
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Parallel Speedup Estimates for Serial Programs

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Science (Computer Engineering)

by

Donghwan Jeon

Committee in charge:

Professor Michael Taylor, Chair
Professor Chung-Kuan Cheng
Professor Sorin Lerner
Professor Bill Lin
Professor Steven Swanson
Professor Dean Tullsen

2012

Copyright

Donghwan Jeon, 2012

All rights reserved.

The dissertation of Donghwan Jeon is approved, and it

is acceptable in quality and form for publication on mi-

crofilm and electronically:

Chair

University of California, San Diego

2012

iii

DEDICATION

To my mother Misook Chung,

for her endless love and devotion.

iv

EPIGRAPH

There are only two mistakes one can make along the road to truth;

not going all the way, and not starting.

—Buddha

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . viii

List of Tables . ix

Acknowledgements . x

Vita . xiii

Abstract of the Dissertation . xv

Chapter 1 Introduction . 1
1.1 Existing Tools for Parallelization 4
1.2 Introducing Kismet . 6
1.3 Thesis Outline . 8

Chapter 2 Profiling Parallelism with Hierarchical Critical Path Analysis . 11
2.1 Background: Critical Path Analysis (CPA) 12
2.2 Hierarchical Critical Path Analysis 15
2.3 HCPA Implementation 19

2.3.1 Designing the Region Hierarchy 20
2.3.2 Calculating Critical Path Length 22
2.3.3 Self-Parallelism Calculation 26
2.3.4 Summarizing Profiled Information 28

2.4 Experimental Results . 29
2.4.1 Effectiveness of Self-Parallelism Metric 29
2.4.2 Effectiveness of the Summarization Techniques . . 30

Chapter 3 Predicting Speedup with Realistic Parallelization Constraints . 34
3.1 Kismet System Architecture 34
3.2 Speedup Predictor . 37

3.2.1 Expressible Self-Parallelism (ESP) 38
3.2.2 Parallel Execution Time Model 39

3.3 Case Studies - Raw and Multicore 41
3.3.1 Targeting Raw in Kismet 42

vi

3.3.2 Targeting Multicore with OpenMP in Kismet . . 44
3.3.3 Kismet Usage . 45

3.4 Experimental Results . 46
3.4.1 Methodology . 48
3.4.2 Prediction Results 50
3.4.3 Impact of Expressible Self-Parallelism (ESP) . . . 54
3.4.4 Impact of Parallelization Overhead 55
3.4.5 Impact of Cache-aware Speedup Estimation . . . 57

Chapter 4 Reducing Overhead with Efficient Vector Shadow Memory . . 59
4.0.6 Shadow Memories for Differential Dynamic Anal-

yses . 61
4.0.7 Skadu’s Approach 62
4.0.8 Evaluating Skadu 64

4.1 Overview and Challenges 65
4.2 Efficient Tag Validation 70

4.2.1 Baseline Implementation 70
4.2.2 Slim Tag Validation (SlimTV) 71
4.2.3 Bulk Tag Validation 72

4.3 Vectored Shadow Memory (VSM) Architecture 74
4.3.1 VSM Architecture Overview 74
4.3.2 Tag Vector Cache (TVCache) 75
4.3.3 Tag Vector Storage (TVStorage) 76
4.3.4 Tag Vector Compression 77

4.4 Case Studies . 78
4.4.1 Memory Footprint Profiler 78
4.4.2 Hierarchical Critical Path Analysis 80

4.5 Experimental Results . 82
4.5.1 Memory Footprint Profiler 84
4.5.2 Hierarchical Critical Path Analysis (HCPA) . . . 85

Chapter 5 Related Work . 89
5.1 Parallel Performance Prediction 89

Chapter 6 Summary . 94

Bibliography . 96

vii

LIST OF FIGURES

Figure 1.1: Kismet’s User Interface . 6

Figure 2.1: An Example of Critical Path Analysis (CPA). 12
Figure 2.2: Data-Flow Style Execution Model in CPA. 14
Figure 2.3: Localizing Parallelism in HCPA. 16
Figure 2.4: Output Comparison between CPA and HCPA. 17
Figure 2.5: Uncovering Masked Parallelism. 18
Figure 2.6: Overview of HCPA. 21
Figure 2.7: Runtime Instruction Handler. 23
Figure 2.8: Self-Parallelism Calculation on Regions with Varying Parallelism 27
Figure 2.9: Region Classification Based On Parallelism. 30

Figure 3.1: Kismet System Architecture . 35
Figure 3.2: Parallelism Identification Logic 38
Figure 3.3: Predicted and Measured Speedup for RAW Benchmarks on RAW

hardware . 47
Figure 3.4: Predicted and Reported Speedup in Low-Parallelism SpecInt2000

Benchmarks using third-party published results 51
Figure 3.5: Estimated and Measured Speedup of NAS Parallel Bench on

32-core AMD Multi-core System 53
Figure 3.6: Impact of Parallelization Overhead 55
Figure 3.7: Impact of Cache-aware Estimation in cg Benchmark 56

Figure 4.1: Traditional Memory Shadowing Organization. 65
Figure 4.2: Region Hierarchy Overview. 67
Figure 4.3: Level-based Sharing of Shadow Memory. 68
Figure 4.4: Space Overhead of SlimTV and BulkTV. 70
Figure 4.5: An SlimTV Example. 73
Figure 4.6: Overview of Skadu Shadow Memory Organization. 75
Figure 4.7: Memory Overhead Reduction and Speedup in Footprint Profiler. 83
Figure 4.8: Memory Overhead Reduction and Speedup in HCPA. 86

viii

LIST OF TABLES

Table 2.1: Measured Speedup (16-core) and CPA Estimated Speedup. . . . 13
Table 2.2: Impact of Summarization Technique on File Size in NPB 31

Table 3.1: Overview of Two Platforms - Raw and Multicore 42
Table 3.2: Estimated Speedup with and without Expressible Self-Parallelism 54

Table 4.1: Motivation: Vector Shadow Memory Overheads of the Hierarchi-
cal Critical Path Analysis (HCPA) Differential Dynamic Analysis. 63

Table 4.2: Benchmark Characteristics. 82

ix

ACKNOWLEDGEMENTS

This dissertation would not have been possible without the help and support

of the kind people around me. First and foremost, I would like to thank my

incredible advisor, Professor Michael Taylor. He provided me the opportunity to

work on exciting research projects, taught me how to be a better hacker, and

encourage me to think big. I was extremely privileged to learn from his keen

insight, endless energy, and thoughtful consideration over many years.

I am indebted to my amazing colleagues on the Kismet project with whom

I collaborated. In particular, I would like to thank Saturnino Garcia. As a trustful

friend and a colleague, he was always willing to help and give his best sugges-

tions. Conversation with him allowed me to understand a problem more deeply

and create a better solution. I also thank Chris Louie for his contributions in the

implementation of HCPA. Former and current research group members – Anshu-

man Gupta, Fei Jia, Sravanthi Kota Vankata – all provided invaluable feedback to

my work.

This thesis would not have been possible without my family members’ sup-

port and encouragement. My parents, Youngsik Jeon and Misook Chung, devoted

themselves to my education and supported me with their unconditional love. I

would like to express my utmost gratitude to them. I thank my proud brother,

Jonghwan Jeon, for being my lifelong friend and supporter. I also thank my cousin

Chihwan Jeon, his wife Yoonae Cho, and my cute nieces – Jiye and Yoonseo. They

enriched my life in San Diego with their love, smile, and delicious Korean food.

Finally, I must heartly thank my lovely wife Yooeun. Without her love,

support, and patience, I would not have made it this far. She has been the great

source of strength and happiness when I felt hopeless. Thank you for being with

me!

Chapter 2, 3, and 5 contain material from “Kismet: Parallel Speedup Es-

timates for Serial Programs”, by Donghwan Jeon, Saturnino Garcia, Chris Louie,

and Michael Bedford Taylor, which appears in OOPSLA ’11: Proceedings of the

2011 ACM international conference on Object oriented programming systems lan-

guages and applications. The dissertation author was the primary investigator and

x

author of this paper. The material in these chapters is copyright c©2011 by the

Association for Computing Machinery, Inc.(ACM). Permission to make digital or

hard copies of part or all of this work for personal or classroom use is granted

without fee provided that the copies are not made or distributed for profit or

commercial advantage and that copies bear this notice and the full citation on

the first page in print or the first screen in digital media. Copyrights for com-

ponents of this work owned by others than ACM must be honored. Abstracting

with credit is permitted. To copy otherwise, to republish, to post on servers, or

to redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or email

permissions@acm.org.

Chapter 2 contains materials from “Kremlin: Rethinking and Rebooting

gprof for the Multicore Age”, by Saturnino Garcia, Donghwan Jeon, Chris Louie,

and Michael Bedford Taylor, which appears in PLDI ’11: Proceedings of the 32nd

ACM SIGPLAN conference on Programming language design and implementation.

The dissertation author was the secondary investigator and author of this paper.

This material is copyright c©2011 by the Association for Computing Machinery,

Inc.(ACM). Permission to make digital or hard copies of part or all of this work

for personal or classroom use is granted without fee provided that the copies are

not made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page in print or the first screen in

digital media. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

to republish, to post on servers, or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Publications Dept., ACM, Inc.,

fax +1 (212) 869-0481, or email permissions@acm.org.

Chapter 2 contains material from “The Kremlin Oracle for Sequential Code

Parallelization”, by Saturnino Garcia, Donghwan Jeon, Chris Louie, and Michael

Bedford Taylor, which is set to appear in IEEE Micro. The dissertation author was

the secondary investigator and author of this paper. The material in this chapter is

copyright c©2012 by the Institute of Electrical and Electronics Engineers (IEEE).

xi

Personal use of this material is permitted. Permission from IEEE must be obtained

for all other uses, in any current or future media, including reprinting/republish-

ing this material for advertising or promotional purposes, creating new collective

works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works.

xii

VITA

2001 B. S. in Computer Science and Engineering
Seoul National University
Seoul, Korea

2002-2005 Software Engineer
MDS Technology
Seoul, Korea

2005-20012 Graduate Research Assistant
University of California, San Diego

2008 M. S. in Computer Science (Computer Engineering)
University of California, San Diego

2012 Ph. D. in Computer Science (Computer Engineering)
University of California, San Diego

PUBLICATIONS

Saturnino Garcia, Donghwan Jeon, Christopher Louie, Michael Bedford Taylor,
“The Kremlin Oracle for Sequential Code Parallelization”, IEEE Micro, July/Au-
gust 2012.

Donghwan Jeon, Saturnino Garcia, Christopher Louie, Michael Bedford Taylor,
“Kismet: Parallel Speedup Estimates for Serial Programs”, Proceedings of ACM
Conference on Object Oriented Programming Systems Languages and Applications
(OOPSLA), October 2011.

Saturnino Garcia, Donghwan Jeon, Christopher Louie, Michael Bedford Taylor,
“Kremlin: Rethinking and Rebooting gprof for the Multicore Age”, Proceedings of
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI), June 2011.

Donghwan Jeon, Saturnino Garcia, Christopher Louie, Michael Bedford Taylor,
“Parkour: Parallel Speedup Estimates for Serial Programs”, USENIX Workshop
on Hot Topics in Parallelism (HotPar), May 2011.

Donghwan Jeon, Saturnino Garcia, Christopher Louie, Michael Bedford Taylor,
“Kremlin: Like gprof, but for Parallelization”, Principles and Practice of Parallel
Programming (PPoPP), Feb 2011.

xiii

Saturnino Garcia, Donghwan Jeon, Christopher Louie, Srivanthi Kota-Venkata,
Michael Bedford Taylor, “Bridging the Parallelization Gap: Automating Paral-
lelism Discovery and Planning”, USENIX Workshop on Hot Topics in Parallelism
(HotPar), June 2010.

Srivanthi Kota Venkata, Ikkjin Ahn, Donghwan Jeon, Anshuman Gupta, Christo-
pher Louie, Saturnino Garcia, Serge Belongie, Michael Bedford Taylor, “SD-VBS:
The San Diego Vision Benchmark Suite”, Proceedings of IEEE International Sym-
posium on Workload Characteristics (IISWC) October 2009.

xiv

ABSTRACT OF THE DISSERTATION

Parallel Speedup Estimates for Serial Programs

by

Donghwan Jeon

Doctor of Philosophy in Computer Science (Computer Engineering)

University of California, San Diego, 2012

Professor Michael Taylor, Chair

Software engineers now face the difficult task of parallelizing serial programs

for parallel execution on multicore processors. Parallelization is a complex task

that typically requires considerable time and effort. However, even after extensive

engineering efforts, the resulting speedup is often fundamentally limited due to the

lack of parallelism in the target program or the inability of the target platform to

exploit existing parallelism. Unfortunately, little guidance is available as to how

much benefit may come from parallelization, making it hard for a programmer to

answer this critical question: “Should I parallelize my code?”.

In this dissertation, we examine the design and implementation of Kismet, a

tool that creates parallel speedup estimates for unparallelized serial programs. Our

approach differs from previous approaches in that it does not require any changes

or manual analysis of the serial program. This difference allows quick profitability

analysis of a program, helping programmers make informed decisions in the initial

stages of parallelization.

To provide parallel speedup estimates from serial programs, we developed

a dynamic program analysis named hierarchical critical path analysis (HCPA).

xv

HCPA extends a classic technique called critical path analysis to quantify localized

parallelism of each region in a program. Based on the parallelism information from

HCPA, Kismet incorporates key parallelization constraints that can significantly

affect the parallel speedup, providing realistic speedup upperbounds. The results

are compelling. Kismet can significantly improve the accuracy of parallel speedup

estimates relative to prior work based on critical path analysis.

xvi

Chapter 1

Introduction

Software engineers currently face the daunting task of parallelizing their

programs to take advantage of multi-core processors. These multi-core processors

provide extensive parallel resources, providing the potential for greatly improved

performance. However, a parallelized software is required to exploit the capabilities

of these multi-core processors. This is a radical change for software engineers. Until

recently, most microprocessors had only a single core. Thanks to increasing oper-

ation frequency and micro-architectural innovations fueled by new CMOS process

technologies, these processors enabled exponential performance growth without

any changes in the software. However, since 2005 the power wall and increasing

on-chip wire delay have fundamentally changed the way processors are designed,

bringing the task of parallelization to software engineers.

Unfortunately, parallelization typically relies on individual engineer’s man-

ual effort rather than automated tools. An automatic parallelizing compiler might

be the ideal solution in parallelization: it analyzes the serial source code, finds

parallelization opportunities, applies code transformations, and finally emits the

parallel executable of the program. In reality, however, even the state of the art

parallelizing compilers miss many parallelization opportunities. Because compilers

have to guarantee the correctness of their output, they do not parallelize code when

they cannot prove correctness, missing potential parallelization opportunities. Fur-

thermore, many programming languages do not explicitly express the parallelism

in code, which makes it even harder for an automated tool to discover and exploit

1

2

parallelism.

Manual parallelization typically requires extensive time and effort. In the

first place, thinking in parallel and writing a parallel program is hard for a hu-

man. Parallel programs are also harder to test, modify, debug, and maintain due

to concurrency issues such as race conditions and deadlock. Furthermore, unlike

the well-established serial programming environment, the parallel programming

environment is still evolving, requiring additional learning and training for pro-

grammers.

Even after extensive parallelization efforts, the resulting performance of

refactored serial programs often falls short of optimistic speedups derived from the

available core count. Worse-than-expected performance can be caused by several

factors. First, the program may have an inherently low amount of parallelism—

possibly the result of choosing an algorithm without considering its parallelizability.

Second, the target system may be a poor choice for that program—the result of a

mismatch between the structure of the parallelism in the program and the ability

of the system to efficiently exploit it. Finally, the implementation may be poor—

the result of missed parallelism opportunities or poorly executed parallelization

attempts.

With the expected serious investment in engineering efforts and widely vary-

ing parallel performance, parallelization raises many risks in software engineering.

Unfortunately, very little tool support is available to help parallel softwares, es-

pecially in the early stages of the parallelization. For example, if a programmer

decides to parallelize a program with very limited parallelism, the programmer is

likely to waste precious development time and see disappointing results. If the

programmer had known that the program is parallelism-limited, their time could

have been better used on serial optimization or substituting the algorithm with

another one that has more parallelism.

In this thesis, we propose the design and implementation of a parallel

speedup estimation tool that mitigates the risk of parallel software engineering.

The tool answers the question “Should I parallelize my code?”, allowing software

developers to understand the potential benefit associated with the cost of migrating

3

an existing serial implementation into a parallel one. Unlike other parallel perfor-

mance tuning tools that require an already parallelized program, the tool works on

unmodified serial source code, helping the user in the initial stages of paralleliza-

tion. Furthermore, by incorporating real-world parallelization constraints, the tool

can provide parallel speedup estimates that are accurate enough for practical use.

This thesis makes the following key contributions:

• It presents Kismet, a tool that provides parallel speedup estimates from

serial source code and target-specific parallelization constraints. Because

Kismet automatically provides parallel speedup estimates from unmodified

serial code, it requires little user efforts compared to other tools that demand

pre-parallelization or user annotations [HLL10, Int].

• It introduces the use of summarization techniques on hierarchical critical path

analysis (HCPA) [GJLT11], a recently proposed dynamic program analysis

employed in Kismet that measures the parallelism of a program. The use of

summarization techniques significantly improves the applicability of HCPA

over the previous implementation of HCPA that relied on a compression

technique.

• It demonstrates the effectiveness of Kismet with a wide range of benchmarks

on two very different platforms: MIT Raw and AMD multi-core. With par-

allelism profile from HCPA and a brief description of target-specific paral-

lelization constraints, Kismet was able to provide parallel speedup estimates

close enough to guide initial stages of parallelization.

• It presents the design and implementation of Skadu, a vector shadow memory

system that dramatically reduces memory and runtime overhead of hierar-

chical memory analysis. The effectiveness of Skadu is shown with HCPA and

memory footprint analysis.

4

1.1 Existing Tools for Parallelization

Several tools are available to improve the productivity of parallelization. In

this section, we overview existing tools that can help parallelization and discuss

their merits and limitations.

Parallelizing Compiler A parallelizing compiler is the ideal solution for par-

allelization for a software engineer’s convenience. Taking serial source code, it

discovers parallelization opportunities, applies required code transformations, and

finally emits the parallel executable. Unfortunately, the resulting performance is

often disappointing due to missing parallelization opportunities, as shown in Kim

et al. [KKL10b] and Tournavitis et al. [TWFO09]. Those missing opportunities

stem from an automatic parallelizing compiler’s limitations in static pointer anal-

ysis, irregular control flow, and program input dependence.

Serial Profiler Although performance profilers such as gprof [GKM82] are de-

veloped for serial program optimizations rather than parallelization, they provide

useful hotspot information. By focusing on only hotspots, a programmer can make

the parallelization process more productive. Unfortunately, these profilers do not

quantify the parallelism of the target program and a programmer must manu-

ally estimate the profitability of parallelization for each program region, which is

time-consuming and error-prone.

Critical Path Analysis Based Tools Critical path analysis (CPA) [Kum88] is

a classical program analysis that quantifies the theoretical speedup upperbound.

CPA analyzes dependences in data-flow style execution and reports the speedup

on an ideal target platform where unlimited number of cores are available and

parallelization overhead does not exist. CPA’s strength lies in the quantification

of parallelism regardless of the serial implementation of the program. For example,

reordering two independent statements in a program does not change the result

from CPA. Unfortunately, the reported number is typically overly optimistic and

CPA has seen only limited use, primarily in research projects [Kum88, KMC72,

5

AS92, KBI+09].

Dependence Testing Based Tools Dependence testing shares similar goals

of discovering parallelism with critical path analysis [Lar93, ZNJ09, KKL10b,

TWFO09]. Typically a dependence testing tool monitors inter-iteration depen-

dences at runtime and report existing dependences in the target program. Based

on the work and detected dependence patterns, the tool can provide a short list

of promising regions for parallelization. However, dependence testing tools have

two major limitations. First, they have difficulties detecting parallelization op-

portunities if the serial implementation does not the program structure that the

tool supports such as DOALL loops. Second, they do not quantify the amount of

parallelism, making it hard to reason about the profit from parallelization.

Parallel Speedup Predictor Existing speedup predictors such as Intel Cilkview

analyzer and Intel parallel advisor [HLL10, Int, KKKB12] are designed to help

quick exploration of parallelization. The programmer provides annotated source

code that expresses parallelizable code regions as well as parallelization strategies.

After profiling the target program with the given annotations, these tools provide

the estimated speedup after parallelization. Since making annotations tend to be

easier than applying fully working code transformations, they can improve produc-

tivity, but still they require the programmer have a deep understanding about the

target program. For example, if the software engineer working on parallelization is

different from the original code writer, which is often the case, these tools do not

help much until the user has enough understanding about the program to write

reasonable annotations. Another interesting tool is the Intel Cilkview Scalability

Analyzer [HLL10]. Unlike annotation-based tools, Cilkview accepts fully paral-

lelized program and provides expected speedup, guiding the performance tuning

of parallelized programs. However, it does not help much during the initial stages

of parallelization.

6

$> make CC=kismet-cc
$> $(PROGRAM) $(INPUT)
$> kismet –openmp
Cores 1 2 4 8 16 32 64
Speedup 1 2 3.8 3.8 3.8 3.8 3.8
(est.)

Figure 1.1: Kismet’s User Interface. Kismet provides an easy-to-use user in-

terface similar to gprof. After compiling and executing the unmodified serial

program, Kismet combines runtime profile information with target environment,

producing estimated upper bounds on parallel speedups for the program.

