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Abstract
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Graph processing is an area of increasing importance in domains such as networking, super

computing, public health, and more. However, large scale graph processing presents many

challenges. Graph applications are di�cult to optimize because they are memory intensive

and su�er from poor data locality. Uniform work distribution on parallel implementations

is also challenging. Further, heuristics that address these issues are highly sensitive to graph

structure. As the scale of graph data continues to grow, new techniques and architectures

are needed to continue to achieve high performance. Manycore architectures are �exible

compute substrates that provide parallelism through hundreds to thousands of general

purpose cores. Past work has demonstrated their robust compute performance on regular

compute intensive tasks such as machine-learning and scienti�c computing.

This dissertation explores the ability of manycore architectures to e�ciently compute on

graph data structures. In order to study the performance of graph algorithms on a manycore,

we design a code generation backend for the GraphIt domain-speci�c language targeting

a representative manycore architecture. We explore the performance of several existing

optimizations and present new manycore speci�c optimizations. We further show how

these optimizations improve manycore performance through increased locality, improved

load balancing, and leveraging of graph structure.
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1
I N TRODUCT ION

Sparse graph data structures that capture relationships between elements are ubiquitous.
In recent years, the size of graph datasets have exploded [91] with data coming from �elds
like networking [57], social networks [32, 55, 95], public health [51, 112], science [84, 111],
and �nance [16]. As graph sizes have grown, so too have the processing requirements. Rec-
ommender systems must respond in sub-second latencies [32, 95], and �nancial algorithms
trade on the order of microseconds [72]. These challenges have increased the demand for
high-performance graph processing systems.

However, implementing high-performance graph processing systems is not as straightfor-
ward as simply increasing the number of compute cores or adding more memory bandwidth.
Further, optimizations used in serial applications or implementations with limited paral-
lelism often do not continue to provide performance when parallelism is increased [11].
This has resulted in a wide design space for algorithmic and architectural optimizations to
increase the performance of these parallel graph processing systems at scale.

1.1 challenges for parallel graph processing

Graph processing is notoriously di�cult to optimize. Performance depends on optimizing
locality within sparse data structures, random-access performance, minimizing high-cost
communication, and load balancing between parallel threads [11, 68, 92]. Worse, the
structure of graphs varies widely, both between graphs and between iterations within graph
algorithms [12, 68]. Heuristic optimizations do not bene�t all inputs datasets. Therefore,
graph frameworks must be descriptive enough, and processing hardware must be �exible
enough to support them.

These challenges have led to the development of many parallel graph processing frame-
works: GraphIt [20, 123, 124], GraphLab [66, 67], Grappa [78], GraphChi [56], Green-
Marl [45], and Pregel [69]. These frameworks take a user application description and emit
parallel code for general-purpose hardware. Traditionally graph frameworks have targeted
CPU and GPU architectures, but newer frameworks also target cloud-resident FPGAs [25,
33]. These frameworks allow users to focus on exploring optimizations by abstracting the
hardware and parallel infrastructure.

Graph processing frameworks are limited by the �exibility and parallelism provided
by the hardware they currently target. Server-class CPUs are widespread and support
�exible execution models, but they have limited memory and compute parallelism and poor
random-access bandwidth [11]. GPUs are also widespread and expose memory parallelism
through banking and multiple memory channels, but are limited by vector-like execution
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1.2 thesis overview 2

models [96, 117], and have poor random-access bandwidth [1]. FPGAs are inherently more
�exible than either architecture, but are di�cult to optimize when a single recompilation
can take hours.

Manycore architectures are composed of hundreds to thousands of e�cient general-
purpose cores to form a �exible parallel compute fabric. Past manycore architectures [5,
43, 88] have been limited by available memory bandwidth and parallelism [65]. We employ
a manycore design connected to High Bandwidth Memory (HBM) [47, 49] to overcome
this issue. In my dissertation, I will show how this manycore architecture can be leveraged
to provide high performance on a variety of graph processing applications.

1.2 thesis overview

This dissertation presents a code generator for graph programs targeting a representa-
tive manycore architecture, the HammerBlade manycore. Within this code generator, I
implement and evaluate manycore speci�c optimizations to improve graph processing
performance. While graph processing frameworks and optimizations on parallel systems is
an active area of research, this work targets a novel manycore architecture. Further, the
optimizations for this architecture expand the space and provide a new class of techniques
for graph applications on this emerging architecture.

In this work, I focus on two di�erent aspects of the problem of e�ciently utilizing
the HammerBlade manycore for graph processing: ease of programming and manycore-
speci�c optimizations. Reasoning about the implementation of a graph application and the
details of the underlying architecture can be di�cult especially as techniques for obtaining
performance on architectures become increasingly complex. I address this by building a
code generator that allows the user to reason about the graph application and optimizations
at a high level without requiring knowledge of the underlying manycore architecture. I use
observations about the HammerBlade architecture to implement existing graph processing
optimizations and introduce several manycore speci�c optimizations that build o� of the
observation that most graph applications are memory bound.

1.3 organization

I begin this dissertation by providing background information on graph processing and
introduce the algorithms and graphs that are used for evaluation. I also give an overview
of the GraphIt DSL and the HammerBlade manycore architecture that I target in Chapter 2.

In Chapter 3, I present the set of optimizations that we implement and explore in this work.
This includes several existing graph processing optimizations as well as the HammerBlade
manycore-speci�c optimizations introduced in this dissertation. These optimizations target
things such as load balancing, graph traversal, and the HammerBlade memory system.
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I then introduce the code generation framework that I implemented as a backend to
the GraphIt DSL in Chapter 4. This chapter describes how optimizations are applied to
programs and what the resulting generated manycore code includes.

Next, Chapter 5 presents an evaluation of the code generation framework and the set
of optimizations introduced in Chapters 3 and 4. We evaluate the performance of each
optimization on a variety of input graphs and algorithms. Before concluding, I contextualize
my work within the space of graph processing frameworks and optimizations in Chapter 6.
I then conclude and provide some insights into areas of future work in Chapter 7.



2
BACKGROUND

In this chapter, we provide background on graph processing including descriptions of the
algorithms and input graphs used for evaluation in this dissertation. We then describe the
GraphIt DSL which allows programmers to describe graph algorithms separate from their
scheduling optimizations. Finally, we provide background on manycore architectures and
describe the representative manycore that we target with our code generator.

2.1 graph definitions and preliminaries

The graph abstraction stores data in a way that maintains connections and relationships
between data objects. A graph g(V , E) is de�ned as a set of vertices V and a set of edges
between vertices E. An edge connecting vertices u and v would be referred to as (u, v).
An edge can also have a weight associated with it; in this case, an edge would be de�ned
(u, v, w) where w is the weight associated with the edge connecting vertices u and v.
Edges can be directed or undirected; an undirected edge can also be thought of as being
bidirectional. The number of edges connected to a vertex is a vertex’s degree. Graphs are
often stored in compressed sparse row (CSR) format. We discuss this storage format in
more detail in Chapter 2.5.

2.2 graph topology

Graph application performance is dependent on both the algorithm and the structure of
the input graph. In this work we consider two broad classes of graph topologies; scale-
free or social network graphs and planar or road graphs. A scale-free or social network
graph has a degree distribution that follows a power-law, at least asymptotically [8]. Most
social network graphs have a small diameter and exhibit the small-world property. In a
small-world graph, most vertices are not connected to one another, but the majority of
vertices can be reached from every other vertex in a small number of hops [116]. Planar
or road graphs have a large diameter and low average degree. The sparsity of a graph
is determined by the average degree of the graph. All of the graphs we examine in this
dissertation are relatively sparse, but the planar graphs we study are the most sparse. Both
scale-free and planar graphs present their own unique challenges for optimization.

4



2.3 graphs used in this thesis 5

2.3 graphs used in this thesis

In this work, we use a diverse set of graphs for evaluation. These graphs and their properties
are listed in Table 2.1. A graph’s topology greatly impacts a workload’s characteristics
and performance, so it is important to perform evaluation on a diverse set of graphs [11].
We use a mix of real-world and synthetic graphs in our evaluation and primarily focus on
social network topologies.

The real-world graphs we use come from a variety of sources. We examine two real-
world social network graphs: Pokec and LiveJournal which represent the links between
users in their online communities. We also consider the Hollywood graph which considers
professional relationships. It links together actors that have performed together. These are
all representative of a scale free or social network topology as they all have a low e�ective
diameter and power-law degree distribution. In contrast, we also use three road network
graphs in our evaluations. These are mesh topologies with low average degree and high
diameter.

In addition to these real-world graphs, we �ll out our set of graphs with four synthetic
graphs. Like in the Graph500 benchmark, we generate several Kronecker graphs of varying
size using the Kronecker generator [76]. These graphs model a social network and follow a
power-law degree distribution.

Name Description Vertices Edges Degree

Kron18 Kronecker generated [58, 60] 262,144 4,194,304 16
Kron19 Kronecker generated [58, 60] 524,288 8,388,608 16
Kron20 Kronecker generated [58, 60] 1,048,576 16,777,216 16
Kron22 Kronecker generated [58, 60] 4,194,304 67,108,864 16
Pokec social network [59] 1,632,803 30,622,564 18.8
LiveJournal social network [29, 74] 4,847,571 85,702,474 17.6
Hollywood movie collaborations [17, 18, 29] 1,139,905 112,751,422 98.9
RoadCA CA road network [29] 1,971,281 5,533,214 2.8
RoadCentral Central road network [29] 14,081,816 33,866,826 2.4
RoadUSA USA road network [30] 23,947,347 57,708,624 2.4

Table 2.1: List of graphs used in this dissertation and their properties. All of the graphs come from
real-world data except the four Kronecker graphs. Throughout our evaluation, we list
the subsets of these graphs that are being evaluated.

