head. However, our toolchain can currently provide simulation results only on

simple applications. The gadget selection approach in this work targets the cover-

age of the diverse set of changes, thus exploring the generality aspect of the trade

off between the SPE performance and generality of changes that can be handled.

Further analysis of performance and coverage of various patching mechanisms for

real life applications would provide insights into the appropriate gadget selection

and generation that preserves the benefits of graceful degradation over several ver-

sions of the application while reducing the area, power and performance impacts
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of inclusion of patching hardware.
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