1.2 Introducing Kismet

In this section, we introduce Kismet, a parallel speedup estimation tool. Un-

like other speedup estimation tools that require already parallelized code, Kismet

requires only on an unmodified, serial version of a program. Kismet first per-

forms dynamic program analysis on the serial program to determine the work

and the amount of parallelism available in each region (e.g. loop and function)

of the program. Kismet localizes the parallelism of a region with a new metric

called self-parallelism. Kismet then incorporates system constraints to calculate

an approximate upper bound on the program’s attainable parallel speedup. These

constraints include the number of cores, synchronization overhead, cache effects,

and expressible parallelism types (e.g. loop and task parallelism for multicore chips;

instruction level parallelism for VLIW-style chips; and data level parallelism for

vector machines).

Usage Model Kismet provides a simple usage model in the style of gprof, as

shown in Figure 1.1. The program is first compiled with a drop-in compiler replace-

ment called kismet-cc. kismet-cc inserts instrumentation code and produces an

instrumented binary. Then the program runs with a representative input, which

produces as a side-effect an output file containing profile information.

The user then runs kismet, which analyzes the output file and generates a

table of estimated speedup upper-bounds for a spectrum of core counts. Because

7

the parallel target platform can significantly affect the achievable speedup, the user

specifies the target platform (e.g. openmp in Figure 1.1) when running Kismet.

Kismet evaluates a number of parallelization schemes for the target platform and

then reports the highest speedup found on varying number of cores. If needed,

Kismet can produce the list of regions that should be parallelized to achieve the

reported speedup.

Representative Use Cases Since a user can easily run Kismet without much

effort, it can be used throughout the parallelization process. Here we present three

representative use cases of Kismet, but in practice, a user can flexibly apply the

information Kismet provides in other scenarios.

• Parallelize or Not: Parallelization is hard, and the resulting performance

is hard to predict. If a programmer spends time parallelizing a program

with limited parallelism, he or she is likely to waste time and effort. Kismet

provides the expected speedup upperbound, allowing a programmer to make

an informed decision on parallelization. When little speedup is expected,

the programmer might better spend their time on serial optimization of the

target program.

• Setting Parallelization Goals: By providing the estimated speedup upper-

bound, Kismet helps set reasonable performance goals in parallelization,

which is often time-consuming and error-prone with manual analysis. A

realistic performance goal will prevent a programmer from both missing im-

portant parallelization opportunities and ineffective parallelization with little

speedup.

• Exploring Scalability: Kismet reports the parallel performance scalability

by estimating the speedup on varying number of cores. This scalability in-

formation can provide valuable insights for early parallel system design. For

example, if the software in a target embedded system never gets performance

improvement over four cores, the system designer can avoid using a processor

8

with more than four cores, potentially reducing the hardware cost as well as

lowering the power consumption of the system.

1.3 Thesis Outline

The rest of the thesis is organized as follows.

• Chapter 2 presents parallelism profiling techniques based on a novel dynamic

analysis called hierarchical critical path analysis (HCPA). In contrast to CPA,

which operates on whole programs and cannot quantify the parallelism of

nested regions, HCPA quantifies the parallelism of each region (e.g. func-

tions and loops) with a new metric called self-parallelism, allowing flexible

use of the profiled information in our speedup estimation tool. HCPA is

co-developed with Saturnino Garcia, but this thesis has an important con-

tribution over the initial version of HCPA [GJLT11]. The initial version of

HCPA relied on compression techniques to reduce the size of output, but

its effectiveness was limited to loops where contiguous iterations share the

same amount of parallelism. In contrast, our summarization-based HCPA

effectively reduces the output size even with loops with irregular control flow

and recursive routines, dramatically improving the applicability of HCPA.

• Chapter 3 describes how we incorporate parallelism profile and other par-

allelization constraints to provide practical speedup estimates. We propose

the use of expressible self-parallelism (ESP) to honor each parallelization

environment’s limited ability to exploit parallelism. Using parallelization

overhead and the program’s memory locality information help provide more

realistic speedup estimates. This chapter will also present the results of ex-

perimental results on two very different platforms: the MIT Raw processor

and conventional multi-core systems.

• In Chapter 4, we discuss the design and implementation of Skadu, a vector

shadow memory. As HCPA recursively applies CPA, which is already ex-

pensive in the original form, it incurs significant overhead in both memory

9

and runtime. Skadu uses a few synergistic techniques from encoding to dy-

namic compression, dramatically lowering the overhead of HCPA. Skadu can

be also applied to other heavyweight dynamic analysis. We demonstrate the

effectiveness of Skadu in both HCPA and a memory footprint analyzer.

• Chapter 5 discusses related work of the dissertation.

• Chapter 6 concludes and summarizes this dissertation.

Acknowledgments

Portions of this research were funded by the US National Science Foun-

dation under CAREER Award 0846152, by NSF Awards 0725357, 0846152, and

1018850, and by a gift from Advanced Micro Devices.

This chapter contains material from “Kismet: parallel speedup estimates for

serial programs”, by Donghwan Jeon, Saturnino Garcia, Chris Louie, and Michael

Bedford Taylor, which appears in OOPSLA ’11: Proceedings of the 2011 ACM

international conference on Object oriented programming systems languages and

applications. The dissertation author was the primary investigator and author of

this paper. The material in these chapters is copyright c©2011 by the Association

for Computing Machinery, Inc.(ACM). Permission to make digital or hard copies of

part or all of this work for personal or classroom use is granted without fee provided

that the copies are not made or distributed for profit or commercial advantage and

that copies bear this notice and the full citation on the first page in print or the

first screen in digital media. Copyrights for components of this work owned by

others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, to republish, to post on servers, or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from Publications Dept.,

ACM, Inc., fax +1 (212) 869-0481, or email permissions@acm.org.

This chapter contains material from “The Kremlin Oracle for Sequential

Code Parallelization”, by Saturnino Garcia, Donghwan Jeon, Chris Louie, and

Michael Bedford Taylor, which is set to appear in IEEE Micro. The dissertation

10

author was the secondary investigator and author of this paper. The material

in this chapter is copyright c©2012 by the Institute of Electrical and Electronics

Engineers (IEEE). Personal use of this material is permitted. Permission from

IEEE must be obtained for all other uses, in any current or future media, includ-

ing reprinting/republishing this material for advertising or promotional purposes,

creating new collective works, for resale or redistribution to servers or lists, or reuse

of any copyrighted component of this work in other works.

Chapter 2

Profiling Parallelism with

Hierarchical Critical Path

Analysis

This chapter introduces a dynamic program analysis called hierarchical crit-

ical path analysis (HCPA) that quantifies the amount of parallelism in a program.

The amount of parallelism widely varies with a target program, and it is one of

the major bottlenecks that limit achievable parallel speedup, as implied in the

Amdahl’s Law. Hence, quantifying parallelism is crucial in parallel speedup esti-

mation. HCPA extends an existing technique called critical path analysis (CPA),

which provides the theoretical parallel speedup upperbound. Unfortunately, CPA

reports speedup numbers that are too optimistic for practical use. HCPA ad-

dresses major issues of CPA by incorporating the program region structure into

parallelism measurement and localizing each region’s parallelism with a new metric

called self-parallelism.

The techniques introduced in this chapter are joint work with several col-

laborators. The interested reader may refer to the work of Garcia et al. [GJLT11]

for the application of HCPA on providing step-by-step guidance upon manual par-

allelization.

11

12

1

4

work = 8

cp = 6

1

la $2, $ADDR

load $3, $2(0)

addi $4, $2, #4

store $4, $2(4)

1
store $3, $2(8)

1

Figure 2.1: An Example of Critical Path Analysis (CPA). CPA computes

the ideal parallel speedup without parallelizing the code by constructing the de-

pendence graph from dynamic instructions.

2.1 Background: Critical Path Analysis (CPA)

Critical path analysis, or CPA [Kum88], is a dynamic program analysis that

computes the ideal parallel speedup of a program. CPA reports the ideal speedup

by analyzing serial execution of a program, without requiring parallelization. Re-

searchers have used CPA in several projects [Kum88, KMC72, AS92, KBI+09] to

identify the potential parallelism in programs.

CPA calculates the ideal speedup of code by analyzing dependences among

dynamic instructions. Figure 2.1 shows how CPA works with an example. CPA

first builds a dependence graph where each node represents a dynamic instruction

with latency and each edge represents a register-, control-, or memory-dependence

between instructions. Once the dependence graph is built, CPA finds the length of

the longest path through this graph, the critical path length (cp), which represents

the ideal parallel execution time of a program. Finally, CPA calculates the total-

parallelism of the program by computing the ratio between serial execution time

13

Table 2.1: Measured Speedup (16-core) and CPA Estimated Speedup.

Small correlation between CPA and measured estimates makes CPA impractical for

real-world speedup estimation. Speedup was measured on 16-core Raw processor

(life, is, unstruct, sha) and 16-core AMD machine (ep, is, sp).

Benchmark Actual CPA-Estimated Optimism
Speedup Speedup Ratio

ep 15.0 9,722 648×
life 12.6 116,278 9,228×
is 4.4 1,300,216 295,503×
sp 4.0 189,928 47,482×

unstruct 3.1 3,447 1,112×
sha 2.1 4.8 2.3×

(work) and critical path length. Total-parallelism quantifies the ideal speedup of

the program when parallelized for an ideal machine where it has infinite resources

and zero communication and synchronization delay.

The Promise of CPA CPA has a few major advantages in quantifying the

amount of parallelism in the code. First, it does not require the parallelization

of the code. Considering that manual parallelization typically requires extensive

work, it is a big advantage. Also, unlike conservative static program analyses,

it utilizes accurate memory dependence and control-flow information gathered at

runtime, providing more accurate parallelism information of the program. Finally,

CPA provides an approximate upperbound in speedup invariant of the serial ex-

pression of a program. For example, reordering two independent statements in the

source code does not change CPA’s output. Furthermore, typical parallelization

transformations, such as loop interchange, loop fusion and loop skewing also do

not affect CPA’s output.

Limitations of CPA CPA has seen limited utility outside of research projects

[Kum88, KMC72, AS92, KBI+09]. because it tends to be wildly optimistic. Ta-

ble 2.1 contrasts CPA estimated speedups against measured speedups on 16-core

14

void outer() {

….

middle();

}

void middle() {

….

inner();

}

void inner() {

….

doall loop

reduction

}

Time

Invoke middle Invoke inner

outer middle inner

TP(outer)

= ~5.0X

Figure 2.2: Data-Flow Style Execution Model in CPA. CPA calculates total-

parallelism assuming an unrealistic data-flow style execution. Each circle repre-

sents a dynamic instruction and the circle’s color shows which function the in-

struction belongs to. With the data-flow style execution model, instructions from

all three functions are smeared to their earliest point at which their inputs are

available.

system. As shown in the table, typical CPA reported numbers far exceed the num-

ber of available cores. What is worse, reported numbers are often uncorrelated

with actual speedups attained.

CPA’s optimism mainly results from two factors. First, CPA assumes an

ideal execution environment - a dataflow model of execution with infinite hardware

resources. Figure 2.2 shows sample source code and the corresponding dependence

graph constructed by CPA. Each node represents a dynamic instruction and the

color of a node shows where the instruction came from among three functions. In

CPA’s execution model, any instruction can be executed as soon as all of its depen-

dencies are resolved. For instance, in Figure 2.2, instructions from middle() and

15

inner() are already scheduled when outer() invokes middle(). Unfortunately,

this execution model does not easily map onto Von Neumann machines and im-

perative programming languages. For practical use, we need a program analysis

that can incorporate realistic execution model and parallelization constraints.

Second, CPA only reports a single total-parallelism number from a pro-

gram. The total-parallelism number gives little information beyond the theoretical

speedup upperbound when the whole program is ideally parallelized. In practice,

however, programmers tend to focus on a few important parallelizable regions

rather than the whole program due to parallelization constraints such as the lim-

ited number of available cores and non-trivial parallelization cost.

2.2 Hierarchical Critical Path Analysis

As discussed in the previous section, CPA has had limited utility in soft-

ware engineering tools because of two main factors: the parallelism it reports is not

indicative of the potential parallel speedup and it calculates only a single paral-

lelism number for a single continuous program region, providing little information

for parallelization in practice. To counter these limitations of CPA, we introduce

hierarchical critical path analysis (HCPA). HCPA extends CPA with a hierarchical

region model and provides localized parallelism information via a new parallelism

metric, self-parallelism.

Unlike CPA, HCPA localizes parallelism to a specific region by indepen-

dently applying CPA to each region. Figure 2.3(a) shows the result when HCPA

applies CPA to each region and reports each region’s total-parallelism. However,

recursively applying CPA is not enough. Although the total-parallelism of each re-

gion represents the ideal speedup of each region, CPA measures parallelism that is

derived from both a region and its children; middle()’s total-parallelism includes

the parallelism from inner(), making it unclear how much parallelism middle

contains.

HCPA further localizes parallelism to specific regions by introducing a new

metric called self-parallelism. Self-parallelism refers to the parallelism of a region

16

TP(inner)

= ~7.0X

TP(middle)

= ~6.0X

TP(outer)

= ~5.0X

(b) Recursively Applying CPA(a) Recursively Applying CPA

SP(inner)

= ~7.0X

SP(middle)

= ~1.0X

SP(outer)

= ~1.0X

(b) HCPA with Self-Parallelism

Figure 2.3: Localizing Parallelism in HCPA. (a) Recursively applying CPA

localizes parallelism. However, a child region’s parallelism is counted toward its

parent’s parallelism, blurring the origin of parallelism. (b) Self-parallelism further

localizes parallelism to a region by excluding its children’s parallelism.

17

a[i] = a[i] + 1;

b[i] = b[i] !1;

for (i=0 to 100) {

}

for (i=0 to 100) {

}

a[i] = a[i] + 1;

b[i] = b[i] !1; 2X

ILP

100X

DOALL

200X

(a) Total-Parallelism

from CPA

(b) Self-Parallelism

from HCPA

Figure 2.4: Output Comparison between CPA and HCPA. While CPA

reports only total-parallelism value for the whole program, HCPA provides self-

parallelism and parallelism type for each region, enabling better parallelization

planning.

exclusive of the parallelism from its children. Figure 2.4 contrasts self-parallelism

with total-parallelism. Whereas CPA’s total-parallelism provides only a single par-

allelism number from the program, HCPA’s self-parallelism provides more localized

parallelism information for each region.

Figure 2.3(b) shows how the self-parallelism metric addresses the problem

of total-parallelism in the previous example. As self-parallelism eliminates the

parallelism originating from child regions, it is now clear outer() and middle()

functions do not contain parallelism. By quantifying each region’s exclusive paral-

lelism, HCPA allows realistic speedup estimation where only selected regions are

parallelized with realistic parallelization constraints.

HCPA’s greatest strength lies in its ability to find parallelism in many forms:

task-based parallelism, pipelined parallelism, skewed parallelism, data parallelism,

and many forms of loop-based parallelism (including DOALL and DOACROSS)

are recognized, even if the code is not currently structured to express it.

Figure 2.5 shows an example of HCPA’s power in detecting parallelism–

even when it is masked in the current implementation. The code in Figure 2.5a

presents two challenges to the parallelizing compiler. First, the 2D array has been

implemented as an array of pointers to arrays. Second, the dependence structure

between updates of values in the arrays creates cross-iteration dependences in

18

1 void calc array(int∗∗ a)
2 {
3 for(i = 1; i < N; ++i)

4 for(j = 1; j < N; ++j)

5 a[i][j] = a[i−1][j] + a[i][j−1];
6 }

(a) Loop with unexpressed parallelism.

...

...

...

...

...

i

j

1

1

2

2

3

3

N-1

N-1

(b) Before Loop Skewing

...

...

...

...

...

i

j

1

1

2

2

3

3

N-1

N-1

(c) After Loop Skewing

Figure 2.5: Uncovering Masked Parallelism. The use of critical path analysis

allows HCPA to uncover parallelism even when masked by a serial implementation.

The code in (a) shows a nested loop operating on a 2D array with cross-iteration

dependences over both loops, making it appear very serial. The iteration depen-

dence graph in (b) shows that iterations can be grouped into independent sets,

allowing parallel execution if loop skewing and interchange are used as shown in

(c). Techniques relying on dependence testing would overlook this parallelism.

Furthermore, the 2D array in (a) is represented as an array of pointers to arrays,

thwarting a parallelizing compiler’s attempt to statically analyze this section of

code.

19

both loops. To parallelize this code requires two key analysis. First, it requires

the compiler to recognize that a loop-transformation technique called loop-skewing

can be applied, which restructures the loop so that execution traversals the array

“diagonally” (as shown in Figure 2.5c). Second, it requires the compiler to prove,

possibly using shape analysis, that none of the pointers in the first level of the

array point to the same array in the second level; i.e. that there is no aliasing.

Some research compilers have implemented shape-analysis passes that could

potentially decipher that the data structure is equivalent to a 2D array; and simi-

larly some research compilers are able to automatically infer loop-skewing of static

arrays. More generally, to unlock the parallelism latent in sequence programs may

require that an arbitrary number of difficult analyses and transformations that

must be composed. Because of complexity and runtime issues, modern compilers

are not able to compose all of these heroic tasks simultaneously into one coherent

analysis and transformation framework.

However, using runtime information, HCPA is easily able to identify and

quantify the parallelism that is latent in the double-loop structure, allowing a

speedup estimation tool to count this important parallelization opportunity. When

parallelization the code, the programmer can work to iteratively transform the code

sufficiently that the compiler or runtime system can take it the rest of the way.

In contrast, weaker dynamic dependence testing-based frameworks would typically

report no available parallelism because they are not able to see past the existing

structure of the double loop, leading to underestimated parallel speedup.

2.3 HCPA Implementation

Although the concept of HCPA is quite straightforward as discussed in the

previous section, it involves several implementation issues for the use in speedup

estimation. In this section, we will focus on four major issues in HCPA implemen-

tation.

• Designing the Region Hierarchy: HCPA captures the self-parallelism of each

region in the region hierarchy. The design of region hierarchy can fundamen-

20

tally impact the result of HCPA. We present a simple but effective region

hierarchy design for speedup estimation.

• Calculating Critical Path Length: Unlike CPA that tracks the single critical

path length of the whole program, HCPA must simultaneously track multiple

critical paths for each region, which can be very costly. We present an array

of techniques that reduces the overhead of simultaneously finding critical

path lengths in multiple regions.

• Calculating Self-Parallelism: Self-parallelism metric represents the exclusive

parallelism of a region, excluding the parallelism from its children. We cal-

culate self-parallelism with an effective approximation.

• Summarizing Profiled Information: The number of dynamic regions can be

extremely large, thus naively storing all the information could be prohibitive.

We use a context-sensitive summarization technique to effectively and effi-

ciently represent the profiled information.

2.3.1 Designing the Region Hierarchy

HCPA uses the concept of a region to denote a region of code whose par-

allelism is to be measured from the time that region is entered until the time it

is exited. In order for the self-parallelism metric to work, regions must obey a

proper nesting structure: regions must not partially overlap, but they may nest or

be siblings with the same parent region. Based on this nesting structure, we can

define a dynamic region graph which shows the relationship between parent and

children regions in the dynamic execution of the program.

Although more arbitrary delineations of regions are possible, we use three

types of regions - loop, function, and sequence. These regions are designed in an

attempt to quantify the parallelism of constructs that users understand well and

relate directly to the process of parallelization. Loop and function regions directly

map to loops and functions in the program. A sequence region can be any single-

entry piece of code but we restrict sequences to two important cases: loop bodies

21

1 int main {
2 for (i=1 to N) {
3 foo(1); // callsite A

4 foo(N); // callsite B

5 }
6 }
7 void foo(int size) {
8 for(i=1 to size) {
9 // loop body

10 }
11 }

(a) Sample Code Fragment

1 N

1 1 … N

…

…

loop

iters

foo_A foo_B

iters

loop

iters

foo_A foo_B

iters

loop loop

func loop sequence

Context-Sensitive
Summarization

work: ..
cp: ..

avg work: ..
avg self-p: ..

self-p: ..

(b) Dynamic Region Tree and Summarized Region Tree

Figure 2.6: Overview of HCPA. HCPA builds a hierarchical region structure

from source code, forming a dynamic region tree at runtime. As each dynamic

region is profiled, HCPA summarizes the profiled data into a summarized region

tree. The summarized tree preserves context-sensitive parallelism information,

exposing more parallelization opportunities.

22

and self-work sequences. Loop body regions form a child region for each iteration of

a loop region, allowing HCPA to identify loop-level parallelism. Self-work sequence

regions are sequences of code that are contained in non-leaf regions and do not have

any function calls or loops. These regions may seem unintuitive but they separate

different types of parallelism, improving the accuracy of speedup estimation. Self-

work sequences factor out the instruction level parallelism in regions that would

otherwise contain a mix of task-level parallelism (from its other children) and

instruction level parallelism.

Kismet demarcates region boundaries at static instrumentation time. Kismet’s

instrumentor inserts function calls to the runtime, and they form a region tree at

runtime. For example, the source code in Figure 2.6(a) forms a dynamic region

tree as shown in Figure 2.6(b).

2.3.2 Calculating Critical Path Length

The main task of CPA, the underlying technique of HCPA, is to find the

single critical path length of the whole program, which can be costly. HCPA, on

the other hand, has to track the critical path length for each region, incurring

much higher memory and runtime overhead.