2.4 algorithms used in this thesis

In this dissertation we explore a variety of graph processing algorithms. We select them
based on their popularity in graph-processing evaluations [10] and for the di�erent behav-
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iors that they exhibit. The algorithms we examine can be classi�ed as traversal-centric or
compute-centric algorithms. Traversal-centric or frontier-based algorithms start from a
given source vertex and perform computation on vertices by traversing outwards from
the source vertex. Compute-centric algorithms operate on the entire graph in parallel and
tend to iteratively apply updates until the algorithm converges. Of the algorithms studied
in this work, BFS, SSSP, and BC are traversal-centric algorithms. PageRank and CC are
compute centric.

breadth first search (bfs)
BFS is a building block of many graph algorithms. It is not an algorithm but really a graph
traversal order. BFS visits every vertex at a given depth of the graph before moving on to
the next depth level. There has been considerable work done to accelerate BFS and increase
the computational work through algorithmic and data structure modi�cation [4, 12, 22, 46,
121] We turn it into an algorithm by discovering and tracking the parent vertex ID of each
vertex reachable from a given source vertex.

single source shortest path (sssp)
SSSP is an algorithm that builds o� of BFS to compute the distances of the shortest paths
from a given source vertex to every other reachable vertex in the graph. This is usually
performed on a weighted graph, so the weights of edges are used in calculating the distance
of a path. We only consider graphs with non-negative edge weights in this work. We
examine two di�erent SSSP algorithms, frontier-based Bellman-Ford and Delta-stepping.

Frontier-based Bellman-Ford trades o� repeated accesses to edges for increased paral-
lelism. It uses relaxation where approximations of the distances to each vertex are replaced
by shorter distances until the algorithm converges on the correct solution. Unlike Dijkstra’s,
the classical SSSP algorithm, there is no notion of priority in Bellman-Ford and all edges
active in the frontier are relaxed in every iteration.

The delta-stepping algorithm [73] increases parallelism by using a notion of relaxed
priority. Delta-stepping coarsely sorts the vertices of the graph by distance into buckets of
width Δ. This allows for all vertices in a bucket to be processed in parallel. Like Bellman-
Ford, this does result in some vertices being processed multiple times, but the frequency
with which this occurs can be reduced by reducing the value of Δ. If Δ = 1, the algorithm
e�ectively becomes Dijkstra’s, and if Δ = ∞, the algorithm behaves like Bellman-Ford.

pagerank (pr)
PR calculates the importance or "popularity" of each vertex in a graph and was originally
developed to sort web search results [82]. It calculates the popularity of a vertex v by
considering both the number of vertices that point to v and the importance of those vertices
that point to v. PR iteratively updates the PageRank score for each vertex in the graph
until the scores converge within some speci�ed tolerance. It is a topology-driven algorithm
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where all the edges are traversed in each iteration. PR also exhibits massive parallelism in
each round. There has been considerable work on optimizing PageRank and �nding ways
to improve the convergence rate [15, 54, 67, 97]

connected components (cc)
The Connected Components algorithm labels all of the components in a graph. A connected
component is a subgraph in which all vertices are connected to each other. If an edge exists
between two vertices, they are connected. In a directed graph, connections between vertices
can be asymmetric. This means that components of a directed graph can be strongly or
weakly connected. In this work, we only consider undirected graphs and do not need to
consider asymmetry of connections. The CC algorithm labels vertices so that all vertices in
the same component have the same label. Like PR, CC is also topology-driven and traverses
every edge in each iteration.

betweenness centrality (bc)
BC is another algorithm that attempts to measure the importance of the vertices in a
graph. It calculates a score for each vertex that measures the fraction of shortest paths
that pass through the vertex. This can be computationally expensive as the algorithm
needs to compute the shortest paths for all pairs of vertices in the graph. This is often
done by computing the All Pairs Shortest Path algorithm which executes SSSP for every
vertex in the graph as a source vertex. Calculating all of the shortest paths can be both
compute and memory intensive. The Brandes algorithm reduces the memory requirements
by compacting the critical information from a SSSP execution into a single variable [21].
We also compute BC on an unweighted graph in this work, which allows us to use BFS
traversals to compute the shortest paths.

2.5 graphit: a graph processing domain-specific language

GraphIt is a domain-speci�c language for graph processing applications [20, 123, 124]. Like
Halide [87], GraphIt separates the description of the algorithm from the scheduling of the
computation. A separate algorithm language and scheduling language are used to specify
graph programs in GraphIt. This separation of description and schedule allows users to
express computation more �exibly.

The Uni�ed GraphIt Compiler Framework provides functionality for adding new back-
ends by further decoupling the hardware-independent transformations from the hardware-
dependent compiler passes [19]. The design of Uni�ed GraphIt Compiler Framework
makes it easy to write and compose optimizations that make use of each backend architec-
ture’s unique features. Figure 2.1 demonstrates the overall compilation �ow with various
analyses and lowering passes to generate GraphIR, GraphIt’s graph speci�c intermediate
representation. GraphIR is an in-memory representation of a program that allows optimiza-
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HB GraphVM

HB-Specific Analysis & 
Optimizations

CUDA-
Lite 

Codegen

HB 
Runtime 
Libraries

Generated CUDA-Lite

HB 
GraphVM

GPU
GraphVM

HB C++ CUDA

Figure 2.1: The Uni�ed GraphIt Compiler Framework (UGC). GraphIR decouples the hardware-
independent part of the compiler from the hardware-dependent GraphVMs. Grey blocks
denote parts of the compiler, and blue blocks denote code (inputs, intermediates, libraries,
or generated).

tions through IR-to-IR transformations before �nal code generation. GraphIR is lowered
into code for di�erent architectures using an architecture-speci�c Graph Virtual Machine
(GraphVM), which performs the hardware-speci�c transformations and code generation.

Listing 2.1 shows an example GraphIt program implementing Breadth-First Search (BFS)
along with a HammerBlade-speci�c schedule.

1 const edges : edgeset{Edge}(Vertex,Vertex);

var frontier : vertexset{Vertex} = new vertexset{Vertex}(0);

const parent : vector{Vertex}(int) = -1;

func updateEdge(src : Vertex, dst : Vertex)

6 parent[dst] = src;

end

func toFilter(v : Vertex) -> output : bool

output = parent[v] == -1;

11 end

func main()

// frontier setup

while (frontier.getVertexSetSize() != 0)

16 #s1# frontier =

edges.from(frontier).to(toFilter).applyModified(updateEdge,parent,true);
end

end
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schedule:
21 SimpleHBSchedule sched1;

sched1.configDirection(PULL);

program->applyHBSchedule("s1", sched1);

Listing 2.1: GraphIt code for Breadth-First Search (BFS) with a HammerBlade manycore schedule.

2.5.1 Graph Representation

Graphs are represented by edgeset and vertexset structures. The edges between nodes
are stored as an edgeset, and any vertex speci�c data is stored as a vertexset. Line 1 and
Line 2 of Listing 2.1 demonstrate the declaration of the edgeset variable edges and vertexset

variable frontier. Any data associated with elements in an edgeset or vertexset is stored
as a vector. Line 3 of Listing 2.1 shows the declaration of a vector variable, parent, that
contains data associated with the vertices in the graph.

GraphIt uses the Compressed Sparse Row (CSR) graph format for these data structures,
illustrated in Figure 2.2. The CSR format stores a graph using two arrays: a vertex list and
an edge list. The edge list contains the destination vertex for each edge in the graph and
contains |E| elements where E is the set of edges in the graph. In the case of a weighted
graph, the edge list is stored as an array of tuples, with each element in the array containing
the destination vertex id and the weight of the edge. The vertex list contains |V | elements
where V is the set of vertices in the graph. Each element in the vertex list is an index into
the edge list array. This index corresponds to the start of the edges for which that vertex is
the source vertex. The number of edges for a vertex v, or its degree, is vertex_list[v+1]
- vertex_list[v]. The generated code operates on these arrays to perform computation.

Figure 2.2: The CSR graph format that we use to store graph data on the manycore. For weighted
graphs, the weight is stored as a tuple with each element in the edge array.
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2.5.2 Algorithm Representation

An algorithm in GraphIt is written as operations on edgeset and vertexset datatypes. GraphIt
provides several operators that perform computation on these types, but the most common
are the filter operator and apply operator. The filter operator takes a function and a set,
applies the function to each element in the set, and returns a set of elements where the
function returned true. The apply operator takes a function and a set as input and applies
the function to each element in the set. GraphIt also provides other built-in operators like
applyModified, that takes a function and a set, applies the function to each element in the
set, and returns a vertexset that contains vertices that were updated by the input function.
This operator is used to construct frontiers in iterative graph algorithms. Listing 2.1
demonstrates how these operators can be used to write BFS.

Line 16 of Listing 2.1 demonstrates two uses of the filter operator and one use of the
applyModified operator. The �rst �lter application (from(frontier)) selects only edges with
source vertices that are in the current frontier. The second �lter application (to(toFilter))
uses the toFilter function, de�ned on line 9, to select edges with destination vertices that
haven’t been previously visited. Next, an applyModified operator is applied to this �ltered
set of edges. This operator computes the edge traversal of BFS and returns a vertexset
containing the vertices that were updated by the updateEdge function de�ned on line 5. This
vertexset becomes the new frontier for the next iteration of the while-loop.

2.5.3 Schedule Representation

One of the key bene�ts of GraphIt is that it decouples the algorithm description from the
schedule which allows developers to iterate through di�erent scheduling optimizations. To
support a diverse set of GraphVMs, each with their own set of optimizations, a new schedul-
ing language is written for each hardware target. UGC provides an abstract interface that
provides virtual functions for all of the information that the hardware-independent compiler
needs. New scheduling object classes are implemented for each GraphVM by inheriting
from this abstract interface. These new classes have members and functions to con�g-
ure various scheduling options speci�c to optimizations supported for their GraphVMs.
These classes implement the virtual functions from the abstract interface to provide the
hardware-independent part of UGC with the information that it needs.