In order to efficiently find the critical path length, HCPA independently

maintains the timestamp of each operand (i.e. register and memory address) for

each region. A timestamp represents the earliest execution time an instruction is

available for execution with the operand. HCPA tracks the maximum timestamp

value used in each region and report it as the critical path length when the region

exits. All timestamps are logically initialized to zero upon entry so that a reference

to an instruction outside the region will be assumed to be available immediately at

the beginning of the region (i.e. time 0). Upon a dynamic instruction, HCPA takes

timestamps of every source operand and control dependence, finds the maximum

timestamp, and updates the timestamp of the destination operand after adding

the latency of the instruction.

Although the number of dynamic regions in a program can be very large,

the number of regions that need simultaneous timestamp update is limited to the

23

1 void handlerBinary(int dest, int src0, int src1, int cost) {
2 for (int depth=0; depth<active region depth; depth++) {
3 // calculate the updated timestamp for dest

4 Time time control dep = getControlDepTime(depth);

5 Time time src0 = getRegTime(src0, depth);

6 Time time src1 = getRegTime(src1, depth);

7 Time time dest = max(time control dep, time src0, time src1) + cost;

8 setRegTime(dest, time dest, depth);

9

10 // update critical path length and work

11 Region∗ region = getActiveRegion(depth);

12 region−>cp = max(region−>cp, dest);

13 region−>work += cost;

14 }
15 }

Figure 2.7: Runtime Instruction Handler. Upon a dynamic instruction, HCPA

calculates and updates the timestamp of the dest register for all the active regions.

number of active regions. An active region refers to a region which has entered

but has not exited yet. In the dynamic region graph, the number of active regions

is the same with the depth of the current dynamic region in the tree. Every active

region independently manages its timestamps, making the update process similar

to a vector operation.

Figure 2.7 shows a simplified runtime code that is invoked upon a dynamic

instruction. The dynamic instruction takes two source registers and one desti-

nation register. Each iteration of the loop (line 2) in the code handles an active

region. It first reads timestamps from two source registers and control dependence,

and calculates the new timestamp by adding the cost of the instruction. Then it

updates the timestamp of the destination register, and finally updates the critical

path length of the region if the new timestamp value is larger than the current

critical path length.

HCPA honors true dependences including register-, memory-, and control-

24

dependencies. Because we aim to provide speedup upperbound, HCPA ignores

false dependences and easy-to-break dependences. For example, every for loop

carries an inter-iteration dependence with its loop variable, but the dependence

can be easily broken.

Register Dependence At compile time, the LLVM-based instrumentor effi-

ciently and accurately analyze true dependencies between registers. HCPA’s in-

strumentor inserts a function call so that the HCPA runtime uses the dependence

information when it updates timestamps. Dependencies that are not true de-

pendencies are filtered out using two main mechanisms. First, our instrumentor

operates on LLVM’s SSA form IR [CFR+91]. This eliminates false output (i.e.

write-after-write) dependencies. Next, the instrumentor detects induction and re-

duction variables then breaks the false dependencies that result from them.

In order to efficiently manage timestamps, we use vector shadow register

(VSR). A VSR is an array of vectors where each vector contains timestamps of a

register for all the active regions. Each element of a vector represents a timestamp

of an active region. Because every function independently manages a register

space, HCPA allocates a VSR when the function starts and deallocates it when

the function ends. In a VSR, all the vectors in a VSR share the same length - the

length represents the maximum depth of a region in the dynamic region tree that

might use the register associated with the vector, which can be easily analyzed

at the compile time. The number of registers used in a function, in LLVM’s SSA

form, determines the number of vectors in a VSR.

Memory Dependence HCPA detects every memory dependence at runtime

and incorporates the dependence information in its critical path length calculation.

Compared to the static pointer analyses used in many parallelizing compilers,

this runtime approach can handle irregular control flows and complicated pointer

operations, enabling more accurate parallelism quantification.

We use vector shadow memory (VSM) to manage timestamps for memory

addresses. Vector shadow memory is a variant of shadow memory, which provides

efficient tagging of information to memory address space. Shadow memory is

25

widely used in dynamic program analyses, from memory analysis [SN05, BZ11] to

computer security [CZYH06, QWL+06, XBS06].

Vector shadow memory shares a similar goal with vector shadow register. It

efficiently provides an independent storage for each dynamic region in a program so

that HCPA can read and update timestamps associated with each memory address.

Similar to VSR, VSM consists of vectors where each vector provides storage for all

the active regions.

Although vector shadow memory resembles vector shadow register in its

functionality and structure, it raises serious challenges for practical use. VSM’s

address space is larger than VSR’s register count by several orders of magnitude.

If not carefully managed, VSM will incur prohibitively large memory overhead.

Furthermore, the length of a vector varies in VSM, making it even more difficult

to efficiently allocate and deallocate VSM’s memory. Similar to the vector length

in VSR, a vector’s length is determined by the maximum depth of the region that

accesses the vector (i.e. the address associated with the vector). However, it is

undecidable at compile time as opposed to VSR’s vector length that can be easily

analyzed by the instrumentor. In Chapter 4, we discuss an array of techniques

that can dramatically reduce the memory and runtime overhead of vector shadow

memory.

Control Dependence Kismet tracks control dependencies through the use of

control dependence analysis and a dynamic control dependence stack. Timestamps

for control dependence are pushed to and popped from the control dependence

stack whenever a control dependent region is entered and exited. A stack entry

contains a vector of timestamps for every active region. For a region, this stack

has monotonically increasing values from the bottom to the top, allowing HCPA

to include only the topmost entry in the list of dependencies for each instruction.

Although HCPA aims to find the critical path length of each region, it also

profiles other useful information for speedup prediction. For example, HCPA also

determines if all of the children of a non-leaf region are independent and therefore

can be executed in parallel. This information is useful for identifying DOALL

26

loops, which is both common and easy-to-exploit in many target platforms. To

store the information, each region calculates a “P bit” using the following equation:

P = CP (parent) == MAX (CP (child1), ..., CP (childn))

where CP (parent) is the critical path length of the parent and CP (childi) is the

critical path length of the ith child.

If all children can be executed in parallel, then the length of the critical

path will simply be the length of longest critical path of all of the children. In

this case, the “P bit” will be 1. Chapter 3 discusses how we leverage this in more

detail.

2.3.3 Self-Parallelism Calculation

When a region exits, HCPA calculates the self-parallelism with the calcu-

lated critical path length and children’s information. Since a parent region exits

after all the children’s execution is over, every child’s profiled information is also

available when a region exits.

To determine the self-parallelism of a region R, SP (R), HCPA employs the

following equation:

SP (R) =

∑n
k=1 cp(child(R, k))

cp(R)
R is a non-leaf

work(R)
cp(R)

R is a leaf

Here n is the number of children of R, child(R, k) is the kth child of R, cp(R) is

the critical path length, and work(R) is the amount of work in R.

Intuitively, this equation captures the ratio of execution time between serial

and parallel run of fully parallelized children. By using fully parallelized children’s

execution time, self-parallelism metric captures the exclusive parallelism of the

parent region. Not having any children, a leaf region’s self-parallelism is identical

to CPA’s total-parallelism.

Figure 2.8 demonstrates the calculation of SP in three non-leaf regions, one

totally serial, one partially parallel (DOACROSS), and the other totally parallel

27

DOACROSS DOALL

CP

CP

CP

…

CP

CP

CP

…

(N/2) * CP CP

N * CP

(N/2) * CP
= 2.0

N * CP

CP

= N

CP CP CP…

Serial

N * CP

N * CP

N * CP

= 1.0

Type

CP (R)

SP (R)

Figure 2.8: Self-Parallelism Calculation on Regions with Varying Par-

allelism. Self-parallelism computes the amount of parallelism in a parent re-

gion that is attributable to that region and not its children. The figure above

shows that Kismet’s self-parallelism calculation successfully quantifies parallelism

across a spectrum of loop types, ranging from totally serial to partially paral-

lel (DOACROSS) to totally parallel (DOALL). The shaded boxes are child re-

gions, corresponding to separate iterations of the loops. The relative scheduling

of child regions is indicated spatially, with time running from left to right. The

self-parallelism calculation correctly quantifies parallelism in non-loop region hier-

archies as well.

28

(DOALL). For simplicity, in the example, each iteration’s critical path length cp

is the same. For the serial loop, the measured cp(R) will be equal to n ∗ cp
and the computed self-parallelism will be n∗cp

n∗cp = 1, which is expected since serial

dependences prevent overlapped execution of regions. For the DOACROSS loop

shown, where half of an iteration can overlap with the next iteration, cp(R) will

be the half of the cp(R) for the serial loop. Thus SP (R) is n∗cp
(n/2)∗cp = 2. For

the DOALL loop, cp(R) will be equal to cp, so SP (R) is n∗cp
cp

= n. Although we

show three relatively simple cases here, this method is a good approximation of

self-parallelism even with more sophisticated child region interaction.

2.3.4 Summarizing Profiled Information

HCPA produces a parallelism profile for each dynamic region that is exe-

cuted. The number of dynamic regions quickly grows as nested loops with many

iterations are executed. This large amount of regions poses practical challenges

not only in the size of the profile output but also in the runtime of algorithms

that need to analyze this data. We developed a summarization technique that

effectively reduces the amount of profiled data while preserving context-sensitive

parallelism information.

Our summarization technique combines all dynamic regions that have the

same region context into a single summarized region. Figure 2.6b depicts how the

runtime region tree becomes a summarized region profile. In this method, all loop

iterations collapse to a single node, greatly reducing the number of regions. Each

node calculates weighted averages for self-parallelism, work, and other profiled data

across all dynamic regions corresponding to that node.

Kismet maintains a ‘current’ pointer that tracks the summary node that

corresponds to the current dynamic region. When a new region is entered, it

updates the ‘current’ pointer to one of its children node based on statically assigned

callsite ID information. If there is no corresponding node, it creates a new summary

node and updates the ‘current’ pointer. When a region exits, the region’s profiled

information is added to the current node and the pointer returns to the parent

node. This process is similar to the call context tree described in [ABL97] but

29

modified for HCPA’s region hierarchy.

The example summarized region profile shown in Figure 2.6b contains two

nodes for the same function (foo) from what appears to be the same context.

This corresponds to two separate calls from the same loop. While this increases

the number of nodes in the summarized profile, it allows Kismet to uncover new

parallelism opportunities.

To understand the merit of context-sensitive representation, consider the

code in Figure 2.6b. When the loop in function foo is parallel and N is large, the

parallelism of this loop significantly differs between callsites A and B. Callsite A’s

loop will always have a self-parallelism of 1, providing no benefit to parallelism

and likely causing slowdown due to synchronization overhead. Callsite B’s loop

will have a self-parallelism of N and would likely be a good candidate for parallel

refactoring. Kismet can capitalize on the split contexts, incorporating the speedup

from callsite B into its estimates while ignoring callsite A. The tree structure of

context-sensitive representation also allows the development of parallel execution

time model when a few regions are parallelized. Details of parallel execution time

model will be discussed in Chapter 3.

2.4 Experimental Results

2.4.1 Effectiveness of Self-Parallelism Metric

In order to demonstrate the merit of self-parallelism metric against CPA’s

total-parallelism, we examined programs in the NAS Parallel Bench (NPB) bench-

mark suite [BBB+91]. We measured both self-parallelism and total-parallelism of

all 1953 regions in NPB and classify them based on the amount of parallelism:

serial (parallelism < 1.1), moderately parallel (1.1 to 2.0), parallel (2.0 to 5.0), or

very parallel (parallelism > 5.0).

30

Figure 2.9: Region Classification Based On Parallelism. We classified all

1953 regions in the NPB benchmarks based on the amount of parallelism. Switch-

ing from total-parallelism based classification to self-parallelism based classifica-

tion, 6× more regions are classified as being serial. This result highlights self-

parallelism’s ability to localize parallelism, filtering out false positive parallel re-

gions in the speedup prediction.

2.4.2 Effectiveness of the Summarization Techniques

Effectiveness of the Summarization Technique To examine the effective-

ness of Kismet’s summarization technique, we ran NPB and SpecInt2000 bench-

marks 1 with two different input sizes (’S’ and ’A’ for NPB, ’test’ and ’ref’ for

SpecInt2000) and examined dynamic region counts as well as output file sizes.

Figure 2.2 shows the results.

The results show that Kismet’s summarization technique scales well with

increasing input sizes and is effective at reducing the output file size. As expected,

the dynamic region count significantly increases when we switch from small input

to larger input – 463X on average. With the larger input sets, dynamic region

1Raw benchmarks have only a single input set.

31

Table 2.2: Impact of Summarization Technique on File Size in NPB.

Switching from the small (S) to large (L) inputs causes 463× more dynamic regions

to execute on average, but the output file size increases only 1.1× on average, from

77KB to 85 KB. Thus, the summarization technique is very effective in keeping

output file size manageable even with large inputs.

Bench Dynamic Region Count Output File Size
(Mega Regions) (Kilo Byte)

Input S L Ratio S L Ratio

bt 4 2665 666× 102 102 1.0×
cg 38 830 22× 15 15 1.0×
ep 50 805 16× 4 4 1.0×
ft 40 1526 38× 50 50 1.0×
is 0.7 104 149× 3 3 1.0×
lu 2 2208 1104× 45 45 1.0×
mg 2 969 485× 79 79 1.0×
sp 10 7452 745× 166 167 1.0×
bzip2 846 4086 5× 62 63 1.0×
gzip 141 4477 32× 96 137 1.4×
mcf 7.8 4758 595× 19 20 1.1×
twolf 11.4 23023 2093× 260 309 1.2×
vpr 42.1 3020 72× 104 107 1.0×
mean 92 4302 463× 77 85 1.1×

profile data runs as large as several terabytes, clearly too large to be conveniently

stored to disk. With HCPA, there is virtually no difference in the output file size

between small and large input sets. Moreover, the summarization technique results

in very modest file sizes – only 85KB on average.

Acknowledgments

Portions of this research were funded by the US National Science Foun-

dation under CAREER Award 0846152, by NSF Awards 0725357, 0846152, and

1018850, and by a gift from Advanced Micro Devices.

This chapter contains material from “Kismet: parallel speedup estimates for

32

serial programs”, by Donghwan Jeon, Saturnino Garcia, Chris Louie, and Michael

Bedford Taylor, which appears in OOPSLA ’11: Proceedings of the 2011 ACM

international conference on Object oriented programming systems languages and

applications. The dissertation author was the primary investigator and author of

this paper. The material in these chapters is copyright c©2011 by the Association

for Computing Machinery, Inc.(ACM). Permission to make digital or hard copies of

part or all of this work for personal or classroom use is granted without fee provided

that the copies are not made or distributed for profit or commercial advantage and

that copies bear this notice and the full citation on the first page in print or the

first screen in digital media. Copyrights for components of this work owned by

others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, to republish, to post on servers, or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from Publications Dept.,

ACM, Inc., fax +1 (212) 869-0481, or email permissions@acm.org.

This chapter contain materials from “Kremlin: Rethinking and Rebooting

gprof for the Multicore Age”, by Saturnino Garcia, Donghwan Jeon, Chris Louie,

and Michael Bedford Taylor, which appears in PLDI ’11: Proceedings of the 32nd

ACM SIGPLAN conference on Programming language design and implementation.

The dissertation author was the secondary investigator and author of this paper.

This material is copyright c©2011 by the Association for Computing Machinery,

Inc.(ACM). Permission to make digital or hard copies of part or all of this work

for personal or classroom use is granted without fee provided that the copies are

not made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page in print or the first screen in

digital media. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

to republish, to post on servers, or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Publications Dept., ACM, Inc.,

fax +1 (212) 869-0481, or email permissions@acm.org.

This chapter contains material from “The Kremlin Oracle for Sequential

Code Parallelization”, by Saturnino Garcia, Donghwan Jeon, Chris Louie, and

33

Michael Bedford Taylor, which is set to appear in IEEE Micro. The dissertation

author was the secondary investigator and author of this paper. The material

in this chapter is copyright c©2012 by the Institute of Electrical and Electronics

Engineers (IEEE). Personal use of this material is permitted. Permission from

IEEE must be obtained for all other uses, in any current or future media, includ-

ing reprinting/republishing this material for advertising or promotional purposes,

creating new collective works, for resale or redistribution to servers or lists, or reuse

of any copyrighted component of this work in other works.

Chapter 3

Predicting Speedup with Realistic

Parallelization Constraints

In the previous chapter, We discussed hierarchical critical path analysis that

provides the parallelism of each regions with self-parallelism metric. Although par-

allelism is essential for practical speedup estimation, there are other parallelization

constraints that could significantly affect the achievable speedup of a target pro-

gram. In this chapter, we describe the Kismet system and explain how Kismet

incorporates key parallelization constraints on top of the HCPA results, providing

practical speedup upperbound from unmodified source code. We also show exper-

imental results on two very different platforms to demonstrate the effectiveness of

Kismet.

3.1 Kismet System Architecture

Kismet operates in two phases; the first phase is a profiler that collects self-

parallelism data with HCPA and the second phase is a speedup predictor which

applies machine and system constraints. Figure 3.1 shows the overview of Kismet

system.

Self-Parallelism Profiler Kismet first profiles the work and self-parallelism of

each region through HCPA. As discussed in Chapter 2, self-parallelism is a new

34

35

Serial
Source
Code

Core Count: …
Overhead: …
……

System
Constraints

Speedup
Upperbound

Estimates

Cores:Speedup

1: 1.0
2: 1.9
4: 3.6
8: 7.1
…

kismet-
cc

Execut
e
&

Profile

Self-Parallelism Profiler

instrumentor instrumented
binary

Self-Parallelism
Profile

work: ..
sp: .. A

B C

Speedup
Predictor

010
000
111

Parallelization
Planner

Region Execution
 Time Model

Sample
Input

Exploitable
Parallelism
Identifier

Figure 3.1: Kismet System Architecture. Starting with a program’s source

code, Kismet produces an instrumented binary by inserting profiling code. Run-

ning the instrumented binary on the sample input outputs a trace file containing

both program structure and self-parallelism. Finally, the speedup predictor esti-

mates the speedup upper bound based on the profile data. The parallelism classifier

filters unexpressible parallelism for realistic speedup estimates (via the expressible

self-parallelism filter) and the parallel execution time model incorporates hardware

constraints and parallelization overhead for accurate performance prediction.

metric that represents the ideal speedup of a region when parallelized. By quanti-

fying the parallelism of each region, Kismet supports region-based parallelization,

which is similar to what a programmer does upon parallelization.

The gathering of self-parallelism information in Kismet starts with a static

instrumentation phase which instruments the target program with code that im-

plements HCPA, and ends with running the instrumented program.

The static instrumentation phase transforms the input code to support

HCPA during execution of the sample input. The inserted instrumentation consists

of calls to a special HCPA library, which will perform the dynamic analysis during

execution. In addition to adding instrumentation for calculating critical paths,

Kismet also inserts instrumentation to clearly delineate the regions of the code.

Three types of regions—loops, functions, and sequence—are used, allowing HCPA

to calculate each region’s self-parallelism and to determine the type of parallelism

in each region.

The Kismet code instrumentator utilizes LLVM’s [LA04] static instrumen-

tation infrastructure to perform a deeper level of analysis than is available with

36

dynamic instrumentation tools such as Valgrind [NS07b]. This allows Kismet to

easily uncover the program structure and account for false dependencies intro-

duced by loop induction variables and reduction variables. Static instrumentation

also provides greater opportunity for optimizing the instrumented code in order to

reduce the overhead associated with profiling.

The dynamic analysis phase begins when the instrumented binary is run

with the sample input to produce per-region statistics. For each dynamic region

that is executed, the dynamic analysis computes three key pieces of data: the crit-

ical path length, the amount of work done, and the self-parallelism. The data pro-

duced for each region is relatively small but the number of dynamic regions grows

quickly, leading to a possibly unmanageable amount of data. Kismet improves

the manageability of region data by summarizing the data as it profiles, creating

summarized region profiles. The summarized region profiles reduce the number of

recorded regions by orders of magnitude, leading to much smaller log sizes and

allowing for more efficient processing in later stages of Kismet. While the reduced

log size from summarization is desirable, summarization should not compromise

the quality of self-parallelism information. As discussed in the previous chapter,

HCPA provides rich call context-sensitive region information, helping the speedup

predictor avoid underestimating the potential speedup from parallelization.

Speedup Predictor After running the instrumented binary on the sample in-

put, Kismet has captured the underlying structure of the application in the form

of the summarized region profile. The next step is to combine this information

with machine and parallelization system properties in order to make a prediction.

Performance strongly depends on the target system. Kismet accepts a list

of target-dependent parallelization constraints and utilizes this information to pro-

vide more accurate predictions. Typically constraints include a simple hardware

specification (e.g. the number of available cores), the types of expressible paral-

lelism by that system, and functions that quantify parallelization overheads such

as synchronization. We have found that only a small number of constraints are

needed to accurately predict performance. This simplifies the process of extending

Kismet to new platforms. We were surprised at the ease with which our model

37

could support two very different parallel systems—an MIT Raw tiled processor

and a 32-core AMD multicore system.

The speedup predictor contains three sub-components. The first one is a

modified self-parallelism metric called expressible self-parallelism, or ESP, which

filters out parallelism unexpressible by the specified target system.

The second sub-component is the parallel execution time model. The par-

allel execution time model allows the speedup predictor to estimate the parallel

execution time of each program region and the whole program based on a given par-

allelism plan. This model incorporates self-parallelism, number of allocated cores,

and parallelization overhead. Kismet also provides an extended, cache-aware par-

allel execution time model that considers the impact of caching on parallel execu-

tion. The parallel execution time model is used by the resource allocator to choose

from completing parallelization plans and determines the final speedup numbers

reported by Kismet.

The final sub-component is the speedup planner. An ideal parallel system

will take advantage of all the expressible parallelism in a program. This desir-

able property is not available on most existing systems. These systems have other

constraints–such as limited hardware resources, synchronization overhead, or poor

support for nested parallelism – that make expressible parallelism not be exploitable

parallelism. The speedup planner creates a mapping from regions to parallel re-

sources, modeling at a high-level what the execution of the parallelized program

would look like; we refer to this mapping as the parallelization plan.

3.2 Speedup Predictor

Kismet’s speedup predictor attempts to find the upper bound on parallel

speedup of a program by examining a spectrum of candidate parallelizations of the

program on the target machine. Kismet’s self-parallelism profiling provides the

groundwork for calculating this speedup but it alone is not enough to determine

a tight bound on speedup. In this section we will describe how Kismet processes

the self-parallelism data to predict the maximum parallel speedup.

38

Figure 3.2: Parallelism Identification Logic. Kismet uses the program struc-

ture and parallelism information provided by HCPA to help classify parallelism.

This figure shows the simple classification process. Kismet then uses the classifica-

tion result to calculate the expressible self-parallelism (ESP). ESP quantifies the

amount of expressible parallelism within a specific region of the program.

3.2.1 Expressible Self-Parallelism (ESP)

While Kismet’s self-parallelism profile quantifies the parallelism in each re-

gion of the program, there is no guarantee that the parallelism will be expressible.

Many systems have limitations on the type of parallelism that can effectively be ex-

pressed. Kismet transforms self-parallelism into expressible self-parallelism (ESP)

in two phases. First, it classifies the type of parallelism found in each region. Sec-

ond, it uses this classification to conditionally adjust self-parallelism into ESP, as

follows. Regions that have self-parallelism that is unexpressible are assigned an

ESP of 1. Regions with self-parallelism that is expressible have an ESP that is

equivalent to their SP.

Figure 3.2 illustrates the Kismet’s decision process when classifying paral-

lelism. Kismet’s region hierarchy has been designed to ensure that only leaf regions

have instruction level parallelism (ILP) and that ILP is found only in leaf regions.

The first step in Figure 3.2 is thus to check if the region is a leaf. If the region is not

a leaf then the parallelism is either of the form of loop- or task-level parallelism.

Kismet checks the region type to determine if there is a loop or a function.

Kismet further classifies loop parallelism based on whether there are cross-

iterations dependencies. Loops without cross-iteration dependencies are classi-

39

fied as DOALL while those with cross-iteration dependencies are classified as

DOACROSS. While Kismet’s profile output does not contain statistics on the

number of cross iteration dependencies, it does contain the information needed to

quickly distinguish DOALL and DOACROSS loops. Namely, the “P bit” described

in Chapter 2 indicates if all iterations are independent. Kismet examines the “P

bit” for the region, classifying the region as DOALL if P == 1 and DOACROSS

otherwise.

As with any dynamic analysis tool, Kismet’s identification of parallelism

is subject to differences across multiple inputs. In practice we have found that

while the amount of speedup may vary slightly across multiple inputs, the Kismet

classification is consistent across these same inputs.

3.2.2 Parallel Execution Time Model

Although self-parallelism is a major factor that affects the realizable speedup

of a region, there are other major factors such as allocated core counts and par-

allelization overhead. Kismet uses a parallel execution time model that captures

major factors that affect parallel execution time. With the parallel execution time

model, Kismet’s speedup predictor can evaluate the effectiveness of parallelization

plan it produces, and reports the plan that would bring the highest speedup. We

also show a cache-aware parallel execution time model that incorporates changed

cache miss rates after parallelization.

Base Model The base parallel execution time model incorporates region struc-

ture, core count, and parallelization overhead in addition to self-parallelism. This

model uses the following equation to determine the execution time of region R:

ET (R) =

∑n
k=1 ET (child(R, k))

min(SP (R), A(R))
+ O(R) non-leaf

work(R)
min(SP (R), A(R))

+ O(R) leaf

40

While there are different equations for leaf and non-leaf regions, they follow

the same general model. The first term represents the time needed to execute the

parallelized, assuming that A(R) cores are allocated to that region. The top of

the fraction represents the serialized execution time—the work of a leaf region,

or the sum of the children’s work of a non-leaf region. This time is divided by

the minimum of the self-parallelism of the region (SP (R)) and A(R). Intuitively,

this means that the speedup is either fundamentally limited by the parallelism

available—when SP (R) is the limiting factor—or by the amount of parallel re-

sources allocated to the region—when A(R) is the limiting factor. Note that the

execution time of the non-leaf regions depend on the execution time of their chil-

dren; this forces a bottom-up approach to calculating the execution time of the

program.

The second term, O(R) models target-dependent parallelization overhead.

Parallel execution typically involves overhead from several sources: thread man-

agement, synchronization, communication, etc.. As a result, the overhead factor

is highly target dependent. For example, the synchronization operation takes less

than 20 cycles in the MIT Raw processor but takes several thousand cycles on

shared memory multicore processors. As such, Kismet allows target-dependent

customization of O(R) by accepting parallelization constraints. This overhead

function directly impacts the parallelization granularity as the amount of work in

a region should offset parallelization overhead for a profitable parallelization.

Cache-Aware Model While the base model is able to accurately model bench-

marks that have up to linear speedup, our results showed that some benchmarks

resulted in super-linear speedup when parallelized. For example, the cg benchmark

from the NAS Parallel Bench [BBB+91] showed significant super-linear speedup

when using between 4 and 16 cores on 32-core AMD Opteron system. We found

that this was a result of increasing cache size with a larger number of cores on this

system, prompting us to include a cache-aware model of parallel execution time.

Kismet’s cache-aware model extends the base model by including the mem-

ory service time (MST) in the calculation of ET (R). MST represents time spent in

memory accesses that resulted in a cache miss; it is calculated using the following

41

equation:

MST (R) =

∑n
k=1MST (child(R, k))

A(R)
non-leaf

∑depth
i=1 CMTi(R)

A(R)
leaf

For both leaf and non-leaf equations, MST sums the time spent and for

cache misses—either in that region for a leaf region, or among all children of a

non-leaf region—in the level i cache, CMTi, and divides this by the number of

cores allocated to the region, A(R). This optimistically assumes that the memory

system of the target is scalable, distributing memory accesses evenly across cores so

that they may be simultaneously serviced without penalty. Although it is possible

to model more complicated behaviors of memory systems, this simple cache model

appears to do a reasonable job of predicting superlinear speedup effects due to the

memory systems.

To calculate the cache miss time at level i, Kismet uses the following equa-

tion:

CMTi(R) =
n∑

i=1

MemCnt(R) ∗Missi(R, conf) ∗ Penaltyi

where MemCnt(R) is the number of memory accesses in region R, Missi(R, conf)

is the cache miss rate for level i, conf is a specific memory configuration, and

Penaltyi represents the penalty for a level i cache miss. As more cores are allo-

cated, the total cache size of conf increases, potentially leading to a decrease in

Missi(R, conf).

3.3 Case Studies - Raw and Multicore

In this section, we demonstrate how Kismet can be configured to a specific

platform by examining two very different platforms: the MIT Raw tiled multicore

processor (“Raw”) [E. 97, TKM+02, M. 04] and a conventional multicore processor

(“Multicore”). Table 3.1 shows details of these two targets. We also model specific

42

Table 3.1: Overview of Two Platforms - Raw and Multicore. These two targets

have different constraints in parallelization, expressible parallelism, and paralleliza-

tion overhead.

Platform Raw Multicore

Core Type Modified MIPS AMD Opteron
L1 Size 32KB / Core 64KB / Core
L2 Size - 512KB / Core
L3 Size - 6MB / Four Cores
SW Platform RawCC OpenMP
Expressible ILP DOALL
Parallelism
Non Reduction

Parallelization 2 + 2
√
N 250 * N

Overhead (cycles)
Reduction

Parallelization 2 + 2
√
N 500 * N

Overhead (cycles)

software platform because software platforms also create constraints in paralleliza-

tion, affecting the speedup even on the same hardware. Specifically, we model

the automatically parallelizing compiler RawCC [LBF+98] for Raw, and manual

OpenMP parallelization for Multicore. For each platform, we first introduce hard-

ware characteristics and parallelization constraints, and describe how we model

parallelization overhead in parallel execution time model, and then finally describe

the target-specific planning algorithm.

3.3.1 Targeting Raw in Kismet

Platform Description MIT Raw is an early tiled multi-core processor [S. 08,

Tay07, GSV+10] featuring a fast, 1-cycle per hop, fine-grained scalar operand

network [TLAA05]. Although many different forms of parallelism (ILP, TLP, DLP,

etc) are expressible on the Raw ISA, we model the RawCC [LBF+98] parallel

compiler, for which only ILP is expressible.

RawCC finds ILP in each basic block and performs space-time scheduling

43

to exploit it. For each instruction, the space-time scheduling determines which

core executes the instruction for minimum total execution time. Inter-core data

dependencies are resolved utilizing Raw’s low latency network, and control flow in-

formation is broadcast across cores to ensure all cores execute the same basic block.

If needed, RawCC performs loop unrolling to increase the amount of exploitable

ILP in a loop.

Modeling Parallelization Overhead Two sources can incur parallelization

overhead in Raw: control dependencies and data dependencies.

To ensure control dependencies are respected, RawCC broadcasts the con-

trol dependency information to all cores via Raw’s static network. At the end

of every basic block, each core waits for the control dependence information and

branches to the specified basic block when the information arrives. The broadcast

cost is 2 + 2
√
N , where N is the number of cores. In our parallel execution time

model for Raw, we approximate this overhead based on [TLAA05]: an injection

latency of 2 cycles, a network diameter of 2
√
N , and a per-hop latency of 1 cycle.

Data dependences between two instructions on different cores also incur

communication overhead. Unlike with broadcasts, the cost can be hidden if the

communication is not on the critical path of the execution by RawCC. As Kismet

aims to bound the achievable highest speedup, Kismet does not model this over-

head.

Planner Algorithm The planner algorithm takes as input the summarized re-

gion profile which includes a region tree where each node is a summarized region

and each edge represents “reachable” relationship between them. As RawCC can

express only ILP in a program, the planner first filters nodes with non-ILP paral-

lelism and sets their ESP value to 1, effectively eliminating them from considera-

tion. After ILP regions are identified, producing the plan with highest speedup is

straightforward. For each ILP region R, decide A(R) that minimizes ET(R) with

the given parallel execution time model. For non ILP regions, A(R) is simply set

to one, representing serial execution. When A(R) is determined, parallel execution

time model calculates the estimated parallel execution time of the root node with

44

given A(R) function, and will compute the speedup against serial execution time.

3.3.2 Targeting Multicore with OpenMP in Kismet

Platform Description The multicore platform represents conventional multi-

core processor systems such as Intel’s Nehalem or AMD’s Opteron line or pro-

cessors. They use shared memory for inter-core communication and as a result

the latency is significantly higher compared to Raw’s low-latency networks. For

the software platform, we target the popular OpenMP platform that exploits

mainly DOALL parallelism. In addition to the restricting expressible parallelism

to DOALL, we also disallow nested parallelization – although OpenMP supports

nested parallelization, the feature is rarely used in practice as synchronization

overhead is typically too large.

Modeling Parallelization Overhead OpenMP parallelization involves over-

head in several aspects: thread creation, thread scheduling, reduction operations,

and barrier cost. We found that thread creation cost is typically amortized with a

thread pool implementation and scheduling cost is negligible when static schedul-

ing is used. We model barrier and reduction costs since they significantly impact

performance. The values chosen in Table 3.1 was taken from running the EPCC

micro-benchmark [BO01] on 32-core AMD Opteron machine.

Planner Algorithm Once regions with unexpressible parallelism are filtered

out, the main constraint in the Multicore planner is prohibited nested paralleliza-

tion. When nested parallelization is disallowed, the planner cannot choose more

than one region among regions in the path from the root node to any node in

summarized region profile.

To find the optimal solution with the constraint, Kismet uses a dynamic

programming algorithm. The core intuition of the algorithm is that a region should

be parallelized only when the benefit of parallelization is greater than the benefit

from parallelizing any set of descendant regions. The planner traverses the region

profile in a bottom-up fashion, from leaf nodes up to the root node, while saving

45

the optimal plan P(R) at each region R. When the planner processes a new region,

it compares the expected benefit of parallelizing the region against the cumulative

benefit of the optimal plans of its child regions. If the benefit of parallelizing R

exceeds the cumulative benefit of child regions, P(R) is set to R; otherwise P(R)

is set to the union of child regions’ optimal plans.

3.3.3 Kismet Usage

In this case study, we also address four commonly asked usability issues

about the Kismet tool.

How Sensitive Is Kismet to Changing Inputs? Since Kismet’s analysis is

dynamic, it can take advantage of information that can only be extracted by observ-

ing the runtime execution of the program. This allows Kismet to find opportunities

for speedup that would be undiscovered by the more conservative analyses found in

parallelizing compilers. The sensitivity of a potential speedup of a program to the

input varies by the underlying algorithms in the program. Although Kismet could

mirror parallelizing compilers and provide more “worst-case” speedup estimates,

this fails to expose the opportunities that might be available in taking advantage

of input-dependent parallelization strategies. As a result, our recommended us-

age model is that the user run Kismet on the application multiple times, across

a spectrum of representative inputs, in order to gain a deeper knowledge of this

issue.

What Tasks are Performed by the User from Program to Program? Our

expectation is that the maintainer of Kismet would “ship” Kismet with a library

of representative machine models and planners. When the user runs Kismet, they

would select via commandline parameter the machine model which most closely

matches the target architecture. Thus, from the user’s perspective, the tool is

“push-button.” Although this is clearly future work, we have also envisioned the

possibility of using auto-tuner techniques (i.e. as in FFTW) to automatically

calibrate these components to a new architecture, which alleviates the Kismet

46

maintainers of the need to update the library. Finally, as last resort, the user

could extend the machine model and planner library themselves.

What is Kismet’s Utility in Providing Refactoring Assistance? To be

clear, Kismet does not try to make specific recommendations about how the pro-

grammer should refactor the program. Rather, it provides advanced information

that helps the programmer decide a) whether it may not be worth the effort to

parallelize the piece of code and b) what kind of speedup might be reasonable to

aim for. The latter item may also influence the programmer’s choice of transfor-

mations, but only in an indirect fashion. Although Kismet’s speedup upperbounds

are indeed approximate, our results show that they are rarely exceeded by actual

parallelized code. A consistently low estimated speedup upperbound is a strong

signal to the user that attaining speedup of the existing serial program is likely to

be very challenging.

What is Kismet’s Benefit Over Parallelizing Compilers? Kismet derives

its key advantages over parallelizing compilers through an extension of CPA,

which is a dynamic analysis not commonly used in today’s parallelizing compil-

ers. Speedup estimates provided by Kismet are likely to be higher than those

attainable by a parallelizing compiler, because they are determined by empirical

measurements about program parallelism rather than the ability of an automatic

tool to prove properties about the program. Kismet’s optimistic view of speedup

attempts to take into account the programmer’s greater ability to perform code

transforms that would be unsafe in automatic parallelizing compilers.

3.4 Experimental Results

This section evaluates Kismet as follows. We first outline our evaluation

methodology, including our selection of benchmarks and target machines. Using

this methodology, we then quantify Kismet’s accuracy by comparing both predicted

and measured speedups from parallelization of three benchmark suites on three

47

Core Count
1 2 4 8 16 32 64

P
ro

g
ra

m
 S

p
e
e
d
u
p

1

2

4

8

16

32

64
aespredicted

measured

Core Count
1 2 4 8 16 32 64

P
ro

g
ra

m
 S

p
e
e
d
u
p

1

2

4

8

16

32

64
fpppppredicted

measured

Core Count
1 2 4 8 16 32 64

P
ro

g
ra

m
 S

p
e
e
d
u
p

1

2

4

8

16

32

64
jacobipredicted

measured

Core Count
1 2 4 8 16 32 64

P
ro

g
ra

m
 S

p
e
e
d
u
p

1

2

4

8

16

32

64
lifepredicted

measured

Core Count
1 2 4 8 16 32 64

P
ro

g
ra

m
 S

p
e
e
d
u
p

1

2

4

8

16

32

64
shapredicted

measured

Core Count
1 2 4 8 16 32 64

P
ro

g
ra

m
 S

p
e
e
d
u
p

1

2

4

8

16

32

64
unstructpredicted

measured

Figure 3.3: Predicted and Measured Speedup for RAW Benchmarks on

RAW hardware. Kismet models the MIT Raw processor and RawCC, targeting

the exploitation of ILP. From low- to high-parallelism benchmarks, Kismet pro-

vided appropriate upper bounds. This successful speedup prediction results from

Kismet’s ability to isolate ILP from other forms of parallelism based on summa-

rizing hierarchical critical path analysis.

48

machine classes. Finally, we analyze the impact of novel techniques featured in

Kismet: expressible self-parallelism, cache-aware prediction, and summarization.

3.4.1 Methodology

Kismet’s goal is to provide realistic upper bounds on the parallel perfor-

mance of serial programs. Our results will therefore focus on examining the tight-

ness of these upper bounds on a wide range of benchmarks on several different

platforms, both real and theoretical.

In our evaluation, we worked hard to address threats to validity by evaluat-

ing Kismet’s performance across three very different architectures and by compar-

ing against third-party parallelized codes from three benchmark suites, including

both low and high parallelism applications.

We selected benchmarks using two primary criteria. First, the set of bench-

marks needed to display a range of parallelism: from super-linear speedup down to

very limited speedup. Second, the benchmarks needed to have either 1) a parallel

implementation that could be used to gather real results or 2) published perfor-

mance results from a variety of sources. Programs that are highly parallel tend

to have a parallel implementation available while those with low amount of paral-

lelism tend not to have parallel implementations available, possibly for reasons of

vanity.

The selected benchmarks came from three benchmark suites, each targeting

a different platform. Here we overview these suites, describing the amount and

types of parallelism available and describing the s.pdf necessary to obtain our

results.

• Raw. We modeled RawCC’s ILP exploitation on Raw as described in Sec-

tion 4.4. Kismet’s estimates are compared against speedup numbers reported

in [M. 04]. These benchmarks range from non-scalable to scalable.

As mentioned before, RawCC utilizes loop unrolling to increase the amount

of ILP. Unrolling also enables serial optimizations such as constant propa-

gation and common sub-expression elimination. To control for these factors

49

during profiling, Kismet uses LLVM to unroll the loops before static instru-

mentation.

• SpecInt2000. SpecInt2000 benchmarks are widely known to have extremely

limited parallelism. Luckily, a wide range of proposed parallelization systems—

especially those using speculative parallelization—have attempted to paral-

lelize these benchmarks, providing a fertile source of published results. We

chose to examine the benchmarks from this suite that have most frequently

been the target of parallelization, namely bzip2, gzip, mcf, twolf, and vpr.

In general, these benchmarks are hard to parallelize due to complex depen-

dence patterns in DOACROSS loops. The speedup numbers reported in liter-

ature typically required heroic code transformations, and often involved spe-

cial speculative hardware support or simulation-only experiments [ZMLM08,

ROR+08, PO05, KRL+10, ZL10]. To approximate the machine models in

those aggressive scenarios, we modified the Multicore-OpenMP model de-

scribed in Section 4.4 so that it allows the exploitation of both DOALL and

DOACROSS with zero parallelization overhead. Even with these permissive

settings, Kismet is able to create strong bounds.

• NAS Parallel Bench (NPB). In contrast to SpecInt2000, NPB [BBB+91]

generally consists of benchmarks with large amounts of easy-to-exploit par-

allelism. We use the Multicore-OpenMP predictor targeting only DOALL

parallelism with parameters for a 64-core system. We measured speedup

with third-party parallelized version [Uni] of NPB, running these parallel

versions on the 32-core AMD system described in Table 3.1. For all NPB

benchmarks, we used the ’A’ input data set during both profiling and exe-

cution of the parallel versions.

What are “Correct” Speedup Predictions? In our evaluation, we employ

benchmarks that were parallelized by third-party experts. To the extent that the

benchmarks have been widely used in the research community, we have a reason-

able expectation that these parallelization efforts are not too far off from optimal.

50

To us, “correctly predict” means 1) that the actual speedup did not exceed the pre-

dicted speedup upperbound (i.e., Kismet’s results correspond to actual empirical

upperbounds) and 2) that the speedup experienced is close to Kismet’s predictions

(i.e. Kismet provides relative tight bounds.) To the extent that Kismet’s bounds

are not tight, it could be either due to insufficient modeling of machine constraints,

or that there is remaining attainable speedup in the application.

3.4.2 Prediction Results

Raw Figure 3.3 shows predicted and measured speedup on RAW. In all bench-

marks, Kismet correctly predicts the speedup trend in both high parallelism bench-

marks [BFL+97] (jacobi, life) and low parallelism benchmarks (aes, fpppp, sha,

unstruct).

Super-linear speedup is predicted and measured in both jacobi and life but

only the former had actual super-linear speedup. These benchmarks consist mainly

of DOALL loops, allowing unrolling to linearly increase the amount of ILP. In

contrast, unstruct also benefits from unrolling and serial optimizations, but its

loops are DOACROSS, limiting unrolling’s effects and limiting scalability. For

the remaining benchmarks, aes, fpppp, and sha, unrolling was ineffective as the

parallelized regions were functions rather than loops.