A wide range of scheduling options can be implemented in each GraphVM, i.e., by
specifying traversal direction, by specifying the level of parallelism, or by using load
balancing techniques for parallel operators. Labels are used to indicate which operators in
the algorithm description the scheduling optimizations should be applied to. Further, the
architecture-speci�c schedule tells the compiler to generate code for the target device. The
schedule description always follows the algorithm description in GraphIt.



2.6 manycore architectures 11

The schedule for BFS starts with the schedule declaration on Line 20 of Listing 2.1. Line 21
instantiates a HammerBlade scheduling object indicating that the code generator should
generate code for the target manycore. Line 22 speci�es that the traversal schedule for
label #s1# should be "Dense Pull". The optimizations that the HammerBlade GraphVM and
scheduling language support are described in Chapter 3.

2.5.4 Code Generation

The Uni�ed GraphIt Compiler Framework takes an algorithm and schedule and generates
device-speci�c code. The compiler �rst parses the algorithm and schedule using the fron-
tend to produce the GraphIR. UGC adapts the domain-speci�c transformations from the
GraphIt DSL compiler. This includes things such as dependence analysis to insert atomics
in the user-de�ned functions (UDFs); liveness analysis to �nd frontier memory reuse op-
portunities; and other transformations to UDFs for traversal direction, parallelism, and data
structure choices. These passes also add metadata to the GraphIR for the GraphVMs to use
during code generation. After these hardware-independent transformations are completed,
the program is passed to the GraphVM for hardware-dependent analysis and code gener-
ation. Once the hardware-dependent passes have �nished, the GraphVM produces code
for the target device and host (if necessary). Chapter 4 describes how our HammerBlade
GraphVM was implemented.

2.6 manycore architectures

Manycore architectures provide thread-level parallelism and �exibility with hundreds
to thousands of general-purpose cores [5, 28, 43, 88, 102]. Cores are arranged in two-
dimensional arrays and interconnected with mesh-style networks for communication. This
network of cores is surrounded by multiple channels of memory to provide su�cient band-
width and parallelism to sustain computation. Cores within the architecture communicate
explicitly through memory [28] or message passing [43], implicitly through coherence pro-
tocols [88], or both using inter-core result networks [102]. Communication allows cores to
cooperate and solve large parallel tasks. The quantity of cores and diverse communication
patterns means that manycore architectures provide a �exible parallel computation fabric
that can be tailored to �t application requirements or the structure of graph input data [68].

In this section, I describe the HammerBlade manycore, a representative manycore ar-
chitecture that we use to evaluate our code generator. The cores are tiny, performance-
optimized scalar cores that implement a RISC-V instruction set. Each core has a software-
managed scratchpad memory for low-latency storage and inter-thread communication.
Data cache lines do not move between cores, eliminating coherence overhead and false
sharing. The memory system is designed to expose memory parallelism and bandwidth
to service memory requests from hundreds of concurrent threads. This architecture is
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Figure 2.3: Block diagram of the general manycore architecture targeted in this work. A 2D-Mesh
Network-on-Chip connects general-purpose computation cores and Last Level Caches
(LLC). Each LLC connects to a single independent High-Bandwidth Memory (HBM)
channel.

emblematic of Single Program Multiple Data (SPMD) parallel machines where collections
of cores are loaded with the same program, but each core computes on di�erent input data.

This section provides a overview of the target manycore architecture depicted in Fig-
ure 2.3. The architecture is composed of e�cient general-purpose processor cores, Last
Level Caches (LLCs), a 2D-Mesh Network on Chip, and High-Bandwidth Memory (HBM)
channels.

2.6.1 Network-On-Chip

Communication is provided by a 2D-Mesh Network-on-Chip (NoC) that interconnects Last
Level Caches and general-purpose cores. The NoC supports point-to-point communication
between endpoints using shared memory. All addressable endpoints within the network
are assigned a unique global address range. This provides a PGAS-like (Partitioned Global
Address Space) memory model for execution.

2.6.2 Memory System

The manycore’s memory system is designed to provide the high-bandwidth memory-level
parallelism required by manycore architectures. The memory system has four hierarchy
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levels: High-Bandwidth Memory (HBM), Last Level Cache (LLC), core-remote scratchpad
(S), and core-local scratchpad (S). Each level is designed to exploit memory parallelism and
exposes a trade-o� between latency, capacity, as shown in Figure 2.3.

Manycore architectures require many high-bandwidth and independent memory chan-
nels to supply data for computation, so we use second-generation High Bandwidth Memory
(HBM, or HBM2). HBM provides two sources of memory-level parallelism: First, HBM
provides channel-level parallelism with 8 independent physical channel interfaces per
chiplet. Each channel has a maximum data transfer rate of 32 GB/s. Second, HBM provides
bank-level parallelism through pipelining commands. Commands for opening/closing
banks and reading data are overlapped to hide the latency of long-running commands.
Compared to traditional SDRAM/DIMM-based devices, HBM provides more bandwidth
per-package and parallelism and is ideal for manycore architectures, but performance
depends on exploiting channel-level and bank-level parallelism.

The banked Last Level Caches (LLC) shown in Figure 2.3 are designed to exploit bank-
level parallelism within a channel. The LLCs are located at the top and bottom of the
network to reduce memory access latency. Each bank of the LLCs is connected to a column
and is mapped to a unique address range in the NoC, and each port maps to an exclusive
set of HBM banks within the LLC’s channel to avoid concurrency and con�icts. Linear
traversals through the memory space of a LLC expose bank-level parallelism to software.

2.6.3 Computational Cores

The computational cores in the manycore are throughput-optimized, general purpose
processors that communicate over the NoC. Each core is a modi�ed Harvard architecture
with an instruction cache (I$), and a small program-controlled data scratchpad (S). Local
scratchpad, remote scratchpads of other tiles, and main memory are mapped to contiguous
segments in the memory space of each core. This allows nearby cores to communicate
using shared memory with extremely low overhead.

Each core can issue a series of non-blocking, pipelined loads and stores to the NoC until a
register hazard occurs. Multiple loads in �ight exploit instruction-based memory parallelism
and hide the access latency of a single access traversing the network (Table, Figure 2.3).
Operations to sequential ports exploit bank-level memory parallelism, and operations to
unique caches exploit channel-level memory parallelism. Manycore architectures with
HBM are challenging to generate code for because of the interplay between bank and
channel-level memory parallelism required to maximize performance for an application.

2.6.4 Execution Model

The manycore architecture operates under a Single Program Multiple Data (SPMD) exe-
cution model where each core executes the same program independently from all other
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cores. Multiple cores are aggregated into rectangular groups to perform computations
that may require cooperation. Cores in a group communicate through shared memory
and synchronize using dedicated barrier primitives. Groups can be executed in parallel if
resources are available, or sequentially if not. Ordering between groups is not guaranteed.
This programming abstraction can exploit the memory parallelism available in manycore
architectures.

The manycore architecture described here is connected to a host CPU, and program
execution is managed by a driver. Host programs allocate regions within the memory
system and copy data from the host to the device, launch parallel or sequential groups,
and copy data back to the host. This process continues until all groups have launched and
�nished execution. Once completed, the result can be copied back from the device to host.

2.7 chapter summary

In this chapter, we �rst described graph processing at a high level before describing
the behavior and structure of algorithms and input graphs used for evaluation in this
dissertation. We then described the GraphIt DSL and its bene�ts. In Chapter 4 we use
GraphIt to implement our code generation framework as a backend to the language. We
also provided a description of the HammerBlade manycore architecture that we target in
this work.



3
PER FORMANCE OPT IM IZAT IONS

In this chapter, we explore optimizations to improve graph application performance on the
HammerBlade manycore system described in Chapter 2.6. First, we discuss a blocked access
method for graph data to better exploit memory-level parallelism (MLP) in software. Next,
we present three di�erent work partitioning schemes. We then introduce a new frontier
storage format that targets very sparse frontiers. We follow this with an exploration of
graph traversal directions.

3.1 blocked access method

In the naive execution model, cores request single words of application data at the time of
use. The LLC responds to these requests, fetching data from HBM main memory when
there is a cache miss. We discover from pro�ling that applications spend most cycles
waiting on serialized read requests from LLC and DRAM. Many of these loads occur in
iterations of the outer loop between which there are no data dependencies.

Software can reschedule these long-latency requests to execute in parallel by formatting
work items into blocks. Cores iterate over their assigned blocks, prefetching the entire
block at once. The block data is stored in the core’s scratchpad memory, re-purposing it as
a software managed L1 cache. Figure 3.1 illustrates the blocked memory access technique.
Work items are stored in HBM in contiguous cache-aligned blocks. The LLC fetches a block
from DRAM after receiving an initial load request from software. Cores issue these memory
requests with an explicit call to memcpy to exploit pipelined non-blocking loads and hide
memory latency. After fetching the blocked data, cores complete the loaded work before
continuing to the next block. Cores must �ush modi�ed blocks back to main memory
before fetching the next block.

This blocked access method gives software �ne grain control over what data is read at
the block and word granularity allowing the application to only prefetch data it is likely to
use. This improves e�ective cache bandwidth by eliminating false sharing between work
items and improves core memory access latency by improving locality for a work item.

3.2 work partitioning

We implement and explore the two load balancing methods: vertex-based and edge-aware
vertex-based partitioning. We also propose our own manycore speci�c work partitioning
method: alignment-based partitioning.