Kismet correctly bounded the speedup for all benchmarks except jacobi,

which slightly outperformed Kismet’s estimates. This anomaly can be attributed to

the fact that including more cores from the Raw processor increases the number of

registers, leading to decreased memory system delays; Kismet did not incorporate

this effect into its basic estimation model as its effect is generally negligible.

51

Core Count
1 2 4 8 16 32

P
ro

g
ra

m
 S

p
e
e
d
u
p

1

2

4

8
bzip2predicted

hpca08
micro10

Core Count
1 2 4 8 16 32

P
ro

g
ra

m
 S

p
e
e
d
u
p

1

2

4

8
gzippredicted

hpca08
micro10

Core Count
1 2 4 8 16 32

P
ro

g
ra

m
 S

p
e
e
d
u
p

1

2

4

8
mcfpredicted

hpca08
tpds09
ppopp05

Core Count
1 2 4 8 16 32

P
ro

g
ra

m
 S

p
e
e
d
u
p

1

2

4

8
twolfpredicted

hpca08
cgo08
ppopp05

Core Count
1 2 4 8 16 32

P
ro

g
ra

m
 S

p
e
e
d
u
p

1

2

4

8
vprpredicted

hpca08
tpds09
ppopp05

Figure 3.4: Predicted and Reported Speedup in Low-Parallelism

SpecInt2000 Benchmarks using third-party published results. Kismet

correctly captures the low parallelism in SpecInt2000 benchmarks, providing tight

speedup upper bounds. Reported speedup numbers are from multiple sources that

applied aggressive hardware/software techniques to extract parallelism from these

benchmarks [ZMLM08, ROR+08, PO05, KRL+10, ZL10].

52

SpecInt2000 Figure 3.4 shows Kismet’s speedup estimates and speedup num-

bers gathered from third-party efforts running on aggressive hypothetical hardware

[ZMLM08, ROR+08, PO05, KRL+10, ZL10]. These results confirm the generally-

held belief that SpecInt benchmarks are fundamentally limited in their parallelism.

Kismet predicted low speedups, plateauing at a speedup of 2 to 4 for all bench-

marks except mcf. The reported results conform to Kismet’s upper bounds.

NAS Parallel Bench (NPB) Figure 3.5 shows predicted and measured speedups

for the benchmarks in NPB. As expected,—based on the abundant, easily-exploitable

DOALL parallelism of these benchmarks—Kismet estimated relatively high speedups

in all benchmarks except is. The lower amount of speedup in is results from it hav-

ing only a limited amount of execution spent in parallel regions.

For ep and lu, measured speedup was very close to predicted speedup. Even

though the communication cost on multicore processors typically limit the scala-

bility of benchmarks, these benchmarks’ speedup continued to scale as they do not

rely on inter-core communication.

cg is an interesting benchmark that exhibits super-linear speedup in both

predicted and measured speedup, thanks to Kismet’s cache-aware performance

model. We will examine cg in more detail later in the results section.

mg and sp scale up to 8 cores, but their speedup starts to decrease from

that point. The drop in performance can be attributed to shared-memory related

overhead that is not captured by Kismet’s parallel execution time model. These

benchmarks share data across cores and a data location is written by multiple cores,

greatly increasing the sharing overhead. The gap between predicted and measured

performance in these benchmarks might be closed when innovations in parallel

computer architecture reduce the cost of shared-memory based communication.

Alternately, more advanced modeling of coherence traffic in Kismet could be of

assistance.

53

Core Count
1 2 4 8 16 32 64

P
ro

g
ra

m
 S

p
e

e
d

u
p

1

2

4

8

16

32

64
btpredicted

measured

Core Count
1 2 4 8 16 32 64

P
ro

g
ra

m
 S

p
e

e
d

u
p

1

2

4

8

16

32

64
cgpredicted

measured

Core Count
1 2 4 8 16 32 64

P
ro

g
ra

m
 S

p
e

e
d

u
p

1

2

4

8

16

32

64
eppredicted

measured

Core Count
1 2 4 8 16 32 64

P
ro

g
ra

m
 S

p
e

e
d

u
p

1

2

4

8

16

32

64
ftpredicted

measured

Core Count
1 2 4 8 16 32 64

P
ro

g
ra

m
 S

p
e

e
d

u
p

1

2

4

8

16

32

64
ispredicted

measured

Core Count
1 2 4 8 16 32 64

P
ro

g
ra

m
 S

p
e

e
d

u
p

1

2

4

8

16

32

64
lupredicted

measured

Core Count
1 2 4 8 16 32 64

P
ro

g
ra

m
 S

p
e

e
d

u
p

1

2

4

8

16

32

64
mgpredicted

measured

Core Count
1 2 4 8 16 32 64

P
ro

g
ra

m
 S

p
e

e
d

u
p

1

2

4

8

16

32

64
sppredicted

measured

Figure 3.5: Estimated and Measured Speedup of NAS Parallel Bench on

32-core AMD Multi-core System.

54

Table 3.2: Estimated Speedup with and without Expressible Self-

Parallelism. ESP helps the tightening of speedup estimates by providing only

expressible parallelism to Kismet. In these benchmarks, ESP successfully reduced

the speedup estimates by 363.2X, showing that it is indeed a central component

in speedup estimation.

Benchmark Estimated Speedup

Suite Name Without With Ratio
ESP ESP

RAW jacobi 8649 53.81 160.7X
life 26840 153.73 174.6X
sha 4.81 4.71 1.0X
fpppp 1190 98.74 12.1X
aes 39547 150.95 262.0X
unstruct 4416 8.22 537.2X

SpecInt2000 bzip2 17.4 3.39 5.1X
gzip 4.27 1.37 3.1X
mcf 67.12 5.92 11.3X
twolf 11.35 1.68 6.8X
vpr 15.77 3.1 5.1X

NPB bt 161650 64.46 2507.8X
cg 275 171.06 1.6X
ep 93.69 38.67 2.4X
ft 10709 151.92 70.5X
is 565 37.53 15.1X
lu 43845 52.98 827.6X
mg 2478 87.35 28.4X
sp 147873 65.18 2268.7X

Total mean 23592 61 363.2X
geomean 878 25 34.5X

3.4.3 Impact of Expressible Self-Parallelism (ESP)

One of HCPA’s major advantages over traditional CPA is its ability to

localize parallelism using the self-parallelism metric. Kismet further improves the

utility of self-parallelism by introducing the concept of expressible self-parallelism

(ESP), a filtering step that removes self-parallelism that is unexpressible by the

target system. To quantify the impact of ESP, we compared the estimated speedup

55

Parallelization Overhead

ideal 1X 10X

R
e
la

ti
v
e
 S

p
e
e
d
u
p
 (

%
)

0

20

40

60

80

100
aes

fpppp

jacobi

life

sha

unstruct

avg

Figure 3.6: Impact of Parallelization Overhead. The parallelization of Raw

benchmark is fine-grained and susceptible to larger parallelization overhead. To

measure the impact of parallelization overhead in Raw benchmarks, we increase

the parallelization overhead from zero to the default overhead, and then to 10X

of the default overhead. The relative speedup drops from 100% to 75% and then

to 37.8%. This experiment demonstrates the proper modeling of parallelization

overhead is critical in fine-grained parallelization.

with and without ESP in all benchmarks. We assumed zero overhead and infinite

cores in the speedup estimation, in order to isolate the impact from ESP from

other speedup limiting factors.

Table 3.2 shows the estimated speedup number with and without ESP.

By honoring only unexpressible parallelism, Kismet tightens the speedup upper

bound by up to 2508X, with an average reduction in speedup of 363.2X. The

results confirm that ESP is an essential part in speedup estimation system.

3.4.4 Impact of Parallelization Overhead

One important issue in parallelization is parallelization overhead. The

higher the parallelization overhead is, the coarser the granularity of paralleliza-

56

Core Count
1 2 4 8 16 32 64

P
ro

g
ra

m
 S

p
e
e
d
u
p

1

2

4

8

16

32

64
cgbaseline

cache−aware
measured

Core Count

1 2 4 8 16 32 64

%
 o

f
E

x
e
c
 T

im
e

0

20

40

60

80

100

cg
Memory
Cache
Computation

Figure 3.7: Impact of Cache-aware Estimation in cg Benchmark. The

baseline estimation fails to predict the super-linear speedup of cg. By incorporating

potentially reduced cache miss rates in a parallel execution, cache-aware estimation

successfully predicts the super-linear speedup. Execution time breakdown clearly

shows the time spent in cache and memory is considerably reduced from two-core

to four-core execution.

tion should be to offset the overhead. In other words, overhead modeling is more

important in programs with fine-grained parallelism.

To see the impact of the overhead in fine-grained parallelism, we estimated

the speedup of Raw benchmarks with three different overhead cost - zero overhead,

default overhead (3 + 2 ∗ logN), and 10X of the default. Among three benchmark

groups, Raw is the most fine-grained.

Figure 3.6 shows the impact of parallelization overhead in estimated speedup.

Even with Raw’s low parallelization overhead based on highly optimized static net-

work [TLAA05], it drops the speedup to 75% of ideal case where parallelization

overhead is zero. Increasing the parallelization overhead by 10X further reduces

the speedup to only 37.8% of the ideal case. This experiment explains why Raw

processor designers strove to achieve a low latency in their network design.

57

3.4.5 Impact of Cache-aware Speedup Estimation

Cache-aware time estimation model incorporates potentially reduced cache

service time caused by increased cache sizes when additional cores are used in

execution. The top part of Figure 3.7 demonstrates the effectiveness of cache-

aware estimation shown on the cg benchmark. Without cache-awareness Kismet

predicts linear speedup, but measured speedup exhibits super-linear speedup. In

cache-aware prediction, Kismet incorporates varying cache miss rates gathered

from Cachegrind [NS07b] for each core configuration, correctly predicting super-

linear speedup of cg.

The lower part of Figure 3.7 shows the breakdown of execution time on

different number of cores. As the core count switches from one to two and from

two to four, the portion of cache and memory service time is significantly reduced.

When the cache miss rate does not change, the portion for cache and memory

should remain the same. Indeed, switching from 1 to 4 cores, L1 cache miss rate

drops from 23.3% to 6.5%, and the last level cache miss rate drops from 6% to

0.1%.

Acknowledgments

Portions of this research were funded by the US National Science Foun-

dation under CAREER Award 0846152, by NSF Awards 0725357, 0846152, and

1018850, and by a gift from Advanced Micro Devices.

This chapter contains material from “Kismet: parallel speedup estimates for

serial programs”, by Donghwan Jeon, Saturnino Garcia, Chris Louie, and Michael

Bedford Taylor, which appears in OOPSLA ’11: Proceedings of the 2011 ACM

international conference on Object oriented programming systems languages and

applications. The dissertation author was the primary investigator and author of

this paper. The material in these chapters is copyright c©2011 by the Association

for Computing Machinery, Inc.(ACM). Permission to make digital or hard copies of

part or all of this work for personal or classroom use is granted without fee provided

that the copies are not made or distributed for profit or commercial advantage and

58

that copies bear this notice and the full citation on the first page in print or the

first screen in digital media. Copyrights for components of this work owned by

others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, to republish, to post on servers, or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from Publications Dept.,

ACM, Inc., fax +1 (212) 869-0481, or email permissions@acm.org.

Chapter 4

Reducing Overhead with Efficient

Vector Shadow Memory

Memory shadowing is a general technique that has been used in many dif-

ferent applications: from memory analysis [SN05, BZ11] to computer security

[CZYH06, QWL+06, XBS06]. Memory shadowing allows metadata, referred to

as a tag, to be associated with each memory address in a program. These tags

vary in function across each dynamic program analyses. For example, tools such

as MemCheck [SN05] have a single bit of metadata associated with each memory

location to indicate whether that address has been properly initialized. Memory

shadowing is also widely used in computer security where it performs taint track-

ing. Tools such as TaintTrace [CZYH06] shadow memory locations with a single

bit of metadata to indicate whether a memory address has been written with data

from an untrusted source.

Most recent work in memory shadowing has focused on optimizing the ex-

ecution time of analyses that associate a single tag with each memory address.

However, some analyses require a vector of shadow tags to be associated with

each memory address. This vector shadow memory, or VSM, frequently causes an

explosion of memory usage which makes many of these analyses impractical due

to out-of-memory errors. In these systems, memory usage supplants the issue of

execution time because it prevents the analysis from being run at all, let alone

slowly.

59

60

This chapter examines the optimization of VSMs to enable a class of dif-

ferential dynamic analyses, or DDA. Differential program analysis focus on the

differences in properties between similar programs [WE03]. We focuse on differ-

ential program analyses that are dynamic and that are auto-differential; that is,

the “similar programs” are actually just different nested regions (e.g. loops or

functions) of the same program. Typically, a sub-analysis is applied to parent and

child regions, and the results are summarized to eliminate the need for large log

files. Later in time, the parent and child values are differenced with an abstract

difference operator to produce the final result of the analysis.

As of today, auto-differential program analyses have been employed most

often for guiding the optimization of programs, especially when it pertains to trying

to attach performance-affecting attributes to nested regions in a piece of code.

Perhaps one of the oldest such analyses is found in profilers, which quantifies the

amount of program execution time spent in a program region but not its children.

This analysis is simple – accumulate the time spent in a parent region, and then

subtract the accumulated time in the children regions. No shadow memory is

required.

Recently, the drive to aid parallelization has renewed interest in tools that

can provide information that assists in the partitioning and transformation of pro-

grams to optimize their parallel execution. One such tool is Kismet,which outputs

parallel speedup upperbound estimates given serial source code and a set of rep-

resentative inputs. Kismet employs Hierarchical Critical Path Analysis, or HCPA,

which attributes each nested program region with the amount of parallelism that is

attributable to that region alone. Interestingly, HCPA is a differential form of the

venerable critical path analysis [Kum88], or CPA, which traces the earliest time

that every value in a program could have been produced, based on dependences.

CPA’s final output is the oldest such time in the program, the critical path. By

summing the total work in the program, and dividing by the critical path, we get

the average parallelism in the program. CPA likely is the first dynamic analyses

to use shadow memory implementation in history. We say HCPA is a differential

form of CPA because it applies CPA to every nested region of the program, and

61

then uses an approximation function to difference the CPA results and calculate

the self-parallelism, that is, the parallelism attributable to a region independent

of its children. Of course, this nested application of CPA requires a VSM to track

CPA values for every operand in the context of every nested region.

Differential dynamic analyses may have many other applications but the

lack of efficient frameworks for this type of analysis has likely slowed its adoption.

In this chapter, we use as running examples two differential dynamic analyses that

represent two extreme points for DDAs; HCPA as an example of an extremely

heavy weight DDA, and another analysis, which we call footprint analysis, as an

example of a lightweight analysis. Footprint analysis tracks the memory addresses

touched by every nested region in a program. From footprint analysis, we can

ascertain the memory usage of a subregion in a program, relative to its children.

This is useful information for programmers trying to partition code across dis-

tributed non shared-memory systems, such as in the IBM Cell processor, or in

a Non-Uniform Memory Access (NUMA) shared-memory machine, for when we

want to estimate coherence bandwidth requirements, or estimate cache footprint

of a region of code to prove non-interference properties.

4.0.6 Shadow Memories for Differential Dynamic Analyses

Non-differential shadow memory infrastructures such as those in [NS07b,

ZBA10a, ZBA10b] need only provide one shadow tag per address in the program.

In contrast, differential analyses require a vector of tags for each address, im-

plementing the vector shadow memory. The size of this vector depends on the

number of shadows that need to be tracked, which can vary with program execu-

tion (i.e, the current depth in the nested region graph determines this number.)

Additionally, auto-differential analyses based on nested program regions impose

an additional challenge: when execution leaves a region, a shadows needs to be

deleted; and when execution enters a region, a new shadow needs to be created.

A naive implementation involves scanning all of the shadow memory; instead, a

more optimized implementation uses a version ID which identifies which dynamic

region instance that the recorded data is applicable for. When the DDA goes to

62

access the shadow tags, it checks the version ID for each shadow to verify that the

value is not stale.

This VSM implementation approach must store tags that scale as the prod-

uct of the original memory footprint of the program and the number of unique

regions in the program. It also must store the version IDs, which in some cases,

such as storing a single bit for each memory location, can take more space than

the data itself.

Table 4.1 shows the memory requirements for a naive VSM implementation

implementing HPCA. As can be seen, the memory expansion factor (that is, the

ratio of memory usage of the shadowed version of the program to the native version

of the program), ranges from 25× to 149×. For the benchmarks listed, which

have relatively small footprints as they are from older benchmarks, memory usage

expands from 324 MB to 15.7 GB, which easily exceeds the amount of RAM in

many software development machines. With this baseline implementation, DDAs

will only be applicable if inputs sizes are drastically reduced. The typical result of

a DDA using a simple VSM implementation applied to standard inputs will be an

out-of-memory error. Clearly, VSM requires new techniques to address these new

overheads. In this chapter we will reduce this memory expansion to a geometric

mean of 5.2×.

4.0.7 Skadu’s Approach

In this chapter, we present Skadu, a vectored shadow memory implemen-

tation (VSM). Skadu is the first general framework for VSM, which allows it to

effectively handle differential dynamic memory analyses. Skadu takes advantage of

the hierarchical structure of programs to minimize the overheads associated with

VSM. This hierarchical structure allows Skadu to reduce memory overhead through

sharing of shadow memory while keeping runtime overheads low. Skadu also ex-

ploits the difference in average region lifetime across levels of the region hierarchy

to reduce the memory overhead of both short-lived and long-lived regions.

Skadu introduces several techniques that greatly reduce the overhead re-

quired for VSM. Skadu partitions tags according to their associated region’s place-

63

Table 4.1: Motivation: Vector Shadow Memory Overheads of the Hier-

archical Critical Path Analysis (HCPA) Differential Dynamic Analysis.

Vector Shadow Memory by default has extremely high memory overheads, which

in many cases make them intractable to run on standard workstations, unless in-

put sizes are drastically reduced. For an assortment of memory-intensive Spec

2000 REF and NAS Parallel Bench (NPB) B inputs, the shadow memory analysis

required a geometric average of 15.7 GB of memory, and causes an average mem-

ory expansion of 49× expansion makes it impractical to run standard sized inputs

on many developer’s machines. We reduce this memory expansion to a geometric

mean of 5.2×.

Suite Bench W/ Shadow Native Memory
mark Memory Memory Expansion

(GB) (GB) Factor

Spec bzip2 28.2 .189 149×
mcf 16.0 .152 105×
gzip 21.7 .200 109×

NPB sp 8.0 .316 25×
mg 13.0 .449 29×
cg 14.4 .427 34×
is 13.9 .384 36×
ft 66.0 1.683 39×

Geomean 15.7 .324 49×

64

ment in the region hierarchy. This partitioning allows efficient sharing of shadow

memory among regions in the same level of the program hierarchy. Partitioning

also enables lightweight garbage collection of stale tags. Skadu utilizes a tag vec-

tor cache to keep frequently used tag vectors in a format that minimizes access

time. This cache allows the user to easily trade increased memory overhead for

improved performance. It serves as a kind of nursery that eliminates the need

to allocate short-lived regions in long-term shadow storage. Skadu reduces the

memory overhead of long-term tag storage by compressing infrequently used tags.

Skadu also introduces two novel techniques for reducing the overhead associated

with validating tags, a requirement stemming from the sharing of shadow memory

between multiple program regions.

4.0.8 Evaluating Skadu

We have implemented two differential dynamic analyses in order to evalu-

ate Skadu’s effectiveness at reducing overheads. First, a memory footprint profiler

tracks the amount of memory used by every function and loop in a program. This

analysis is useful to a range of applications such as scheduling of programs on

a heterogeneous multi-core processor. Second, a parallelism profiler, hierarchical

critical path analysis (HCPA), determines the average amount of parallelism in

every function and loop in the program. While both analyses utilize Skadu’s VSM

infrastructure, they demonstrate opposite ends of the analysis spectrum: the mem-

ory footprint profiler is a relatively lightweight analysis with only 1-bit tags while

the heavyweight HCPA uses with 64-bit tags.

Results from our implementations of the memory footprint and parallelism

profilers show that Skadu reduces memory overhead by 14.2× for memory footprint

profiling and by 11.4× for HCPA versus a baseline implementation. We also ex-

amine the effect of vector caching as well as selective compression on both memory

and performance overhead.

65

0x00COFFEE{ {
...

+

Segment Table Tag Tables

...

...

...

Figure 4.1: Traditional Memory Shadowing Organization. The memory

address is used as an index into a two-level page table that contains the metadata

associated with that address. To support 64-bit addresses, a three-level table may

be used.

4.1 Overview and Challenges

In this section we will introduce the challenges facing vectored shadow

memory (VSM). We start by introducing traditional shadow memory organiza-

tion before describing the region-based differential dynamic analysis employed in

this chapter. Finally, we overview the techniques that Skadu uses to create an

efficient VSM framework for the differential dynamic analyses.

Traditional Memory Shadowing Technique In traditional shadow memory

infrastructures, each memory address has an associated shadow memory address.

Each shadow address may contain some metadata (or tag) about the associated

memory address. Figure 4.1 shows a simple shadow memory organization where

shadow memory is accessed via a two-level table: first the segment, then the tag.