15
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Figure 3.1: Data layout of BFS with blocked accesses. Cores are assigned cache aligned work items.
Cores prefetch entire cache line-sized blocks of data to hide request latency.

vertex-based
In vertex-based partitioning, all cores receive an equal number of vertices to traverse. In
real world graphs, the number of edges per vertex can vary drastically, and due to this, the
vertex-based approach can lead to workload imbalance.

alignment-based
In alignment-based partitioning, cores work instead on smaller work blocks of vertices
that better align with cache lines in the LLC and make better use of the entire memory
system by increasing e�ective bandwidth. In this method, the vertices in the graph are
split into V /b work blocks where b is the number of vertices contained in each work block
and V is the total number of vertices in the graph. We select b to be a multiple of the cache
line size. By doing this and by reducing the size of the active set of vertices that each core
is working on, we are able to increase the cache hit rate and reduce cache line contention.

edge-aware vertex-based
Edge-aware vertex partitioning scheme considers the number of edges being assigned
to each core when partitioning the vertices. Figure 3.2 demonstrates how edge-aware
partitioning di�ers from vertex-based.

In Figure 3.2, Partition 1 shows a vertex-based partitioning and Partition 2 represents an
edge-aware partitioning of the graph. In both cases, the number of vertices assigned to each
core is 5, but in the vertex-based partitioning scheme the �rst core is assigned 8 edges and
the second core is assigned 21 edges. This could lead to a large workload imbalance. In the
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Figure 3.2: Depiction of vertex-based and edge-aware vertex-based partitioning. Partition 1 shows
an example vertex-based partitioning between two cores, and Partition 2 shows an
example edge-aware partitioning that provides a better workload balance between the
two cores.

1: function Recursive Range(start, end)
2: if index[end] − index[start] < grainsize then
3: core.start ← start
4: core.end ← end
5: else
6: recursiverange(start, end/2)
7: recursiverange(end/2, start)
8: end if
9: end function

Figure 3.3: Pseudocode for the recursive call portion of the edge-aware vertex partitioning scheme.

edge-aware partition, the �rst core is assigned 14 edges and the second core is assigned 15.
By considering the number of edges being assigned to each core, edge-aware partitioning
is able to create a more balanced workload across cores.

In order to accomplish edge-aware vertex-based partitioning, a maximum number of
edges that can be assigned to a core is set before execution, we refer to this maximum value
as the grain size. Edge-aware partitioning e�ectively does a binary search for partitions
of vertices that do not exceed this maximum number of edges. Initially, all vertices are
considered in one large partition. If this partition of vertices exceeds the number of edges
that can be assigned to a core, it is split in half, and each of those partitions are examined as
possible candidates. This process continues recursively until all vertices have been assigned
to a core. The pseudocode for this recursive call is shown in Figure 3.3.

In our implementation, a single core is tasked with performing the recursive assignment
of work while the remaining cores wait to receive their work assignment. Further, the grain
size in our implementation is set to (E/N ) ∗ 1.5 where E is the total number of edges in the
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Figure 3.4: Representation of one iteration of BFS in both the Push and Pull directions. Nodes
highlighted in yellow are visited during the iteration. Edges in red are edges that are
traversed during execution.

graph and N is the number of cores in the manycore. We found that a bu�er value of 1.5
was necessary to ensure that all of the vertices were assigned across the cores for all sizes of
E and N that we examined. While there is overhead introduced by this partitioning scheme,
we expect that a more balanced split of work will improve load balance and memory system
performance on graph programs with unbalanced input graphs.

3.3 bucketed sparse frontier

A common optimization when traversing in the push direction is to use a sparse frontier
of length m where m is the number of active vertices and each element corresponds to
an active vertex. In contrast, a dense frontier is often used in the pull direction where
the frontier is stored as a boolean list of length |V | and a value of true indicates an active
vertex.

In order to maintain some locality and to easily partition work across cores, our code
generator defaults to a dense frontier in both directions. However, this can lead to unnec-
essary cycles spent checking every vertex to see if it is in the frontier. To address this, we
propose a bucketed sparse frontier storage format. In this format, the frontier is still of
length |V and is split into n buckets where n is the total number of cores. Each bucket
stores a list of the active vertices in that range followed by −1s to indicate the end of active
vertices in that bucket. This allows us to use our vertex-based partitioning scheme while
reducing the number of reads to the frontier.

3.4 graph traversal directions

In traditional Breadth-First Search, the graph is traversed in a top-down manner by ex-
amining the outgoing edges of vertices in the frontier. For each vertex in the frontier, its
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edges are traversed and previously unvisited destination vertices are added to the next
frontier. As the size of the frontier grows, the number of edges that need to be traversed
also increases.

Beamer et al. [12] introduced a new method of traversal that reverses the direction in
which edges are examined, and showed that this bottom up pull approach can greatly
reduce the number of edges traversed and improve performance. In this case, the edges of
every vertex in the graph are examined, looking for vertices that are in the current frontier.
There are algorithmic optimizations that can be made in the pull direction to reduce the
number of vertices and edges that are examined though. In BFS for instance, if a node has
already been visited in a previous iteration, its edges do not need to be examined in any
subsequent iteration.

Figure 3.4 shows both the push and pull directions for one iteration of BFS on a small
graph. In this example, we start the iteration with vertex 0 in the frontier. In the push case,
the outgoing edges of vertex 0 are examined �rst. Because vertices 1 and 2 have not been
visited before, they are added to the next frontier. In the pull case, all vertices that have
not yet been visited are examined. In this case, the incoming edges of all vertices except
vertex 0 are traversed. If an edge originates at a vertex that is in the current frontier, the
destination vertex is added to the next frontier. In Figure 3.4, vertices 1 and 2 have edges
that originate at vertex 0, so they are added to the next frontier.

Beamer et al. [12] �nd that while the pull direction increases performance on dense
frontiers, traversing the graph in the traditional top down push direction is still the better
option on sparse frontiers and propose a hybrid traversal method. The hybrid approach
examines the size of the frontier for each iteration in order to determine whether to execute
in the push or pull direction for that iteration. Our code generator supports generating
code in the pull, push, and hybrid directions.

The original hybrid traversal method proposed by Beamer et al. involves two di�erent
heuristic conditions [12]. One for initially switching from push to pull and one to switch
back to push again towards the end of execution. These heuristics are based on: the number
of vertices in the graph n, the number of edges in the graph m, the number of vertices in
the frontier (nf ), the number of edges to check from the frontier (mf ), and the number of
edges connected to unvisited vertices (mu). Each of these conditions also have parameters
that can be tuned to best �t the target architecture. The �rst condition is de�ned as:

mf >
mu
�

In their initial tuning study on a dual-socket Intel Ivy Bridge server, Beamer et al. select
� = 15 for optimal performance. The second condition to switch back to the push direction
at the end of execution is:

nf <
n
�
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Here, the original tuning study found � = 18 to be optimal in most cases. With these � and
� values, Beamer et al. found that their hybrid heuristics provided an average speedup of
3.4× over a push implementation [10].

The Ligra system [97] introduced a simpli�ed heuristic to switch between the push and
pull directions. Ligra also added functionality to switch between dense and sparse frontier
representations given the traversal direction. The condition for switching directions in
Ligra is de�ned as:

nf +mf >
m
�

Where again nf is the number of vertices in the frontier, mf is the number of edges to check
from the frontier, and m is the number of edges in the graph. In the Ligra implementation
� = 20. This heuristic doesn’t require the application to maintain extra state to track
whether the application has switched from push to pull, and removes the calculation of
mu . With this much simpler code, Ligra is able to achieve close to the same performance as
the hybrid traversal method introduced by Beamer et al [97].

3.5 chapter summary

In this chapter, we described graph processing optimizations that seek to improve perfor-
mance on the HammerBlade manycore through data layout, memory access patterns, and
graph traversal direction. First, we introduced the blocked access method for graph data that
utilizes scratchpad memory and better exploits memory-level parallelism (MLP) in software.
Next, we discussed three di�erent work partitioning schemes: vertex-based, edge-aware
vertex-based, and alignment-based. Vertex-based and edge-aware vertex-based are existing
optimizations that we adapted for the HammerBlade architecture, and alignment-based
partitioning is a scheme that we developed to better exploit MLP. We then introduced the
bucketed sparse frontier that reorganizes frontier data to improve performance on very
sparse frontiers. Finally, we discussed graph traversal directions and two di�erent hybrid
traversal algorithms.



4
GENERAT ING CODE FOR GRAPH PROGRAMS ON A MANYCORE
ARCH I TECT URE

To harness the bene�ts of manycore architectures and reduce programming complexity, we
develop a code generation backend for GraphIt, a �exible domain-speci�c language (DSL)
for graph computations [124]. We implement our backend as a GraphVM using the Uni�ed
GraphIt Compiler Framework. This GraphVM generates code targeting the representative
manycore architecture described in Chapter 2.6. We use this new backend to implement
and explore the performance of the optimizations discussed in Chapter 3. An overview of
our approach is shown in Figure 4.1.

Graph Algorithm

Memory

GraphIt

Device 
Program

Host 
Program

(x86)

Last Level Cache

CC C C

CC C C

CC C C

CC C C

Last Level Cache

Memory
Graph Data

Manycore Architecture

Figure 4.1: This �gure shows the �ow from Graph Algorithm (e.g. PageRank) to GraphIt code to
execution on the manycore architecture. Code is generated for both the host and the
device. The graph data structure is loaded into device memory by the host program, and
the device program is executed in parallel on the manycore architecture.

4.1 manycore code generation

Reasoning about these performance optimizations and manycore-speci�c considerations is
a challenging task. To address this, we developed a code generation framework targeting

21
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the HammerBlade manycore architecture. This code generator alleviates the need for the
programmer to have extensive knowledge of the underlying architecture.