The size of the tag table entry can range from tiny to large: it is common to see

one bit tags in taint tracking infrastructures while applications such as hierarchical

critical path analysis introduced in Chapter 2 require 64-bit tags. While the details

vary between existing memory shadowing frameworks, they generally follow this

66

basic organization.

Region-Based Differential Analysis Traditional memory shadowing requires

tracking only a single region of the code, usually the whole program (i.e. the main

function). The differential analyses we consider in this chapter require separate

dynamic sub-analyses to be applied to each nested region of the program. We

define a region to be any single-entry piece of code but we will focus on two par-

ticular types of regions: functions and loops. During the execution of a program,

the regions of a program form a natural hierarchy. Figure 4.2 demonstrates this

hierarchy (shown in the form of a region tree) for an example piece of code. Each

node in the region tree is a dynamic region while an edge from A to B indicates

that B is a child (or subregion) of A.

In the region-based differential analysis, each region is profiled indepen-

dently of the others. Conceptually, this means that each region has its own ad-

dress space and therefore requires its own shadow memory address space. A naive

extension of the memory shadowing shown in Figure 4.1 might be to make each

entry in the tag table correspond to an array or list. However, the number of

entries needed for each address depends on the number of dynamic regions in the

program and therefore cannot be determined statically. Neither an array- or list-

based approach are desirable in this situation. The array-based approach would

either need to be radically over-allocated (if statically allocated) to ensure room

for all regions or would need to be dynamically allocated, potentially leading to

prohibitive performance penalties. The list-based approach suffers from the same

drawbacks as the the dynamically allocated array approach.

Efficient Management of Multiple Shadow Address Spaces The key in-

sight for efficient shadow address space management is that there is at most one

active region in any given level in the region tree. Skadu takes advantage of this

hierarchical property to minimize the memory overhead associated with multiple

shadow address spaces. As shown in Figure 4.3, all regions in each level of the

region tree are mapped to a single tag. In other words, shadow address space is

shared amongst every region in a level.

67

1 int main() {
2 foo();

3 bar();

4 ...

5 }
6 void foo() {
7 ...

8 }
9 void bar() {

10 for(i=0..10)

11 x++;

12 foo();

13 }

(a) Code Snippet.

main

foo

foo

bar

for(i)
shadow
memory

shadow
memory

shadow
memory

(b) Corresponding Region Tree.

Figure 4.2: Region Hierarchy Overview.The pseudo code in (a) results in

the region tree shown in (b). Each region has an isolated shadow memory address

space, as shown in (b). Skadu introduces several techniques to reduce the overhead

associated with maintaining these separate address spaces.

Sharing of shadow address spaces could potentially lead to one region pol-

luting the address space of another. It is possible to clean the “dirty” tags after

exiting a region but this is likely to incur a significant performance penalty. This

penalty is especially onerous for regions that are entered and exited rapidly, such

as deeply nested loops. This solution also requires additional space overhead for

tracking “dirty” tags.

To avoid the cleaning costs of the naive scheme, we can use the version-

based approach. This version-based approach attaches metadata to each tag to

indicate which region owns that tag. Before a tag is used, the version is checked

to ensure that the region accessing the tag is its owner. The tag is invalidated if

the version does not match. Unfortunately, this technique requires a significant

amount of space for tracking versions. Skadu introduces several novel techniques

68

A

B C

D E

Level 0

Level 1

Level 2

Tag
Vector

Version
Vector

Region Tree

Figure 4.3: Level-based Sharing of Shadow Memory. The hierarchical nature

of regions ensures that any level in the region tree will have at most one active

region. Skadu uses this property to enable reuse of physical shadow memory space

between multiple regions of the same level. This reuse requires that tags be vali-

dated to ensure that stale metadata is not used (e.g. not using region B’s metadata

for region C). Each tag has an version associated with it to determine the region

in which it is valid. Skadu introduces two novel versioning systems that reduces

the memory overhead of versioning from O(n) to O(1).

to minimize this cost; these techniques are described in detail in Section 4.2.

Utilizing Region Hierarchy to Reduce Overhead The definition of a region

ensures that the size of regions monotonically decreases as you go from the root of

the region tree to its leaves. As a result, “deep” regions tend to be much smaller

than “shallow” regions and have a smaller memory footprint. Skadu leverages this

property by introducing two novel memory shadowing features: level tables and

tag vector caching.

Skadu introduces a level table into the basic shadow memory organization

shown in Figure 4.1. This level table acts to partition tags according to the level

in which their associated region resides. Each entry in the level table points to a

tag table that is associated with a given level in the region tree. This organization

allows Skadu to maintain the minimum number of tag tables for each active level,

capturing the main benefit of the dynamic array or list-based approach without

the space overhead associated with those approaches.

69

The level table organization has the added benefit of enabling efficient

shadow memory garbage collection. Skadu includes a garbage collector that peri-

odically scans level tables to determine which levels are no longer active. Tags in

these inactive levels can be deallocated so as to reduce the memory overhead. The

garbage collector allows lazy deallocation of tags, moving this deallocation away

from the region exits and therefore reducing the performance overhead. Garbage

collection could also done in parallel with normal analysis, further reducing runtime

overhead.

While level tables help minimize the space overhead associated with the

differential dynamic analysis, they could potentially add to performance overhead

as multiple table traversals are required to access a single address’ tag vector.

Skadu minimizes this impact by introducing a tag vector cache. Skadu’s cache not

only k.pdf the tag vectors for frequently used memory addresses but also uses an

array-based organization that minimizes access time. This cache offers a trade-off

of performance and space: increased the cache size leads to increased performance.

The user can exploit this trade-off to maximize performance based on the amount

of memory available to them.

One further consequence of deeper regions being smaller than shallower

regions is that the lifetime of tags in those deeper regions is much shorter. Skadu

takes advantage of this by using a novel write-back policy. When a tag vector is

evicted from the cache, the version metadata is first checked to see if any of the

tags are out-of-date and therefore invalid. Invalid tags are simply discarded since

they will never be used again. As a result, Skadu avoids allocating tag tables for

stale tags, thus reducing the space overhead.

The tag vector cache makes the average shadow memory operation fast by

storing frequently used tags in a compact, quickly accessible form. By making

uncached accesses a rare event, Skadu is able to further reduce memory overhead

by compressing tags residing outside of the cache. Other than a small number

of recently used tags, all tags are compressed, minimizing the memory overhead

while only moderately impacting performance. The number of uncompressed tags

outside of the cache offers another trade-off of memory and performance: more

70

VerTag [1..N] Ver [1..N]

Tag [1..N] Ver [1..N]

… …

Tag [1..N] Ver [1..N]

Tag [1..N]

Tag [1..N]

…

Tag [1..N]

Ver

…

Ver

Tag [1..N]

Tag [1..N]

…

Tag [1..N]

Ver

(a) baseline (b) SlimTV (c) BulkTV

Figure 4.4: Space Overhead of SlimTV and BulkTV. Compared to the base-

line where each level requires version information, SlimTV shares a version infor-

mation for all levels. BulkTV further reduces the space overhead by sharing a

single version number across a range of memory addresses.

uncompressed tags increase memory overhead but reduce the runtime penalty.

Details of compression as well as the complete overview of Skadu’s shadow memory

architecture will be given in Section 4.3.

4.2 Efficient Tag Validation

Tag validation is an essential operation in Skadu. As described in the

previous section, Skadu uses version information to determine ownership of tags.

Unfortunately, naive version management is scalable neither in memory overhead

nor in performance; it has O(n) space and time complexity where n is the depth of

the deepest region that accesses a specific memory address. This section introduces

two techniques that enable efficient tag validation: Slim Tag Validation (SlimTV)

and Bulk Tag Validation (BulkTV). Figure 4.4 compares the space overhead of

these techniques against a baseline implementation: together they make the space

requirements of tag validation almost negligible and significantly lower the runtime

overhead.

4.2.1 Baseline Implementation

Our baseline implementation features a simple procedure to check tag va-

lidity that is based on a design property of the shadow memory: sharing of shadow

71

memory is limited to regions within the same level of the region tree. The baseline

implementation utilizes this sharing property by assigning a unique ID to each

region in a level. The unique IDs of all active regions are stored in a version vec-

tor associated with a tag vector whenever that memory is updated. This stored

version vector is then used for tag validation on each read: if there is a mismatch

between the ID of the current active region in a level and the ID for that level in

the version vector, then the tag for that level is invalid.

The baseline implementation suffers from the drawback that it requires stor-

ing a version vector for every shadow memory address. This storage requirement

leads to an O(n) space overhead just for tag validation, where n is the depth of

the region. This approach also incurs a large number of memory loads and stores

from reading/writing version vectors, resulting in higher runtime overhead.

4.2.2 Slim Tag Validation (SlimTV)

Skadu introduces a new tag validation technique known as Slim Tag Valida-

tion (SlimTV). SlimTV improves upon the baseline implementation by eliminating

the need to store a version vector with each tag vector; only a single value needs

to be stored. This technique not only reduces the space overhead from O(n) to

O(1) but also eliminates the excessive loads/stores associated with accessing the

stored vector, greatly reducing the runtime overhead.

SlimTV relies on the key insight that unique IDs can be used to create a

total ordering of all regions in the region tree. SlimTV assigns IDs to regions in

the order in which they begin. During the access of a tag vector only the ID of the

most recently entered, active region is stored. The current stored ID is compared

with the vector of IDs associated with the currently active regions whenever the

shadow address is accessed. Active regions with IDs greater than the stored ID

started after that region and are therefore invalid. SlimTV reduces the problem

of tag validation to finding the minimum region level with an invalid tag: active

regions at deeper levels must have started later and therefore are also invalid.

Figure 4.5 provides an example of SlimTV’s tag validation. In this example

a memory address is written to in the region with version 4. This single version

72

number is then stored along with the tags for each active region. This same address

is read later in the region with version 7, at which time the active version vector

is 〈1,5,6,7〉. Of the active regions only the first (1) has an ID less than the stored

version (4); starting from region 5, all other regions are invalid.

Theorem 1. Suppose V (R) is the active version vector of region R, the current

region is Rnew, the stored version in shadow memory is v, and the stored tag vector

is T . T [i] is valid if and only if V (Rnew)[i] ≤ v.

Proof. Assume for contradiction that V (Rnew)[i] > v but that its associated tag

is valid. Let Rold be the region that stored both the tag and v. Because T [i]

is valid, V (Rold)[i] == V (Rnew)[i]; therefore V (Rold)[i] > v. However, this is a

contradiction because by rule v is the largest value in V (Rold).

4.2.3 Bulk Tag Validation

Skadu’s SlimTV technique reduces the memory overhead to a constant fac-

tor but this may still result in significant memory overhead. For example, when

shadowing every byte of memory, the overhead incurred from an 8-byte version

identifier is 8X. Skadu therefore introduces an additional technique, Bulk Tag Val-

idation (BulkTV), that can reduce the memory overhead to a negligible amount

while additionally reducing the runtime overhead.

BulkTV’s key idea is to amortize the tag validation process’ overhead across

many addresses. BulkTV accomplishes this amortization by using only a single

version number for a page of shadow memory, performing tag validation for all

entries in the page whenever a single address is accessed. The effectiveness of

BulkTV is clearly tied to the size of the page: the bigger the page, the bigger the

benefit. For example, a modest 4KB page leads to a drastic reduction of 4096X

when shadowing every byte.

BulkTV can also have a significant impact on the runtime overhead of tag

validation. This impact stems from two competing factors. On one hand, there is

additional overhead associated with validating a whole page, especially when only

a fraction of locations in that page will be used. This factor ultimately depends

73

t0 t1 t2

Tag[1..N]

4

Validating tags with

version vector

first

access
7

1

2

3 4

5

6 8

7

(a) SlimTV’s Region Versioning

t0 invalid invalid

1 5 6 7

Ver

second

access

(b) Tag Validation Process

Tags logged

in region 4

Tags validated

in region 7

Figure 4.5: An SlimTV Example. (a) SlimTV exploits the ordering encoded in

the version ID of dynamic regions in the program. (b) Illustrates the tag validation

process. Suppose a memory location is accessed in region 4 and later in region 7.

After the access in region 4, tag[0:2] will be logged with the region’s version number

4. When the same address is accessed in region 7, the version stack [1, 5, 6, 7]

is compared against the stored version number 4. From the comparison, SlimTV

detects that only region level 0 started before the previous tags were written.

SlimTV therefore invalidates tag[1:2] and updates the version field in the shadow

memory. SlimTV shares a version information for all levels. BulkTV further

reduces the space overhead by sharing a single version number across a range of

memory addresses.

on the locality of memory accesses: higher locality will lead to fewer wasted tag

validations.

On the other hand, BulkTV greatly reduces overhead through a decrease

in the most costly single operation in tag validation: finding the highest valid

level of tags. Finding this highest valid level involves walking through the current

version vector, an operation linear in the size of the vector. BulkTV still requires

n comparisons for each access in the worst case but the average case requires

significantly fewer comparisons. In the best case, only a single comparison is

needed; this occurs when a memory location in the same page is accessed in the

same region. BulkTV performs the comparisons starting at the end of the version

74

vector, meaning that slight differences in version number since the last access will

incur significantly fewer than n comparisons. The reduction is again dependent on

the locality exhibited throughout the program but our results in Section 4.5 show

that only a moderate amount of locality is needed to result in a net reduction in

runtime overhead.

4.3 Vectored Shadow Memory (VSM) Architec-

ture

Traditional shadow memory infrastructures have gone to great length to

minimize the runtime overhead of memory shadowing. Runtime overhead contin-

ues to be a serious concern when extending shadow memory to support vectored

tags but memory overhead is potentially more limiting. Skadu introduces a novel

shadow memory architecture that balances the sometime conflicting requirements

of low memory and runtime overhead for vectored shadow memory. In this section

we describe this novel architecture.

4.3.1 VSM Architecture Overview

Skadu’s architecture separates fast, short-term shadow memory from space-

efficient, long-term shadow memory. Figure 4.6a shows the interaction between the

architecture’s two main components, TVCache and TVStorage, which correspond

to the split between short-term and long-term tag vector storage. This split allows

Skadu to exploit the characteristic differences in lifetime and tag storage size across

various levels of the region hierarchy.

Skadu initially places tag vectors in the TVCache, evicting them to the

TVStorage only as needed. The TVCache is geared toward fast-access time; sized

appropriately, it minimizes the number of accesses to the slower-access TVStor-

age. The TVStorage is designed for long-term storage and therefore attempts to

minimize the memory overhead. It does this through a level-based storage in-

frastructure that facilitates lightweight garbage collection; this garbage collection

75

TVCache TVStorage

evict [lv_out]

fetch [lv_in]

(a) Shadow Memory Overview

V0

V1

V2

…

T0 0

T1 0

T2 0

…

T0 1

T1 1

T2 1

…

T0 2

T1 2

T2 2

…

T0 …

T1 …

T2 …

…

Version Tags!Vectors

(b)!TVCache Structure

0

1

…

N 1 T0 1

T1 1

…

V0

V1

… …

Ver Ptr

Tag!Table

Level!Table

T0 0

T1 0

…

Tag

……

SegTable

Ptr

(c)!TVStorage Structure

Figure 4.6: Overview of Skadu Shadow Memory Organization. (a) To

exploit the memory footprint and liveness characteristics of hierarchical regions,

Skadu uses a TVCache, reducing memory requirements and improving perfor-

mance. (b) The TVCache is optimized for the performance, handling most shadow

memory requests and allowing a memory-efficient organization of the TVStorage.

(c) The TVStorage is optimized for low memory overhead with the addition of a

level table. Paired with BulkTV, this three-level organization enables lightweight

garbage collection.

reduces the runtime overhead of dynamic vector resizing. Skadu compresses tags in

the TVStorage; because the TVStorage is accessed infrequently, the performance

overhead of this compression is minimal. In the following sections, we will describe

the components of Skadu’s architecture in more detail.

4.3.2 Tag Vector Cache (TVCache)

The TVCache stores frequently used tag vectors, making the common case

access time fast. These tag vectors are stored in an array format to further reduce

76

access time. The TVCache uses SlimTV for low-overhead tag validation but not

BulkTV because “lines” in the TVCache do not contain the spatial locality required

to make BulkTV profitable.

Figure 4.6b shows the structure of the TVCache–albeit slightly simplified

with omitted metadata such as associated memory address and vector size. Each

cache line contains the version and the tag vector associated with a memory ad-

dress. All cache lines have the same vector size for better performance at the cost of

possibly wasted memory. However, TVCache’s memory requirement is very small

compared to that of TVStorage because of the reduced address space it covers.

The TVCache is direct mapped to reduce access time while still providing good

hit ratios.

TVCache differs from traditional caches in that it not only improves runtime

performance but also reduces memory overhead of long-term tag storage. This

reduction in memory overhead is a result of the efficient write-back policy used by

the TVCache. The TVCache tends to cache tag vectors long enough that short-

lived regions have already exited by the time they are evicted. The TVCache

validates all tags upon an evict, writing back to the TVStorage only those the

are valid. This process mimics garbage collection, reducing the space used by the

TVStorage.

4.3.3 Tag Vector Storage (TVStorage)

The TVStorage acts as a long-term backing store for tag vectors evicted

from the TVCache. The TVCache handles most shadow memory accesses, allowing

the TVStorage to focus on reducing memory rather than runtime overhead.

Figure 4.6c shows the structure of the TVStorage. The TVStorage utilizes a

three-level structure that is similar to traditional shadow memory infrastructures

1 but with the novel addition of a level table. The TVStorage groups tags by

their level rather than the address they shadow. This distribution of tags enables

efficient garbage collection, exploiting the fact that tags become invalidated when

1Although not shown, this structure is easily modified to handle 64-bit addressing via an
additional table before the segment table, similar to what was proposed in [ZBA10a].

77

regions–and therefore levels–are exited. The TVStorage also employs BulkTV: all

entries in a tag table share a single version ID, which is located in the level table

next to the tag table pointer.

The TVStorage organization enables invalidation of a whole tag table with

only a single version number comparison. Skadu maintains a list of free tag tables:

tag invalidation only requires sending off the tag table to be scrubbed and returned

to the free list. This makes garbage collection extremely lightweight. Skadu em-

ploys a simple garbage collector that walks all the level tables in the TVStorage,

invalidating and freeing tag tables as it goes along. This garbage collector allows

Skadu to dynamically adjust the size of an address’ tag vector with little-to-no

performance overhead.

4.3.4 Tag Vector Compression

Skadu’s TVCache-TVStorage organization facilitates the use of compres-

sion without significant overhead. The size of the TVStorage dwarfs that of the

TVCache for all but the smallest programs: the TVCache is designed to be small

enough to handle only the most frequently accessed addresses, leaving the TVStor-

age to store all other addresses. The TVStorage is the good target for compression

because of its large size and relatively infrequent access.

Skadu balances the space savings of compressed tags with the performance

of uncompressed tags: a small list of recently used level tables house uncompressed

tag tables while all other level tables house compressed tag tables. This list of

uncompressed level tables is checked whenever a line is evicted from the TVCache;

if the corresponding level table is not in this list, it is added and one of the existing

level tables is removed according to a simple “clock” eviction algorithm.

The inclusion of uncompressed level tables protects against large perfor-

mance penalties during bursts of high miss rates in the TVCache. These bursts

would otherwise incur decompression costs on top of the already high cost of ac-

cessing the TVStorage. Results show this method to be effective.

78

4.4 Case Studies

To demonstrate Skadu’s effectiveness, we implemented two dynamic, region-

based analyses that use vectored shadow memory: a memory footprint profiler

and hierarchical critical path analysis (HCPA). The first represents a relatively

lightweight application of Skadu whereas the second represents a heavyweight one.

The following subsections describe these two analyses.

4.4.1 Memory Footprint Profiler

The memory footprint profiler tracks the number of memory locations ac-

cessed in each dynamic region and reports the average memory footprint for each

static region. It illuminates a program’s region-specific memory usage, informing

memory optimizations.

Tag Format Each tag is a single bit that tracks whether or not the address has

been touched by a region. This leads to a tag vector of n bits, where n is the depth

of the region accessing the address. The profiler watches for the first touch of an

address (i.e. tag changing from 0 to 1), incrementing a counter associated with

the region when this event happens. This counter is checked when a region exits;

its value then propagates to the statistics associated with the corresponding static

region.

The region hierarchy leads to an inclusivity property for memory footprint

analysis: if a memory address is touched in a region, it must also have been touched

in all its ancestor regions. The footprint profiler exploits this property by compress-

ing the whole tag vector into a single integer. This integer represents the shallowest

level in which the address was not touched. This scalar representation avoids costly

vector operations. This compressed format could lead to increased overhead—for

example, when using an 8-bit integer to represent a the vector 〈1,1,0,0〉—but our

results show that the size of this increase is negligible.

Efficiently Measuring Memory Footprint Each memory access triggers a

check to see if the footprint of the active regions needs to be increased. This check

79

involves three s.pdf: tag validation, footprint update, and tag update. The tag

validation step reads both the stored tag and the version from shadow memory

and uses SlimTV to find the first invalid region level. The footprint update step

finds and updates the range of region levels whose memory footprint should be

incremented. The tag update step updates shadow memory with the new tag and

version for the given address.

We use an algorithm in the footprint update step that reduces the update

cost from O(n) to O(1). A naive algorithm would increment a counter for each

level that needs to be updated, leading to an overhead of O(n) for n updated

regions.

Our algorithm reduces this cost through the use of a 2D array. This array

contains elements, count[maxLevel][minLevel], that represent the number of

new memory accesses that increment minLevel to maxLevel. The footprint update

increments only a element in the array that corresponds to the min and max levels

to update. The profiler calculates the footprint of the region by summing all values

in count[currentLevel][...] when a region exits and propagates these counters

if minLevel ≤ currentLevel − 1.

Implementation The memory footprint analyzer uses LLVM 2.8 [LA04] to in-

sert functions calls into the source code that demarcate region boundaries and

trigger events on memory accesses. These functions are implemented in a runtime

library that is linked in at compile time. The footprint analyzer uses functions and

loops as regions because they are natural, programmer-centric boundaries.

As previously mentioned, the footprint profiler compresses tag vectors into

a single vector, eliminating the need for the TVCache-TVStorage organization; tag

compression is still used by making the uncompressed level table list the first point

of access for all accesses to shadow memory. In place of the TVCache-TVStorage

architecture, we modified the traditional two-level shadow memory organization

shown in Figure 4.1 to support tag validation and a 64-bit address space. Each

segment table and tag table covers 4GB and 64KB of address space, respectively.

Each tag is an 8-bit integer, supporting a region tree of depth 256. This was more

than enough for all benchmarks we examined in our results. The footprint analyzer

80

supports the use of baseline tag validation, SlimTV, or BulkTV; this allowed us

to examine the overheads associated with each of these techniques.

Tag tables support two separate configurations: one that tags every 4-bytes

of address space and another that tags every 8-bytes of address space. The latter

configuration results in less overhead (1 byte tag per 8 bytes of data or 12.5%) and

is the default configuration when a tag table is created. If the analyzer detects

finer granularity accesses (4-byte), it automatically switches configuration.

4.4.2 Hierarchical Critical Path Analysis

Overview As introduced in Chapter 2, hierarchical critical path analysis (HCPA)

is a dynamic program analysis that computes the self-parallelism of each program

region. Self-parallelism is the parallelism of a region exclusive of the parallelism

of its child regions. HCPA calculates self-parallelism by performing critical path

analysis (CPA) on every region of the program, utilizing the program hierarchy to

determine the relationships of regions. CPA incurs a large amount of overhead as

it requires every operation to be instrumented; this is required to find the critical

path of the program, its longest set of dependent instructions.

HCPA concurrently calculates CPA on multiple regions, requiring a tag

vector of n 64-bit timestamps for n active regions. The size of each tag makes

memory overhead a severe issue in HCPA, much more so than the memory footprint

profiler. HCPA further exacerbates the memory overhead problem by treating loop

bodies as regions; this is in addition to the function and loop regions seen in the

memory footprint profiler. The addition of loop bodies increases the depth of the

region tree, increasing tag vector sizes and the memory overhead as a result.

HCPA operates on all instructions not just the loads and stores that were

instrumented in the memory footprint profiler. This increased instrumentation

greatly increases the performance overhead. HCPA does not access shadow mem-

ory on all instructions though: all non-memory operations utilize a shadow register

file. This shadow register file is much smaller than shadow memory and can there-

fore be optimized for access time rather than space overhead in much the same

way as the TVCache.

81

HCPA follows a three step procedure for handling loads. First, it accesses

shadow memory to load in the tag vector (the timestamps) for the specified memory

address. Next, it calculates the updated tag vector for the target register based

on three factors: the loaded tag vector, the tag vector of control dependences, and

the estimated cost of a load. Finally, it updates the shadow register file entry for

the target register. The process for a store is similar except that the tag vector is

initially loaded from the shadow register file and finally stored in shadow memory.

Implementation HCPA utilizes all of Skadu’s techniques in order to reduce

both the memory and runtime overhead. Shadow memory operations first access

the TVCache to determine if the target address is available. A TVCache miss

forces a load from and eviction to the TVStorage in the case of a load instruction;

a miss on a store instruction simply requires an eviction to the TVStorage. All tag

tables are compressed, save for those associated with a list of uncompressed level

tables. If the level table associated with an evicted TVCache line is not in this list,

it is added after another level table is evicted and compressed. HCPA uses a tag

table size of 4KB, which is smaller than the 64KB tag tables used by the memory

footprint analyzer. This smaller size reduces the runtime overhead associated with

BulkTV, helping offset the increased runtime from having a variable size tag vector

in HCPA.

The size of both the TVCache and the uncompressed level table list can be

configured by the user. Increasing the size of either of these tends to reduce the

runtime overhead at the expense of increased memory overhead.

The HCPA code also contains a lightweight garbage collector. This garbage

collector walks all level tables in the TVStorage, using BulkTV to quickly find

invalid tag tables and return them to the list of free tag tables. The garbage

collector is activated when Skadu’s dynamic memory overhead passes a threshold.

Skadu adjusts this threshold based on the memory usage after garbage collection.

This variable threshold avoids hysteresis effects.

82

Table 4.2: Benchmark Characteristics. We examined 12 benchmarks from

three benchmark suites. These benchmarks display a wide variety of characteristics

including memory usage (2MB to 434MB) and execution time (2 seconds to 2

minutes).

Benchmark Mem. Native Region Depth
Suite Name Usage Runtime Footprint HCPA

(MB) (Sec) Profiler

SpecInt bzip2 189 57.1 17 25
gzip 200 41.0 17 21
mcf 152 90.5 48 53
vpr 3 72.5 13 17

SpecFp art 2 6.5 10 11
equake 37 114 7 21
mesa 20 120 20 26

NPB cg 55 6.4 6 10
ft 419 11.4 11 18
is 68 2.0 4 7
lu 43 82.9 6 12
mg 434 5.6 8 13

4.5 Experimental Results

Methodology We examine the effectiveness of Skadu’s proposed techniques us-

ing the two analyses described in Section 4.4: a memory footprint profiler and hi-

erarchical critical path analysis (HCPA). Our experiments focus on both the mem-

ory and performance overheads associated with vectored shadow memory (VSM).

We tracked the maximum memory overhead because it determines the minimum

amount of memory required to successfully run the analysis. All measurements

were performed on a 32-core system (8X AMD Opteron 8380 Quad-core proces-

sors) with 256GB of memory running on the Linux 2.6.18 Kernel. For compression,

we employed the miniLZO 2.06 library [Obe].

We examined 12 benchmarks across three benchmark suites: SpecInt 2000,

SpecFP 2000, and NAS Parallel Bench (NPB) [BBB+91]. Table 4.2 characterizes

each benchmark’s native execution, listing runtime, memory footprint, and region

depth. SpecFP and NPB benchmarks tend to have regular memory access patterns

83

art
vpr

m
esa

equake

lu cg is m
cf

bzip2
gzip

ft m
g

geom
ean

top6

M
e
m

.
E

x
p
.
F

a
c
to

r
R

e
d
u
c
ti
o
n
 (

X
)

1

4

16

64
2.8X 2.3X 1.2X 1.2X 1.1X 1.1X 1.1X 1.2X 1.1X 1.0X 1.0X 1.0X 1.3X 1.1X

SlimTV
BulkTV
Compression

(a) Memory Expansion Factor Reduction

art
vpr

m
esa

equake

lu cg is m
cf

bzip2
gzip

ft m
g

geom
ean

top6

S
p
e
e
d
u
p
 (

X
)

1

2

4

8

16
97X 67X 56X 80X 51X 27X 16X 33X 76X 43X 59X 93X 52X 46X

(b) Speedup

Figure 4.7: Memory Overhead Reduction and Speedup in Footprint Pro-

filer. Skadu reduces the memory expansion factor from the baseline’s 17.8× to

1.25× while maintaining comparable execution time. Numbers on the top repre-

sent the (a) memory expansion factor and (b) slowdown of Skadu’s most aggressive

memory-saving implementation compared to native execution.

84

and contain many dense, array-based operations. Conversely, SpecInt benchmarks

have more irregular memory access patterns in addition to deeper region hierar-

chies. We used SpecInt and SpecFP’s ’ref’ input set and NPB’s ’A’ input set for

all results.

4.5.1 Memory Footprint Profiler

As mentioned in Section 4.4, the memory footprint profiler uses only SlimTV,

BulkTV, and tag compression. The footprint profiler’s overheads are almost solely

from tag validation, making it a good target to evaluate the impact of this pro-

cess. The results are compared against those in the baseline implementation. This

baseline implementation associates a version vector with every tag vector; the vec-

tor size in this baseline implementation is fixed to the deepest region level in the

program.

Figure 4.7 shows the memory expansion factors and runtime overheads from

the memory footprint profiler. This graph is sorted in order of increasing memory

footprint. The numbers on top of the bars represent the final memory expansion

factor and slowdown compared to the native execution. Skadu shows impressive

reductions in the memory expansion factor of the memory footprint profiler when

combining SlimTV, BulkTV, and compression. In overall, Skadu reduces the mem-

ory expansion factor by 14.2×. Benchmarks with larger memory footprints show

overall better reductions, 17.5× for top six benchmarks in memory footprint.

SlimTV effectively reduces the memory expansion factor and improves per-

formance. SlimTV’s main benefits stem from its replacement of the version vector

with a scalar version. These benefits will therefore be more pronounced in pro-

grams with deep region hierarchies. For example, mcf sees the largest reduction

in memory expansion because of its region depth (48) that is more than twice the

closest benchmark (20). SlimTV also speeds up the analysis by a factor of 3.1×
because it eliminates the the large number of loads and stores associated with

accessing version vectors.

BulkTV provides additional benefits beyond that of SlimTV. BulkTV re-

duces the memory overhead of tag validation from 7× (a 56-bit version for every

85

8-bit tag) to nearly zero (one 64 bit version per 64KB tag table). BulkTV is more

effective at reducing memory expansion on programs with large memory foot-

prints: the benefit increases as more tag tables are in use. Figure 4.7 shows this

phenomenon: while the smallest (leftmost) benchmarks see little additionally ben-

efit from BulkTV, the remaining benchmarks see significant improvements in the

memory expansion factor. BulkTV also helps improve performance as explained

in Section 4.2. With SlimTV and BulkTV, the geomean memory expansion factor

is only 1.25× while slowdown is a manageable 12.28×.

Tag compression further reduces the memory footprint profiler’s memory

expansion factor. The footprint profiler maintained a list of 256 uncompressed

level tables while the rest were compressed. These 256 tables covered 16MB of

memory address space. This address space coverage meant that benchmarks that

used less than 16MB of memory saw no benefit. Compression is therefore similar

to SlimTV and BulkTV in that is sees larger benefits with larger programs. For

example, mg receives a 13× reduction in memory, making the memory overhead

almost negligible.

Compression’s memory savings come at a cost: increased runtime overhead.

This overhead consists of two components: the compression/decompression algo-

rithms and the eviction algorithm used for the list of uncompressed level tables.

This list uses a “clock” eviction policy [Tan07] that requires an access bit be up-

dated every time an entry in the list is touched. This clocking cost explains the

additional runtime overhead even when compression is not used (e.g. in art).

While a simpler eviction policy may seem desirable (e.g. direct mapped cache),

the higher hit ratio of the clock algorithm more than offsets its maintenance costs.

4.5.2 Hierarchical Critical Path Analysis (HCPA)

Hierarchical critical path analysis is much more costly than the memory

footprint profiler in terms of both memory and performance. HCPA’s baseline

version results in a memory expansion factor of 59.0×, severely limiting its use

outside of supercomputers and other high memory environments. HCPA utilizes

Skadu’s full array of techniques to rein in its overheads. The results are impres-

86

art
vpr

m
esa

equake

lu cg is m
cf

bzip2
gzip

ft m
g

geom
ean

top6

M
e
m

.
E

x
p
.
F

a
c
to

r
R

e
d
u
c
ti
o
n
 (

X
)

1

4

16

64

37.9X 25.5X 8.7X 4.3X 6.6X 3.5X 4.0X 3.9X 3.1X 1.9X 2.3X 2.1X 5.2X 2.8X

(a) Memory Expansion Factor Reduction

SlimTV
GC
Compression

art
vpr

m
esa

equake

lu cg is m
cf

bzip2
gzip

ft m
g

geom
ean

top6

S
p
e
e
d
u
p
 (

X
)

0

0.25

0.5

0.75

1

1.25

202X 131X 188X 227X 401X 213X 148X 231X 211X 170X 221X 475X 219X 224X

(b) Speedup

Figure 4.8: Memory Overhead Reduction and Speedup in HCPA. Skadu

reduces HCPA’s memory expansion factor by 11.2× compared to the baseline im-

plementation at a cost of only 25% in performance overhead. Numbers on the top

represent the (a) memory expansion factor and (b) slowdown of Skadu compared

to native execution.

87

sive. Skadu reduces the a memory expansion factor to 5.2×, a reduction of 11.4×
compared to the baseline implementation.

Figure 4.8 shows the memory and performance improvements from Skadu’s

various techniques. Benchmarks are presented in the same order as they were in

Figure 4.7: in order of increasing memory footprint. The numbers on top of the

bars show the memory expansion factor and slowdown vs native when using all of

Skadu’s techniques. We set the TVCache size to cover 1MB of address space while

the list of uncompressed level tables covered 4MB. This represented a decrease

in the number of uncompressed level tables compared to the memory footprint

profiler. This was a result of a reduced reliance on this list to improve performance:

HCPA introduces the TVCache, which greatly reduces tag table storage.

SlimTV not only reduces the memory expansion factor but also improves

performance, an outcome similar to what we witnessed in the footprint profiler.

HCPA’s modest memory reduction of 2× stands in contrast to the footprint pro-

filer. This difference arises because the baseline HCPA implementation’s memory

overhead is almost equally split between tags and tag validation; in the memory

footprint profiler, almost all the overhead was a result of tag validation. This more

equitable split also leads to smaller performance gains for improved tag validation

in HCPA.

Skadu’s TVCache-TVStorage architecture with garbage collection (labeled

GC in Figure 4.8) has a significant impact on the memory expansion factor. Out-

side of the tiny art benchmark, all benchmarks benefited from this architecture.

These benefits ranged from 2× (lu) to 39× (gzip) with a geomean of 5.6×. SpecInt

benchmarks tend to show greater memory reductions because they move between

regions more quickly than the other benchmarks. The runtime overhead is only

15% more than when using only SlimTV. Compression further reduces the memory

overhead by 1.6×, increasing performance overhead by less than 20%.

88

Acknowledgments

Portions of this research were funded by the US National Science Foun-

dation under CAREER Award 0846152, by NSF Awards 0725357, 0846152, and

1018850, and by a gift from Advanced Micro Devices.

Chapter 5

Related Work

This chapter examines Kismet’s related work according to four themes: par-

allelism profiling, performance prediction, parallel performance debugging tools,

and reducing dynamic program analysis overheads.

5.1 Parallel Performance Prediction

Parallelism Profiling Approaches for parallelism-related profiling have gener-

ally fallen into two categories: critical path analysis and dependence testing.

Critical path analysis (CPA) dates back several decades, with early impor-

tant works including Kumar and Austin [Kum88, AS92]. CPA approaches seek to

measure the number of concurrent operations at each time step along the critical

path of the program. In contrast to these approaches, Kismet’s hierarchical criti-

cal path analysis is able to localize parallelism within nested program regions, and

provide concrete guidance on which program regions to target. Recently, Kulkarni

et al [KBI+09] used a critical path based analysis to bring insight into the paral-

lelism inherent in the execution of irregular algorithms. In contrast to Kismet’s

focus on estimating speedup in concrete code regions via HCPA, Kulkarni’s ap-

proach attempts to transcend the details of the implementation and to quantify the

amount of latent parallelism in irregular programs that exhibit amorphous data

parallelism. Other works have used CPA to perform limit studies for processors

that target instruction-level parallelism (ILP) [Wal91, LW92].

89

90

Dependence testing is another parallelism profiling approach that strives to

uncover the dependencies between different regions in the program. pp [Lar93] is

an early important work that proposed hierarchical dependence testing to estimate

the parallelism in loop nests. Similar techniques are used in Alchemist [ZNJ09]

and Prospector [KKL10a]. Although dependence testing and Kismet’s HCPA share

similar goals, HCPA focuses on localizing and quantifying parallelism across many

different, nested program regions rather than establishing independence of pre-

existing regions. As a result, it can identify more nuanced forms of parallelism

even if significant code transformation would be required to exploit it. Dependence

testing is generally more pessimistic and sensitive to existing program structure.

Performance Prediction CilkView [HLL10] and Intel Parallel Advisor’s Suit-

ability Tool [Int] are recent tools whose motivation is similar to Kismet. Like

Kismet, they also predict parallel performance on a target with arbitrary number

of cores. Unlike Kismet, however, CilkView and Parallel Advisor rely on the user’s

parallelized code—or annotations—to predict speedup. Kismet minimizes user’s

efforts in prediction by automatically detecting parallelism in the serial program.

Simulation has been used to predict the performance of processors and

systems that are still in development. In this case, a parallel version of the program

exists, but the machine itself is not available to run it. ManySim [ZIM+07] is

one such simulator that was designed to evaluate the performance potential and

scalability of large-scale multicore processors. GEMS [MSB+05] is a full-system

functional simulator for multiprocessors. It separates the simulation from the

timing models, allowing them build a detailed memory system timing simulator

rather than focus on basic functional simulation. However, simulators still require

code that has been parallelized for these systems, unlike Kismet.

A number of works have looked at the limits of parallelism and their im-

pact on performance. Theobald et al [TGH92] examined the “smoothability” of a

program’s parallelism, i.e. the ability to which a program’s parallelism could be

equally spread throughout the program’s entire execution to ensure high utilization

on a constrained multiprocessor. Rauchwerger et al [RDN93] also looked at the

ability to map ideal parallelism to a constrained processor, introducing the concept

91

of slack to describe the ability of parallelism to be pushed to later parts of the

program. Kismet improves upon these works by using HCPA’s ability to localize

parallelism; Kismet can examine the effect of parallelizing specific regions of the

program in order to gain a better estimate of the program’s parallel performance.

There have been several efforts to predict serial performance [OH00, Loh01,

HPE+06, KS04]. In theory, these predictions could be combined with Kismet’s

speedup predictions to predict the parallel execution time of a program.

Several works have looked at predicting the scalability of parallel programs

based on their performance on a small number of processors [BRL+08, ZCZ10].

Barnes et al [BRL+08] looked at several techniques for extrapolating performance

of MPI programs, including one that measured the global critical path. Zhai et al

[ZCZ10] avoid performance extrapolation to predict performance; instead, they use

deterministic replay to measure sequential time of each process using only a single

node. Again, these systems differ from Kismet in that they predict performance

based on an existing parallel implementation.

Hill and Marty [HM08] recently proposed a simple performance analytical

model, extending Amdahl’s law. Their model assumes future processors include

different types of cores and each program region can choose the more appropriate

core based on its workload. Chung and Mai [CMHM10] further improved Hill

and Marty’s model with heterogeneous chip including ASIC, FPGA, and GPU.

Although we kept Kismet’s analytical model relatively simple, Kismet can easily

incorporate these sophisticated models if needed.

Parallel Performance Debugging Tools Several systems have been developed

in order to help debug the performance of pre-existing parallel programs [DRR99,

AMCA+95, MCC+95]. SvPablo provided an integrated viewing and instrumen-

tation environment that allowed performance debugging of MPI programs. Adve

et al [AMCA+95] performed similar analysis on data parallel FORTRAN. Para-

dyn [MCC+95] automatically searches for performance problems in long running

programs by dynamically instrumenting the program. Martonosi et al [MFH96]

were able to examine the performance of the cache system with very little overhead

by integrating performance monitoring into existing cache-coherence mechanisms.

92

These systems could be used in concert with Kismet to help determine why ac-

tual performance does not match the predicted bound on program performance.

SUIF Explorer [LDB+99] uses static and dynamic analyses to understand parallel-

execution related properties, much like Kismet; however, Kismet does not require

user interaction, and uses a simplify hardware specifications to give reasonable

speedup predictions of post-parallelized code.

Reducing Dynamic Program Analysis Overheads Dynamic program anal-

yses often have huge memory and storage requirements as they can produce data

for each dynamic instruction in a program that easily could run billions or trillions

of instructions. To alleviate the severe memory requirements of dynamic program

analysis, compression techniques have been used in whole program analysis [ZG01]

and dependence analysis [KKL10b]. Initially Kismet used a compression tech-

nique similar to [GJLT11], but we found that handling more irregular programs

like SpecInt necessitated the creation of Kismet’s summarization-based HCPA.

In addition to memory overhead, runtime overhead is also important for

practical use. Specifically for program analysis that uses shadow memory, the

implementation of shadow memory significantly impacts the overall runtime as

each load and store instruction will access the shadow memory. Valgrind [NS07b]’s

shadow memory implementation is described in [NS07a]. Umbra [ZBA10a] and

EMS64 [ZBA10b] proposed efficient shadow memory implementation for 64-bit

address space, exploiting the sparse usage of memory space in 64-bit systems and

cached shadow memory. Although techniques introduced in these papers can be

incorporated in Kismet, Kismet’s shadow memory implementation differs from

other tools as it needs to efficiently store and retrieve multiple timestamps for

each memory address to track the critical path of multiple region levels.

Acknowledgments

Portions of this research were funded by the US National Science Foun-

dation under CAREER Award 0846152, by NSF Awards 0725357, 0846152, and

1018850, and by a gift from Advanced Micro Devices.