We add support for our backend and the manycore speci�c optimizations discussed
in Chapter 3 by implementing a HammerBlade GraphVM. We implement HammerBlade
scheduling language building o� of the abstract scheduling language provided by UGC.
This scheduling language signals to the GraphIt compiler that it should generate code
for the HammerBlade manycore architecture. We also provide HammerBlade speci�c
analysis and compiler passes that. These passes are where we add support for each of the
optimizations described in Chapter 3 including our blocked access method and alignment-
based partitioning scheme. We also develop a code generation engine and provide extensive
runtime libraries to support our GraphVM.

In order to generate code that runs on the manycore, we must generate code for both
the host CPU and the manycore device. We chose to have the host code handle setup and
coordination and to have the device code handle the core graph work. This is a natural
split as it allows the manycore to handle the parallel portions of execution and lets the
CPU handle the serial portions of work that require an operating system.

4.1.1 Host Code

The host code that we generate handles most of the setup and coordination of the graph
program. We leverage a set of runtime libraries that we wrote to simplify and generalize
the code generation. These runtime libraries provide wrappers over our host driver API
and handle loading of program data into manycore memory, initializing the manycore and
initiating kernel execution on the manycore. These runtime libraries provide a level of
abstraction which allows for seamless portability of our framework. In order to target a
di�erent manycore architecture, we would only need to modify these wrapper functions
and would not need to modify our code generator.

Graph edges = loadEdgesFromFile(file_path) ;

Vector <int > frontier = new Vector <int >(

edges.num_nodes (), 0);

Device ::Ptr device = Device :: GetInstance ();

5 addVertexOnDevice(frontier , root );

while (getVertexSetSizeDevice(frontier) != 0){

device ->enqueueJob("bfs_pull_call",

{edges.getInIndicesAddr () ,

edges.getInNeighborsAddr (),

10 frontier.getAddr ()});

device ->runJobs ();

}

Listing 4.1: Generated HammerBlade host code for the Breadth-First Search (BFS) program shown
in Listing 2.1.
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Listing 4.1 shows a subset of the host code generated for the BFS program shown in
Listing 2.1 and highlights some of our host side runtime libraries for coordinating placement
of data and scheduling of work.

The function loadEdgesFromFile on line 1 loads a graph from an edgelist, formats the
graph into the CSR storage format, and loads it into HBM. We also provide functions
such as addVertexOnDevice shown on line 4, which handles the insertion of values into
vectors that are stored in HBM. Finally, on lines 7 and 11 we have functions for scheduling
kernel execution on the manycore: enqueueJob() and runJobs(). The enqueue job function
takes the name of a kernel along with a list of parameters for that kernel and schedules
it for execution. Lines 8-10 show the functions we provide to �nd the address of data
structures stored in HBM. For vector types, we provide the getAddr() method. For graphs,
we provide getInIndicesAddr() and getInNeighborsAddr() to get the addresses of the index
and neighbor arrays respectively. The runJobs() function tells the manycore to execute all
jobs that have been scheduled through calls to enqueueJob().

4.1.2 Device Code

All vertexset and edgeset operators are generated as device code. Most importantly, this
includes apply and �lter operations along with the edgeset apply modi�ed operation. By
default, all of these operators are generated as parallel kernels meant to be executed across
the entire manycore. To distribute work among cores, we implement a local_range(V,

start, end) library function that takes as input the total number of vertices, a pointer to a
start value, and a pointer to an end value. The function evenly splits the vertices across the
cores and sets the start and end values as a contiguous subset of vertices for each core to
work on. Our code generator replaces the call to local_range with edge_aware_local_range

to do the recursive edge-aware work assignment described in Chapter 3.2.

template <typename TO_FUNC , typename APPLY_FUNC > int bfs_pull(int

*in_indices , int *in_neighbors , int *from_vertexset , TO_FUNC

to_func , APPLY_FUNC apply_func) {

int start , end;

local_range(V, &start , &end);

for ( int d = start; d < end; d++) {

5 if (to_func(d)){

for(int s = in_indices[d]; s < in_indices[d+1]; s++) {

if(from_vertexset[s] == 1) {

if(apply_func( in_neighbors[s], d )){

next[d] = 1;

10 }

}

} //end of loop on in neighbors

} //end of to filtering

} //end of outer for loop
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15 barrier.sync();

return 0;

}

Listing 4.2: Generated HammerBlade device code for the Breadth-First Search (BFS) program shown
in Listing 2.1.

Listing 4.2 shows the main kernel code generated for the inner loop of BFS. In this code,
we can see the use of the local_range function on line 3 and the use of a barrier before each
core exits the kernel on line 15. Lines 4-14 iterate through all of the vertices in the graph,
traverse edges that have not yet been visited, and build the next frontier. The parallelism
is achieved by each core executing their own contiguous range of vertices obtained from
local_range at the same time. Once a core is �nished with its computation, it waits at the
barrier for all other cores to �nish before returning the results of the iteration.

atomics
While atomics can mostly be avoided when traversing in the pull direction, they are still
necessary in some cases and are always necessary during push traversal. We leverage lock
data structures to implement the necessary atomic operations used in our device code. We
initialize one lock per cache line in the LLCs. Our pro�ling showed that this number of
locks was su�cient to reduce contention in lock acquisition. Locks are assigned using a
simple hash function on the address of the element for which an atomic operation has been
called.

4.2 chapter summary

In this chapter we introduced our HammerBlade code generation framework. Our code
generator allows a user to easily reason about a variety of graph processing and manycore-
speci�c optimizations. We described how we generate code for both the host processor
and manycore device. We choose to have the host processor handle coordination and
initialization while the device computes the graph traversals and updates.



5
EVALUAT ION

In this chapter, we evaluate the performance of our code generation framework and its
optimizations implemented as a GraphVM using the Uni�ed GraphIt Compiler Framework
and outlined in Chapters 3 and 4.

5.1 experimental setup

Host software executes natively on an Intel Xeon Gold 6254 CPU. The host libraries interface
directly with the simulator environment using the SystemVerilog DPI interface. We compile
all generated C++ code using the GNU Compiler Collection (GCC) with “-O2”.

Cores 128 cores in a 16x8 grid
RISC-V 32-bit IMAF ISA @ 1 GHz
4KB Instruction Cache
4KB Data Scratchpad

Cache 128KB Total Capacity
32 Independent Cache Banks
8-way Set Associative

NoC Bidirectional 2D Mesh NoC (32-bit data, 64-bit
address)

Memory 2 HBM2 memory channels
32 GB/s per channel
512 MB per channel

Table 5.1: Con�guration of the HammerBlade manycore used in this evaluation.

manycore architecture We evaluate our compiler using detailed RTL simulation
of our manycore architecture. We model a manycore system running at 1GHz with 16
columns and 8 rows for a total of 128 cores. The simulation con�guration details are shown
in Table 5.1. The machine has a 512KB 8-way set associative LLC with 128-byte lines.
The memory system uses two HBM2 memory channels. We model the HBM2 memory
system with DRAMSim3[63], a timing accurate simulator for modeling DRAM. We use
detailed, cycle-accurate RTL simulation to model our processor cores, network on chip,
and LLC. Our simulation environment includes SystemVerilog bind modules for collecting

25
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Name Scale # Vertices # Edges

kron18 18 262,144 4,194,304
kron19 19 524,288 8,388,608
kron20 20 1,048,576 16,777,216
kron22 22 4,194,304 67,108,864
Pokec (pk) 20.5 1,632,803 30,622,564
LiveJournal (lj) 22 3,997,962 34,681,189
Hollywood (hw) 20.1 1,139,905 112,751,422
RoadCA (rc) 20.9 1,971,281 5,533,214
RoadCentral (rn) 23.8 14,081,816 33,866,826
RoadUSA (ru) 24.5 23,947,347 57,708,624

Table 5.2: The vertex and edge information for each of the graphs used in our evaluation. We use
synthetic Kronecker graphs used in the Graph500 benchmark and six real world graphs.

performance metrics such as instruction and cycle counts. The RTL for this manycore has
been validated in silicon, and this con�guration occupies approximately 3.5 mm2 of die
area.

benchmarks For the majority of our evaluation, we evaluate our compiler on three
common graph benchmarks: Breadth-First Search (BFS), Single Source Shortest Path (SSSP),
and PageRank (PR). BFS has a high memory access to computation ratio and is a component
of many graph algorithms. PageRank computes the importance of each vertex in the
graph, and unlike BFS, spends most of its time performing computation on the entire graph.
PR also users �oating point operations. SSSP operates on a larger subset of the edges
during execution and tends to be more sensitive to load balancing. We implement the
frontier-based Bellman-Ford variant of SSSP for our evaluation.

We implement all of these benchmarks in GraphIt and generate manycore code using our
HammerBlade GraphVM. Due to the time costs of simulation, we do not run all iterations
of our benchmarks. For BFS and SSSP, we run three iterations from the middle of execution
with a random root node selected as the initial frontier. For PR, we run one iteration from
the beginning of execution.

graphs We use three types of graphs in our evaluation: synthetic Kronecker graphs
used in the Graph500 benchmark [76], real-world road networks, and real-world social
network graphs. Kronecker graphs follow a power law distribution in order to simulate
the small world property often seen in real world graphs [58]. We generate four Kronecker
graphs of varying size. We primarily evaluate our results using three of these graphs:
kron18, kron20, and kron22. We use three real-world graphs for the majority of our
evaluation: Pokec [101], RoadCentral [29] and LiveJournal [119]. All of the graphs we use
and their properties are shown in Table 5.2 and discussed in more detail in Chapter 2.3.
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Figure 5.1: Baseline code generation results for each benchmark in the pull direction with no
manycore speci�c optimizations.

To evaluate our code generator, we �rst present performance results for the unoptimized
benchmarks. We then explore the performance trade-o�s and bene�ts for each of the
optimizations described in Chapter 3.