93

This chapter contains material from “Kismet: parallel speedup estimates for

serial programs”, by Donghwan Jeon, Saturnino Garcia, Chris Louie, and Michael

Bedford Taylor, which appears in OOPSLA ’11: Proceedings of the 2011 ACM

international conference on Object oriented programming systems languages and

applications. The dissertation author was the primary investigator and author of

this paper. The material in these chapters is copyright c©2011 by the Association

for Computing Machinery, Inc.(ACM). Permission to make digital or hard copies of

part or all of this work for personal or classroom use is granted without fee provided

that the copies are not made or distributed for profit or commercial advantage and

that copies bear this notice and the full citation on the first page in print or the

first screen in digital media. Copyrights for components of this work owned by

others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, to republish, to post on servers, or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from Publications Dept.,

ACM, Inc., fax +1 (212) 869-0481, or email permissions@acm.org.

Chapter 6

Summary

As multi-core processors enter mainstream computing, software engineers

are facing a fundamental change with parallelization. We began this dissertation

by discussing why fully automatic parallelization do not work in practice and the

limitations of currently available tools, leading to the need for a new speedup

estimation tool. Kismet is different from existing tools in that our speedup esti-

mation tool does not require any pre-parallelized or annotated source code. As our

tool requires only unmodified serial source code, it can help a programmer mak-

ing informed decisions in the early stages of parallelization, making the manual

parallelization process more productive.

One of the key factors that limit achievable speedup is the amount of par-

allelism available in the target program. In Chapter 2, we introduced hierarchical

critical path analysis (HCPA) that quantifies the amount of parallelism in each

region. Unlike the original critical path analysis (CPA) that provides only the

theoretical speedup upperbound, HCPA localizes the parallelism of each region

with a new metric called self-parallelism, providing the basis for realistic speedup

estimation. We also discussed an efficient summarization techniques that makes

the huge amount of produced data at runtime manageable.

Chapter 3 described Kismet, our speedup estimation tool prototype. Be-

sides parallelism, target-specific parallelization constraints such as expressible par-

allelism type, parallelization overhead, available core count, and memory locality

significantly impact the achievable parallel speedup. Based on the profiled infor-

94

95

mation from HCPA and specified parallelization constraints, Kismet finds the par-

allelization strategy with the highest expected speedup. Our experimental results

show that Kimset provided realistic speedup upperbounds on two very different

target platforms: the MIT RAW and conventional multi-core processors.

Chapter 4 discussed the design and implementation of vector shadow mem-

ory (VSM). Because HCPA recursively applies CPA, which is already an expen-

sive dynamic analysis, it can incur prohibitively expensive memory and runtime

overhead. We applied a few techniques that reduces both memory and runtime

overhead, dramatically reducing the overhead of HCPA to a level where most pro-

grams can be run on conventional machines. We also showed these techniques

can be applied to other heavyweight memory analysis with a memory footprint

analyzer.

Overall, we have shown that estimating parallel speedup from unmodified

serial source code is a viable means of helping manual parallelization, which typi-

cally requires extensive efforts from a programmer. Our prototype, Kismet, allows

programmers to make informed decisions in the early stages of parallelization by

understanding the potential benefit from parallelization, making parallelization

more productive. We have demonstrated that Kismet provides realistic speedup

upperbounds on two very different target platforms with widely varying paral-

lelization constraints. In order to help more people in parallelization and make

Kismet evolve with contributions from more people, we plan to release Kismet as

an open source project.

Bibliography

[ABL97] Glenn Ammons, Thomas Ball, and James R. Larus. Exploiting hard-
ware performance counters with flow and context sensitive profiling.
In PLDI ’97: Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages 85–96, New
York, NY, USA, 1997. ACM.

[AMCA+95] V.S. Adve, J. Mellor-Crummey, M. Anderson, J-C. Wang, D. A.
Reed, and K. Kennedy. An integrated compilation and performance
analysis environment for data parallel programs. In SC ’95: Proceed-
ings of the ACM/IEEE conference on Supercomputing, 1995.

[AS92] Todd Austin and Gurindar S. Sohi. Dynamic dependency analysis
of ordinary programs. In ISCA ’92: Proceedings of the International
Symposium on Computer Architecture, pages 342–351, 1992.

[BBB+91] D.H. Bailey, E. Barszcz, J.T. Barton, D.S. Browning, R.L. Carter,
L. Dagum, R.A. Fatoohi, P.O. Frederickson, T.A. Lasinski, R.S.
Schreiber, H.D. Simon, V. Venkatakrishnan, and S.K. Weeratunga.
The nas parallel benchmarks summary and preliminary results. In
Supercomputing, 1991. Supercomputing ’91. Proceedings of the 1991
ACM/IEEE Conference on, pages 158 –165, nov. 1991.

[BFL+97] J. Babb, M. Frank, V. Lee, E. Waingold, R. Barua, M. Taylor, J. Kim,
S. Devabhaktuni, and A. Agarwal. The raw benchmark suite: com-
putation structures for general purpose computing. In FCCM ’97:
Proceedings of the IEEE Symposium on FPGA-Based Custom Com-
puting Machines, pages 134–, Washington, DC, USA, 1997. IEEE
Computer Society.

[BO01] J. Mark Bull and Darragh O’Neill. A microbenchmark suite for
OpenMP 2.0. SIGARCH Computer Architecture News, 29:41–48, Dec
2001.

[BRL+08] Bradley J. Barnes, Barry Rountree, David K. Lowenthal, Jaxk
Reeves, Bronis de Supinski, and Martin Schulz. A regression-based

96

97

approach to scalability prediction. In ICS ’08: Proceedings of the
International Conference on Supercomputing, pages 368–377, 2008.

[BZ11] D. Bruening and Qin Zhao. Practical memory checking with dr.
memory. In CGO ’11: International Symposium on Code Generation
and Optimization, pages 213 –223, 2011.

[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman,
and F. Kenneth Zadeck. Efficiently computing static single assign-
ment form and the control dependence graph. ACM Trans. Program.
Lang. Syst., 13(4):451–490, October 1991.

[CMHM10] Eric S. Chung, Peter A. Milder, James C. Hoe, and Ken Mai.
Single-chip heterogeneous computing: Does the future include cus-
tom logic, fpgas, and gpgpus? In MICRO ’10: Proceedings of the
IEEE/ACM International Symposium on Microarchitecture, pages
225–236, Washington, DC, USA, 2010. IEEE Computer Society.

[CZYH06] W. Cheng, Qin Zhao, Bei Yu, and S. Hiroshige. Tainttrace: Efficient
flow tracing with dynamic binary rewriting. In Computers and Com-
munications, 2006. ISCC ’06. Proceedings. 11th IEEE Symposium
on, pages 749 – 754, june 2006.

[DRR99] L.A. De Rose and D.A. Reed. SvPablo: A multi-language
architecture-independent performance analysis system. In ICPP
’99:International Conference on Parallel Processing, pages 311 –318,
1999.

[E. 97] E. Waingold et al. Baring It All to Software: Raw Machines. IEEE
Computer, pages 86–93, Sept 1997.

[GJLT11] Saturnino Garcia, Donghwan Jeon, Chris Louie, and Michael Bedford
Taylor. Kremlin: Rethinking and rebooting gprof for the multicore
age. In PLDI ’11: Proceedings of the Conference on Programming
Language Design and Implementation, New York, NY, USA, 2011.
ACM.

[GKM82] Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. gprof:
A call graph execution profiler. In Proceedings of the 1982 SIGPLAN
Symposium on Compiler Construction, SIGPLAN ’82, pages 120–126.
ACM, 1982.

[GSV+10] N. Goulding, J. Sampson, G. Venkatesh, S. Garcia, J. Auricchio,
J. Babb, M.B. Taylor, and S. Swanson. GreenDroid: A Mobile Ap-
plication Processor for a Future of Dark Silicon. In Hotchips, 2010.

98

[HLL10] Y. He, C. Leiserson, and W. Leiserson. The Cilkview Scalability
Analyzer. In SPAA ’10: Proceedings of the Symposium on Parallelism
in Algorithms and Architectures, pages 145–156, 2010.

[HM08] Mark D. Hill and Michael R. Marty. Amdahl’s law in the multicore
era. IEEE Computer, 41:33–38, July 2008.

[HPE+06] Kenneth Hoste, Aashish Phansalkar, Lieven Eeckhout, Andy
Georges, Lizy K. John, and Koen De Bosschere. Performance pre-
diction based on inherent program similarity. In PACT ’06: Parallel
Architectures and Compilation Techniques, 2006.

[Int] Intel. Intel Parallel Advisor 2011. .

[KBI+09] Milind Kulkarni, Martin Burtscher, Rajeshkar Inkulu, Keshav Pin-
gali, and Calin Casçaval. How much parallelism is there in irreg-
ular applications? In PPoPP ’09: Proceedings of the ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Program-
ming, pages 3–14, 2009.

[KKKB12] Minjang Kim, Pranith Kumar, Hyesoon Kim, and Bevin Brett. Pre-
dicting potential speedup of serial code via lightweight profiling and
emulations with memory performance model. In IPDPS ’12: Proceed-
ings of the 26th IEEE International Parallel and Distributed Process-
ing Symposium, 2012.

[KKL10a] M. Kim, H. Kim, and C.K. Luk. Prospector: A dynamic data-
dependence profiler to help parallel programming. In HotPar, 2010.

[KKL10b] Minjang Kim, Hyesoon Kim, and Chi-Keung Luk. SD3: A scalable
approach to dynamic data-dependence profiling. MICRO ’10: Pro-
ceedings of the International Symposium on Microarchitecture, 0:535–
546, 2010.

[KMC72] D.J. Kuck, Y. Muraoka, and Shyh-Ching Chen. On the number of op-
erations simultaneously executable in fortran-like programs and their
resulting speedup. IEEE Transactions on Computers, C-21(12):1293–
1310, Dec. 1972.

[KRL+10] Hanjun Kim, Arun Raman, Feng Liu, Jae W. Lee, and David I. Au-
gust. Scalable speculative parallelization on commodity clusters. In
MICRO ’10: Proceedings of the IEEE/ACM International Sympo-
sium on Microarchitecture, pages 3–14, 2010.

http://software.intel.com/en-us/articles/intel-parallel-advisor

99

[KS04] Tejas S. Karkhanis and James E. Smith. A first-order superscalar pro-
cessor model. In ISCA ’04: Proceedings of the International Sympo-
sium on Computer Architecture, pages 338–, Washington, DC, USA,
2004. IEEE Computer Society.

[Kum88] M. Kumar. Measuring parallelism in computation-intensive scien-
tific/engineering applications. IEEE Transactions on Computers,
37(9):1088–1098, Sep 1988.

[LA04] Chris Lattner and Vikram Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. In CGO ’04: Pro-
ceedings of the International Symposium on Code Generation and
Optimization, Palo Alto, California, 2004.

[Lar93] J. R. Larus. Loop-level parallelism in numeric and symbolic programs.
IEEE Trans. Parallel Distrib. Syst., 4(7):812–826, 1993.

[LBF+98] Walter Lee, Rajeev Barua, Matthew Frank, Devabhaktuni Srikrishna,
Jonathan Babb, Vivek Sarkar, and Saman Amarasinghe. Space-time
scheduling of instruction-level parallelism on a Raw machine. In ASP-
LOS ’98: International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 46–54, Oct 1998.

[LDB+99] Shih-Wei Liao, Amer Diwan, Robert P. Bosch, Jr., Anwar Ghuloum,
and Monica S. Lam. SUIF Explorer: an interactive and interpro-
cedural parallelizer. In PPoPP ’99: Proceedings of the ACM SIG-
PLAN symposium on Principles and Practice of Parallel Program-
ming, pages 37–48, New York, NY, USA, 1999. ACM.

[Loh01] Gabriel Loh. A time-stamping algorithm for efficient performance
estimation of superscalar processors. In SIGMETRICS, pages 72–81,
New York, NY, USA, 2001. ACM.

[LW92] Monica S. Lam and Robert P. Wilson. Limits of control flow on
parallelism. In ISCA, pages 46–57, New York, NY, USA, 1992. ACM.

[M. 04] M. B. Taylor et al. Evaluation of the raw microprocessor: An exposed-
wire-delay architecture for ilp and streams. In ISCA ’04: Proceedings
of the International Symposium on Computer Architecture, Munich,
Germany, Jun 2004.

[MCC+95] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jef-
frey K. Hollingsworth, R. Bruce Irvin, Karen L. Karavanic, Krishna
Kunchithapadam, and Tia Newhall. The Paradyn Parallel Perfor-
mance Measurement Tool. IEEE Computer, 28(11):37–46, 1995.

100

[MFH96] Margaret Martonosi, David Felt, and Mark Heinrich. Integrating
performance monitoring and communication in parallel computers.
In SIGMETRICS, pages 138–147, 1996.

[MSB+05] Milo Martin, Daniel Sorin, Bradford Beckmann, Michael Marty,
Min Xu, Alaa R. Alameldeen, Kevin Moore, Mark Hill, and David
Wood. Multifacet’s general execution-driven multiprocessor simula-
tor (GEMS) toolset. SIGARCH Comput. Archit. News, 33:92–99,
Nov 2005.

[NS07a] N. Nethercote and J. Seward. How to shadow every byte of memory
used by a program. In VEE ’07: Proceedings of the International
Conference on Virtual Execution Environments, pages 65–74, 2007.

[NS07b] N. Nethercote and J. Seward. Valgrind: A framework for heavyweight
dynamic binary instrumentation. In PLDI ’07: Proceedings of the
Conference on Programming Language Design and Implementation,
pages 89–100, New York, NY, USA, 2007. ACM.

[Obe] Markus Oberhumer. LZO Data Compression Library.
http://www.oberhumer.com/opensource/lzo/.

[OH00] David Ofelt and John L. Hennessy. Efficient performance prediction
for modern microprocessors. In SIGMETRICS, pages 229–239, New
York, NY, USA, 2000. ACM.

[PO05] Manohar K. Prabhu and Kunle Olukotun. Exposing speculative
thread parallelism in spec2000. In PPoPP ’05: Proceedings of the
ACM SIGPLAN symposium on Principles and Practice of Parallel
Programming, pages 142–152, New York, NY, USA, 2005. ACM.

[QWL+06] Feng Qin, Cheng Wang, Zhenmin Li, Ho-seop Kim, Yuanyuan Zhou,
and Youfeng Wu. Lift: A low-overhead practical information flow
tracking system for detecting security attacks. In Proceedings of the
39th Annual IEEE/ACM International Symposium on Microarchitec-
ture, MICRO 39, pages 135–148, Washington, DC, USA, 2006. IEEE
Computer Society.

[RDN93] Lawrence Rauchwerger, Pradeep K. Dubey, and Ravi Nair. Mea-
suring limits of parallelism and characterizing its vulnerability to re-
source constraints. In MICRO ’93: Proceedings of the international
symposium on Microarchitecture, pages 105–117, 1993.

[ROR+08] Easwaran Raman, Guilherme Ottoni, Arun Raman, Matthew J.
Bridges, and David I. August. Parallel-stage decoupled software
pipelining. In CGO ’08: Proceedings of the International Symposium

http://www.oberhumer.com/opensource/lzo/

101

on Code Generation and Optimization, pages 114–123, New York,
NY, USA, 2008. ACM.

[S. 08] S. Bell et al. TILE64 - Processor: A 64-Core SoC with Mesh Inter-
connect. In ISSCC ’08: IEEE Solid-State Circuits Conference, pages
88–89,598, 2008.

[SN05] Julian Seward and Nicholas Nethercote. Using valgrind to detect
undefined value errors with bit-precision. In Proceedings of the an-
nual conference on USENIX Annual Technical Conference, ATEC
’05, pages 2–2, Berkeley, CA, USA, 2005. USENIX Association.

[Tan07] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall
Press, 3rd edition, 2007.

[Tay07] Michael B. Taylor. Tiled Microprocessors. PhD thesis, Massachusetts
Institute of Technology, 2007.

[TGH92] Kevin B. Theobald, Guang R. Gao, and Laurie J. Hendren. On
the limits of program parallelism and its smoothability. In MICRO
’92: Proceedings of the International Symposium on Microarchitec-
ture, pages 10–19. IEEE Computer Society Press, 1992.

[TKM+02] M.B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Green-
wald, H. Hoffman, P. Johnson, Jae-Wook Lee, W. Lee, A. Ma,
A. Saraf, M. Seneski, N. Shnidman, V. Strumpen, M. Frank, S. Ama-
rasinghe, and A. Agarwal. The raw microprocessor: a computational
fabric for software circuits and general-purpose programs. Micro,
IEEE, 22(2):25 – 35, mar/apr 2002.

[TLAA05] Michael Bedford Taylor, Walter Lee, Saman P. Amarasinghe, and
Anant Agarwal. Scalar operand networks. IEEE Transactions on
Parallel and Distributed Systems, 16:145–162, Feb 2005.

[TWFO09] Georgios Tournavitis, Zheng Wang, Björn Franke, and Michael F. P.
O’Boyle. Towards a holistic approach to auto-parallelization: in-
tegrating profile-driven parallelism detection and machine-learning
based mapping. In PLDI ’09: Proceedings of the ACM SIGPLAN
Conference on Programming Language Design And Implementation,
pages 177–187, 2009.

[Uni] Tsukuba University. NAS Parallel Benchmarks 2.3; OpenMP C.
http://www.hpcc.jp/Omni/.

http://www.hpcc.jp/Omni/

102

[Wal91] David W. Wall. Limits of instruction-level parallelism. In Proceedings
of the Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 176–188, New York, NY, USA,
1991. ACM.

[WE03] Joel Winstead and David Evans. Towards differential program anal-
ysis. In WODA ’03: Workshop on Dynamic Analysis, 2003.

[XBS06] Wei Xu, Sandeep Bhatkar, and R. Sekar. Taint-enhanced policy en-
forcement: a practical approach to defeat a wide range of attacks. In
Proceedings of the 15th conference on USENIX Security Symposium
- Volume 15, Berkeley, CA, USA, 2006. USENIX Association.

[ZBA10a] Q. Zhao, D. Bruening, and S. Amarasinghe. Umbra: Efficient
and scalable memory shadowing. In CGO ’10: Proceedings of the
IEEE/ACM international symposium on Code Generation and Opti-
mization, pages 22–31, 2010.

[ZBA10b] Qin Zhao, Derek Bruening, and Saman Amarasinghe. Efficient mem-
ory shadowing for 64-bit architectures. In ISMM ’10: Proceedings
of the International Symposium on Memory Management, Toronto,
Canada, Jun 2010.

[ZCZ10] Jidong Zhai, Wenguang Chen, and Weimin Zheng. Phantom: pre-
dicting performance of parallel applications on large-scale parallel
machines using a single node. In PPoPP ’10: Proceedings of the
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 305–314, 2010.

[ZG01] Youtao Zhang and Rajiv Gupta. Timestamped whole program path
representation and its applications. In PLDI ’01: Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 180–190, 2001.

[ZIM+07] Li Zhao, R. Iyer, J. Moses, R. lllikkal, S. Makineni, and D. Newell.
Exploring Large-Scale CMP Architectures Using ManySim. IEEE
Micro, 27(4):21 –33, July 2007.

[ZL10] David Zier and Ben Lee. Performance evaluation of dynamic specula-
tive multithreading with the cascadia architecture. TPDS, 21:47–59,
Jan 2010.

[ZMLM08] H. Zhong, M. Mehrara, S. Lieberman, and S. Mahlke. Uncovering
hidden loop level parallelism in sequential applications. In HPCA ’08:
Proceedings of the International Symposium on High Performance
Computer Architecture, 2008.

103

[ZNJ09] X. Zhang, A. Navabi, and S. Jagannathan. Alchemist: A trans-
parent dependence distance profiling infrastructure. In CGO ’09:
Proceedings of the International Symposium on Code Generation and
Optimization, pages 47–58. IEEE Computer Society, 2009.

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Existing Tools for Parallelization
	Introducing Kismet
	Thesis Outline

	Profiling Parallelism with Hierarchical Critical Path Analysis
	Background: Critical Path Analysis (CPA)
	Hierarchical Critical Path Analysis
	HCPA Implementation
	Designing the Region Hierarchy
	Calculating Critical Path Length
	Self-Parallelism Calculation
	Summarizing Profiled Information

	Experimental Results
	Effectiveness of Self-Parallelism Metric
	Effectiveness of the Summarization Techniques

	Predicting Speedup with Realistic Parallelization Constraints
	Kismet System Architecture
	Speedup Predictor
	Expressible Self-Parallelism (ESP)
	Parallel Execution Time Model

	Case Studies - Raw and Multicore
	Targeting Raw in Kismet
	Targeting Multicore with OpenMP in Kismet
	Kismet Usage

	Experimental Results
	Methodology
	Prediction Results
	Impact of Expressible Self-Parallelism (ESP)
	Impact of Parallelization Overhead
	Impact of Cache-aware Speedup Estimation

	Reducing Overhead with Efficient Vector Shadow Memory
	Shadow Memories for Differential Dynamic Analyses
	Skadu's Approach
	Evaluating Skadu

	Overview and Challenges
	Efficient Tag Validation
	Baseline Implementation
	Slim Tag Validation (SlimTV)
	Bulk Tag Validation

	Vectored Shadow Memory (VSM) Architecture
	VSM Architecture Overview
	Tag Vector Cache (TVCache)
	Tag Vector Storage (TVStorage)
	Tag Vector Compression

	Case Studies
	Memory Footprint Profiler
	Hierarchical Critical Path Analysis

	Experimental Results
	Memory Footprint Profiler
	Hierarchical Critical Path Analysis (HCPA)

	Related Work
	Parallel Performance Prediction

	Summary
	Bibliography