5.2.1 Baseline

To establish a baseline, we examine the performance of the code produced by our backend
without any added optimizations. A key metric for our evaluation is traversed edges
per second (TEPS). We report TEPS for each iteration by counting the number of edges
traversed with the applied GraphIt schedule and using the cycle counts that we obtain
from simulation. This metric provide an idea of execution speed that allows for comparison
between di�erent input graphs, for which the total number of traversed edges can vary
signi�cantly.

Figure 5.1 shows our initial performance results for the manycore code generated by
our backend without added optimizations in the pull direction as described in Chapter 4.1.
Across all results, we see a geometric mean of 520.04 MTEPS in the pull direction. For
SSSP and PR, we note that the highest performance is seen on the Kronecker scale 18 graph.
This is due to the relatively small size of the graph and the large amount of parallelism and
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Figure 5.2: Baseline code generation results for each benchmark in the push direction with no
manycore speci�c optimizations. Speedup over the baseline pull direction is shown.

memory bandwidth of the manycore architecture. For BFS we see the highest performance
on the Pokec graph.

Figure 5.2 shows the performance of the manycore code generated in the push direction.
Because graph traversal direction is an algorithmic optimization that changes the number
of traversed edges in each iteration, we report speedup over the pull direction in terms of
total execution time here.

BFS has a very high memory access to compute ratio, so the number of reads greatly
a�ects the performance. We �nd that the pull direction is optimal on our two real-world
social-network graphs and that push is optimal on the road-network and Kronecker graphs.
The two social-network graphs have a large number of edges and contain hub nodes, and as
a result, these bene�t most from the early termination condition in bfs pull where visited
vertices need not be examined in subsequent iterations.

Because SSSP is not able to make use of early termination in the pull direction, the
push direction results in fewer traversed edges, and thus performs less work. As a result,
we observe speedup across all graphs when traversing in the push direction. From our
simulation results, we also determined that the graphs made better use of LLCs in the push
direction.

Interestingly, the pull direction was optimal across all graphs on PageRank. Unlike BFS,
PageRank must visit all vertices in all iterations regardless of traversal direction. When we
examined our simulation results, we saw that the pull direction issued fewer read requests
to HBM which most likely accounts for the performance di�erence.
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Figure 5.3: Speedup results for varying block sizes using the blocked access method on BFS and
SSSP. Speedup is calculated over the baseline pull direction implementation.

5.2.2 Blocked Access Method

Figure 5.3a shows the performance bene�t of the blocking optimization across di�erent
block sizes on the SSSP benchmark in the pull direction. Results for block sizes of 16, 32,
64, and 128 elements are shown. Speedup is normalized to the baseline performance of
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Figure 5.4: Blocked access method speedup results for each benchmark. Speedup is calculated over
the baseline pull direction implementation.

SSSP in the pull direction without any optimizations. Similarly, Figure 5.3b shows the
performance bene�t of the blocked access method with varying block sizes on BFS in the
pull direction.

Interestingly, we do not see much variation in speedup across di�erent block sizes.
LiveJournal and Kronecker 18 see the most speedup with a block size of 64, Pokec and
Kronecker 20 see optimal performance with block size 32, and a block size of 128 is optimal
for Kronecker 22. We observe that the optimal block size appears to be input graph
dependent for the other benchmarks we studied as well.

Figure 5.4 shows the speedup for each benchmark when using the blocked access method.
Again, speedup is normalized to the baseline performance of each benchmark in the
pull direction. In this �gure, the optimal block size for each input graph and benchmark is
used to compute the speedup. Blocking provided a mean speedup of 1.26× and a maximum
speedup of 2.67×.

Blocking is primarily motivated by the microarchitecture’s ability to hide memory
load latency. The prefetching e�ect from blocking can yield signi�cant performance
improvement, but it also provides the e�ect of data caching. Even if the data is used
once, the prefetching e�ect can yield signi�cant performance improvement. We observe
the most speedup with SSSP because it traverses more edges than BFS and bene�ts most
from prefetching. We see the least speedup from blocking with BFS and see performance
degradation on the Pokec and LiveJournal graphs. The pull direction for BFS traverses the
fewest edges of the three workloads thanks to a �lter condition on destination vertices.
This means that much of the prefetched data is never used, and the additional memory
reads become overhead.
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Overall, we �nd that our blocking optimization provides performance improvement in
all but four cases. Blocking reduces stalls from memory system requests and improves the
hit rate of the LLC. We �nd, however, that it does not have a large impact on DRAM stalls.
Making use of the low-latency scratchpad memory and coalescing accesses most improve
performance on benchmarks that traverse more edges in the graph.

5.2.3 Work Partitioning

Figure 5.5 shows the performance bene�t of alignment-based partitioning across di�erent
work block sizes on SSSP and BFS. Speedup is calculated over the baseline SSSP pull imple-
mentation and baseline BFS pull implementation. Similarly to the blocked access method
results, we �nd that the optimal work block size for alignment-based partitioning is input
graph and benchmark dependent. A work block size of 16 was optimal for Kronecker 18
and 20; liveJournal and Kronecker 22 saw optimal performance with a block size of 32 and
Pokec with a block size of 64.

Figure 5.6 shows the speedup for each benchmark when using alignment-based par-
titioning over the baseline vertex partitioning scheme. The optimal work block size for
each input graph and benchmark is used to calculate speedup. We observed a performance
improvement in all input graph and benchmark combinations, with an average speedup of
1.35× and a maximum speedup of 2.68×.

Alignment-based partitioning aims to make better use of the memory system on the
manycore. By assigning smaller working sets to each core, there is less contention in
the LLCs and all benchmarks achieve higher cache hit rates. Improving the LLC hit rate
decreases the total amount of memory that needs to be read from HBM and decreases the
amount of time spent waiting on outstanding memory requests.

Figure 5.7 shows the performance of edge-aware vertex partitioning relative to the
baseline vertex-based partitioning on all benchmarks in the pull direction. We achieved a
speedup in seven benchmarks and input graph combinations, with a maximum speedup
of 1.83×. If performance degraded, we observed an average slowdown of 15.32%. This
scheduling optimization relies heavily on the structure of the input graph and the algorithm,
so these results were somewhat expected.

Figure 5.8 shows the core cycle count probability distribution for each benchmark on
Kronecker graphs of scale 18, 19, and 20. Each plot shows a probability density estimate of
the total cycle counts across cores when executing both the edge-aware and vertex-based
partitioning schemes for a single iteration taken from the middle of application execution.
The mean for each probability distribution is also indicated. From this, we can see how the
edge-aware work distribution a�ects the workload on each core. We observe a decrease
in tail latency on the edge-aware probability density curve for BFS on all input graphs in
Figure 5.8 indicating a more even load balance between cores.
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Figure 5.5: Speedup results for varying work block sizes using the alignment-based partitioning
scheme on SSSP and BFS. Speedup is calculated over the baseline pull direction imple-
mentation.

We observe a noticeable improvement in most of the SSSP experiments. Figure 5.8(e)
shows the most dramatic shift in terms of cycle distributions. PageRank sees the worst
impact on cycle distribution in Figure 5.8 when switching to the edge-aware partitioning
scheme and showed slight slowdowns on kron18 and kron20 in Figure 5.7. These results
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Figure 5.6: Alignment-based partitioning speedup results for each benchmark. Speedup is calculated
over the baseline pull direction implementation.
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Figure 5.7: Speedup results for edge-aware vertex based partitioning optimization over the baseline
pull implementation for each benchmark.

show that the edge-aware scheme does have a noticeable impact on cycle count and load
balancing

Overall, while we see performance improvements with edge-aware vertex-based parti-
tioning on some benchmarks, we �nd that alignment-based partitioning provides the most
performance improvement in all cases. Despite its workload balancing bene�ts, edge-aware
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partitioning does not account for the manycore speci�c properties of the memory system.
Because memory is the main bottleneck of graph algorithms, the alignment-based scheme
which explicitly takes into consideration the properties of the manycore’s memory system
is ideal.
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Figure 5.9: Bucketed sparse frontier speedup results for each benchmark. Speedup is calculated
over the baseline push direction implementation.

5.2.4 Bucketed Sparse Frontier

Figure 5.9 shows the performance of the bucketed sparse frontier optimization relative to
the baseline vertex-based partitioning for all benchmarks in the push direction. We only
evaluate this optimization on BFS and SSSP because PR is not a frontier based algorithm.
We �nd the largest improvement on the road_central graph with a speedup of 361.23× for
BFS and 319.45× for SSSP. This is expected as it has the smallest frontiers and vertices in
the graph have very low degree, and thus bene�ts the most from removing unnecessary
reads to the frontier.

We observed a large slow down in almost every other case. This is due to an increase
in cache line contention that decreased the LLC hit rate. Cores end up issuing more read
requests concurrently with this scheme than they do when using a dense frontier resulting
in performance degradation.
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5.2.5 Hybrid Traversal
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Figure 5.10: Performance results for hybrid traversal on BFS for each graph relative to its best
performance for a range of � values. We �nd � = 5 to be optimal on HammerBlade.
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Figure 5.11: Performance results for hybrid traversal on BFS for each graph relative to its best
performance for a range of � values. We �nd � = 4 to be optimal for these graphs on
HammerBlade
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To evaluate hybrid traversal on HammerBlade, we �rst tune the � and � variables used
in the heuristics proposed by Beamer et al. Figure 5.10 shows the results for tuning � to the
HammerBlade manycore on 5 di�erent input graphs. We run BFS without optimizations
for 10 iterations on each graph. We don’t evaluate on any road networks as these graphs
rarely bene�t from hybrid traversal. We examine values of � between 1 and 30. While
Beamer et al. found � = 15 to be optimal on an Intel IvyBridge server, we �nd that the
optimal value of � on HammerBlade is much lower. For BFS with the graphs we studied,
we �nd that � = 5 provides the best performance in the most cases.

The results for tuning � are shown in Figure 5.11. Again, we run BFS for 10 iterations on
the same input graphs. We choose values for � in the range 1 to 1024. Again, the optimal
� value for HammerBlade is lower than the one found by Beamer et al. We �nd � = 4 to
provide the best performance in the most cases.

Our lower � and � values result in hybrid traversal preferring the push direction. Re-
peating this study with alignment-based partitioning applied in the pull direction or
repeating it for di�erent benchmarks might yield slightly higher � and � values. How-
ever, the di�erences in the memory hierarchies between an Intel IvyBridge server and the
HammerBlade manycore likely account for the lower values.
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Figure 5.12: Traversal direction speedups for BFS relative to the push implementation. Hybrid-
beamer is the hybrid method proposed by Beamer et al. and hybrid-ligra is the method
introduced in Ligra.

Finally, we present results for push, pull, Beamer’s hybrid traversal (with � = 5 and
� = 4), and Ligra’s hybrid traversal in Figure 5.12. We evaluate 10 iterations of BFS with
the same input graphs. We report speedup relative to the push implementation results.
Similarly to Figure 5.2, we �nd that traversing in the pull direction results in a slowdown
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over push on the Kronecker graphs. Because we sample a larger number of iterations here,
we also observe a slowdown for pull on LiveJournal and Pokec. With the values of � and �
that we use, we �nd that Beamer’s hybrid traversal never switches to pull on kron18 and
kron20. For these graphs we see a performance decrease with the Ligra hybrid traversal
method. On the two real-world graphs, we see larger performance improvements up to
3.24×. We also �nd that Ligra’s hybrid traversal is able to achieve performance within 4.5%
of the performance of Beamer’s hybrid traversal implementation on the two real-world
graphs and is within 12% on average across all graphs studied. Because of this and because
of the simplicity of its implementation, we use the Ligra hybrid traversal heuristic in our
runtime libraries.
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Figure 5.13: Scaling results for BFS across four HammerBlade manycore con�gurations. LLC capac-
ity and the number of columns (16) is held constant while the number of rows is varied
from 2 to 16.

Graph DRAM Stalls Bandwidth Speedup

LiveJournal 0.78 3.03 1.19
Hollywood 0.79 2.17 1.53
Pokec 0.83 3.02 1.49

Table 5.3: Impact of the blocked access optimization on SSSP. Reduction in DRAM stalls, improve-
ment in memory bandwidth utilization, and overall speedup.

5.2.6 Performance Analysis

Figure 5.13 shows how performance scales on the HammerBlade manycore as the number of
cores are varied. Optimized BFS code was executed on four di�erent machine con�gurations:
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we hold the LLC capacity and number of columns (16) constant and vary the number of
rows (2, 4, 8, and 16) to vary the total number of cores. We observe increased performance
as we increase the number of cores, suggesting that the generated code provides su�cient
parallelism to obtain high performance. The strong scaling indicates that our generated
code can successfully exploit parallelism. We highlight BFS for this scaling study due to
its high memory access to compute ratio. Because memory is a major bottleneck for most
graph applications, we anticipate that these scaling trends will continue to hold for other
applications.

Table 5.3 demonstrates performance improvements for SSSP with delta-stepping when
the blocked-access optimization is applied on three selected input graphs. The table shows
the overall performance speedup, the improvement in e�ective random access bandwidth,
and the reduction in DRAM stalls during execution for the three input graphs where the
this optimization was applied. The blocked-access optimization loads �xed-size blocks
of vertex data into local scratchpad memory. Loading the data into scratchpad reduces
access latency in exchange for bandwidth. This optimization exploits memory parallelism
to hide DRAM access latency in exchange for loading unused data and reducing e�ective
bandwidth. For SSSP, we observe that this optimization decreases DRAM stalls, increases
memory bandwidth utilization, and improves overall application performance. Because
SSSP is a more data driven application, it bene�ts from this optimization which targets the
memory hierarchy and utilizes the manycore’s software managed scratchpads.

5.3 discussion

Figure 5.14 shows speedups obtained from applying the blocked-access method or alignment-
based partitioning to a wider range of benchmarks and input graphs. Here we evaluate
performance on three real-world social network graphs (LiveJournal, Pokec, and Holly-
wood) and three road networks (RoadCA, RoadCentral, and RoadUSA). In addition to BFS
and PR we also evaluate on SSSP with delta-stepping, CC, and BC. For PR we simulate one
iteration, and for the remaining applications, we simulate �ve representative iterations
that cover a range of frontier densities and execution behavior. We use hybrid traversal in
the baseline code of BFS, BC, and SSSP to decrease simulation times. BC, CC, and BFS ben-
e�t from alignment-based partitioning, while PR and SSSP use the blocking optimization
due to their more compute-intensive nature. As shown throughout our evaluation, these
optimizations better utilize the memory hierarchy and provide up to 4.96× speedup over
unoptimized code.

Table 5.5 shows the highest achieved MTEPS for each input graph and benchmark along
with the optimization that was used in the generated code. Alignment-based partitioning
provides optimal performance across the most input graphs and benchmarks, and the next
best performing optimization is blocking. This is not surprising, as all of our benchmarks
are limited by DRAM, and blocking and alignment-based partitioning are optimizations
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1.60 1.23 1.49 1.19 1.22

2.27 1.11 1.19 1.86 2.39

1.84 4.96 1.53 2.50 4.45

2.38 1.05 2.37 1.00 1.12

2.32 1.02 2.18 1.00 1.07

2.08 1.08 2.52 1.04 1.31

Figure 5.14: Speedups for all benchmarks and real-world input graphs attained from applying the
blocked-access method or alignment-based partitioning optimization. Here we examine
BFS, PR, CC, BC, and the delta-stepping variant of SSSP.

that makes better use of the memory system. By adding blocking and alignment-based
partitioning, we are able to coalesce read accesses to vertex data. In addition, with blocking,
we are able to make use of explicitly managed, low-latency scratchpad memory in our
blocked access method. The blocked access method and alignment-based partitioning im-
prove the memory system performance of our benchmarks by targeting a key performance
limiter of graph algorithms.

Source Platform Benchmark Graph MTEPS

[98] Xeon Phi MIC CC LJ (22) 240
[98] Xeon Phi MIC CC Flickr (19) 140
[52] GTX780 BFS LJ (22) 272.4
[127] C2050 BFS KKT (21) 351.5
[118] k40c SSSP LJ (22) 334.2
[115] k40c SSSP LJ (22) 217.9

Table 5.4: Performance results in MTEPS from other graph processing frameworks. The benchmark
CC is strongly connected components.
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We do not include a direct comparison of our results against other systems; however,
Table 5.4 shows performance results for some of the frameworks mentioned in Chapter 6.
This table is included to help contextualize the results reported above. It is also important
to note that we only simulate a small portion of the total manycore architecture. The
full manycore architecture would have eight HBM channels instead of the two that are
simulated along with many more cores. As a result, the full architecture would have much
higher memory bandwidth and more compute resources. Because all of our benchmarks
are limited by DRAM, we anticipate that we would achieve better performance on the full
system due to an increase in memory bandwidth and decrease in memory contention.

5.4 chapter summary

In this chapter we presented performance results for our code generation framework intro-
duced in Chapter 4. We showed baseline code performance and explored the performance
bene�ts of the optimizations we presented in Chapter 3. We demonstrated speedups of up to
4.96× when our manycore-speci�c optimizations are applied. Our evaluation demonstrated
that our GraphIt backend and optimizations can improve high performance on a wide
variety of input graphs and algorithms. This is because our code generation framework
enables �exible exploration of optimizations in order to �nd the optimal schedule for each
benchmark and input graph.
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6
RELATED WORK

In this dissertation, we talk about generating optimal code for graph algorithms on a
manycore architecture with HBM. We explore both general graph processing and manycore
speci�c performance optimizations and show how to generate performant code for a
manycore architecture leveraging these optimizations. There has been a large amount of
work done in the space of optimizing parallel graph algorithms on various architectures.
Graph processing has traditionally been done on CPU and GPU machines, and increasingly
on FPGAs and custom architectures. First, we discuss work that focuses on understanding
graph performance. Then, we talk about graph processing on CPUs, GPUs, FPGAs, and
custom architectures. Finally, we introduce previous manycore architectures and discuss
prior work on graph processing on manycore architectures.

6.1 understanding graph performance

Several pieces of work have focused on understanding the bottlenecks of graph process-
ing [9, 11]. It is clear that memory is the main bottleneck for graph algorithms. Most
graph programs struggle to achieve high memory bandwidth due to insu�cient instruction
window sizes and memory load dependencies inherent in graph accesses. Further, many
graph applications actually experience both low memory bandwidth and low compute due
to memory latency [11]. We �nd that memory accesses are the main bottleneck in our
system and propose a blocking method and an alignment-based partitioning method to
coalesce accesses.

Graph processing work is often split between making algorithmic improvements and
making systems improvements. Beamer et al. propose a new way to evaluate improvements
in graph processing that allows for evaluation of both algorithmic and system improvements
in one metric [13]. We leverage their traversed edges per second (TEPS) metric in our
evaluation.

6.2 graph processing on cpus

Multicore CPUs are an example of Multiple Instruction Multiple Data (MIMD) execution.
CPUs have powerful arithmetic cores for high-performance scienti�c computations and
handle complex control-�ow. They have large, multi-level memory systems that can load
large graph data structures into memory. Multicore systems can partition workloads
across multiple threads of execution and perform complex load-balancing technique [77].

43
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The bene�ts of CPUs can also be their downfall. Deep memory hierarchies introduce
long latencies for random-access memory patterns, and coherence protocols between
processors introduce signi�cant overheads on shared datasets even with small numbers of
threads [68]. Graph applications are dominated by random memory accesses with minimal
computational demands, which can leave a high-performance high-energy consuming CPU
core idle.

Many frameworks have been proposed for multicore CPU systems including Ligra [97],
GraphLab [67], GraphChi [56], and Galois [79]. These frameworks use di�erent approaches
to address the limitations of graph processing on CPUs including priority scheduling of
work and various load balancing techniques. There are also a wide range of DSLs for
shared-memory graph processing including Ligra, Galois, GraphGrind [99], Polymer [122],
Gemini [131], and Grazelle [39]. These frameworks adopt a frontier-based model for
execution. Green-Marl [45], Socialite [94], Abelian [36], and EmptyHeaded [2] are also
shared-memory graph processing DSLs, but they do not allow for creation of active vertex
sets and perform worse than frontier-based frameworks [2, 92]. However, I do not spend
very much time on these optimizations because I focus on a manycore with much simpler
cores and a smaller memory hierarchy.

6.3 graph processing on gpus

GPUs have shown great promise in exploiting the inherent parallelism in graph applications
[64, 71]. GPUs operate within the Single Instruction Multiple Threads (SIMT) execution
model. When a memory access stall occurs the executing warp is replaced by another
warp from the thread pool to achieve Instruction Level Parallelism (ILP). Memory-level
parallelism (MLP) is also achieved through coalescing memory accesses of threads in a
warp to contiguous addresses in memory in order to form a single high-bandwidth memory
transaction. These features expose more thread-level and memory-level parallelism than
CPUs.

The e�ciency of the SIMT model however can quickly degrade due to branch and
memory divergence. Threads can take di�erent control �ow paths in a branch instruction
and be forced to serially execute [35]. Threads in a warp can also access di�erent levels of
the memory hierarchy which will stall the entire warp until all requests have been serviced.
The problem is ampli�ed in graph analysis applications where the random pattern of
memory accesses reduce the e�ectiveness of coalescing and result in multiple high-latency
memory transactions that stall execution [96, 117].

Previous work explores the performance and engineering bene�ts of high-level software
frameworks for graph analytics on CUDA programmable GPUs [52, 80, 115, 118, 127].
One notable example, Gunrock [115], is similar to the DSL we have chosen for our code
generator, GraphIt. It uses a data-centric, frontier-based abstraction for specifying compute,
and a program consists solely of a problem description (input graph, data management,
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etc.), user de�ned computation, and an enactor or entry point to computation. Similar
to GraphIt, it focuses on specifying what should be done and not how that work should
be scheduled. However, it does not allow users to experiment with di�erent scheduling
options. In this work I focus on targeting a broader class of manycore processors. While
there are some interesting software base optimizations in this area of work, I do not spend
too much time on them due to the SPMD model of our manycore architecture as opposed
to the SIMT model of GPUs.

6.4 graph processing on fpgas

FPGAs present an interesting platform for graph processing frameworks. Engelhardt et
al. [33] and Dai et al. [25] both propose vertex-centric frameworks on single and multi
FPGA systems. Meanwhile, Zhou et al [130] use large external memory and an edge-centric
model in their FPGA framework. Dai et al. [26] propose another multi-FPGA system that
partitions edge and vertex data among the FPGAs in the system. There has also been work
on FPGA implementations of individual graph benchmarks [128, 129]. Because my work is
focused on general purpose manycore architectures, I do not address these FPGA speci�c
optimizations.

6.5 graph processing architectures

There has been signi�cant work designing custom hardware for sparse compute and graph
processing [3, 6, 27, 44, 48, 62, 120]. Ozdal et al. [81] propose an asynchronous, vertex-
centric hardware for graph processing. Their asynchronous model does not execute graph
algorithms using iterations with strict boundaries like traditional graph processing. The
goal of their work was to maintain a larger active set of vertices and edges in order to
increase memory level parallelism. Ham et al. [44] design an architecture for vertex centric
graph processing. They note that most of the instructions in graph processing programs
are for traversing the graph (∼95%) and only a small amount (∼5%) are speci�c to the graph
benchmark. As a result, they focus their design on data path speci�cation and memory
subsystem optimizations. Their architecture also makes use of small scratchpad memory.
Zhuo et al. [132] and Ahn et al. [6] present graph processing architectures that leverage
processing in memory (PIM). Both of these works focus on reducing irregular movement
of data by reordering vertex computations and through movement of computation. These
works tend to focus on graph optimizations that are not solvable in software, while my
work focuses on optimizations that can be implemented on general purpose manycore
architectures.
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6.5.1 Hardware Modi�cations

There is also work being done on modifying small parts of existing hardware systems
to improve graph processing performance. Segura et al. [93] propose adding a stream
compaction unit to existing GPUs to handle memory compaction and coalescing. Their
stream compaction unit uses bitmasks in order to construct a subset of the edgelist for
processing on the GPU in order to reduce duplication of work. This, along with coalescing
and organizing the data to improve cache e�ciency, helps to improve performance on the
GPU. Matam et al. [70] take the approach of customizing the memory system and making
it aware of graph semantics in order to improve caching and performance. They made
their SSD aware of the CSR structure of graphs by adding a graph based lookup system and
attempted to store edges for a node in one SSD page whenever possible. Another memory
focused solution is proposed by Mukkara et al. [75]. In their work, they design a locality
aware hardware scheduler for scheduling graph traversal. Again, I do not focus on these
types of optimizations in my work because my focus is on obtaining performance on a
general purpose manycore.

6.6 graph processing on manycore architectures

6.6.1 Manycore Architectures

Over the years, many diverse manycore architectures have been proposed. Unlike these past
manycore architectures, the manycore architecture we target maximizes compute density
and utilizes HBM for increased memory bandwidth. Raw [102] was an early manycore
design that focused on exploitation of ILP via various forms of message-passing. After Raw,
the Tilera architecture was proposed [88]. The Tilera chip had comparatively large cores
that were each individually capable of running the Linux OS, and implemented directory-
based cache coherent shared memory. Adapteva [43] and [5] was a manycore design that
focused on compute density but lacked a parallel DRAM memory system suitable for graphs.
Unlike GPUs and Xeon PHI, the target manycore architecture is a pure SPMD machine,
without the complexity and thread divergence challenges of SIMT/SIMD units.

6.6.2 Manycore Graph Processing Frameworks

There has been previous work on optimizing graph algorithms on manycore architectures.
Deveci et al [31] and Slota et al. [98] adopt an edge-centric approach for their implementa-
tion of the graph coloring algorithm and evaluate it on both a GPU and Xeon Phi. While
they both leverage the Kokkos library [31] for platform portability, these works focus
on highly optimizing a small handful of graph algorithms. Chavarria et al. [23] focus
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on optimizing the performance of community detection on the Tilera processor. Their
optimizations focus on load balancing and improving locality.

While a lot of work aims at optimizing speci�c graph algorithms on manycores, there has
also been work on developing more general graph processing frameworks for manycore
architectures. GraphPhi [83] is a Xeon Phi runtime library for graph processing that
uses HBM. The authors propose a hierarchical graph storage format that partitions a
graph to better map to the Xeon Phi’s SIMD units and to allow for better load balancing.
The framework uses both vertex-centric and edge-centric processing to compute graph
applications, and as a result, requires the program to store the input graph in both CSR
and COO format. Unlike our approach, this approach requires modi�cations to the entire
graph processing system stack to achieve performance on the chosen manycore. Chen et
al. [24] propose a graph processing framework that splits execution between a CPU and
Intel MIC. Their work focuses on exploiting SIMD performance on the MIC. Unlike our
GraphIt backend, their API requires the programmer to simultaneously reason with the
algorithm, the schedule, and the passing of messages between the CPU and MIC. Li et
al. [61] also propose a manycore code generation framework for graph programs. They
target the Intel Xeon Phi and leverage OpenMP for parallelism on the Xeon Phi. Their
manycore speci�c optimizations are also limited to vectorization of compute and some
data reuse analysis.
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CONCLUS ION

This dissertation presents solutions to the challenge of writing peformant code for graph
applications on a manycore architecture. The optimizations presented in this work aim
to better leverage the memory hierarchy and architectural features of a manycore in
order to achieve high performance on graph applications. In this dissertation, I present
a code generation backend to the GraphIt DSL that allows for �exibility in application
development and optimization. I show how existing optimizations can be implemented on
the HammerBlade manycore in order to improve work e�ciency and decrease workload
imbalance across cores. I present several manycore speci�c optimizations that target the
memory hierarchy in order to more e�ciently use memory bandwidth.

As the size of sparse graph data continues to grow, the importance of scalable, performant
graph processing systems will only continue to increase. This work demonstrates ways that
we can leverage the parallelism o�ered by emerging manycore architectures in order to
maintain scalable performance on graph applications while also maintaining the �exibility
and ease of programming o�ered through the use of the GraphIt DSL. As graph processing
demands grow and users turn more and more to emerging architectures, I expect that future
work will continue to build on these e�orts to reduce programming complexity through
code generation and increase performance through optimizations that target architectural
features.

7.1 future work

There are several areas of exciting future work to be done in the space of graph processing
on the HammerBlade manycore architecture. Much of the future work in this space focuses
on better understanding application performance and on improving performance through
continued memory system and data layout optimizations. I believe that the code generation
framework that this dissertation presents will provide the �exibility and extensibility
necessary to explore these areas of future work.

multi-source traversal
Breadth-�rst search (BFS) is a common building block of many graph algorithms, and there
has been substantial e�ort in optimizing BFS on parallel architectures. While quite a few
algorithms such as SSSP execute BFS from a single source vertex, there also exist many
algorithms which execute many di�erent BFS traversals from di�erent source vertices
including all pairs shortest paths and betweenness centrality. There has been limited work
optimizing this multi-souce BFS (MS-BFS) for parallel architectures [64, 110].

48
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The approach outlined by Then et al. [110] leverages the properties of small-world
networks that are present in many real-world graphs. They aim to optimize concurrent
processing of a large number of BFS traversals in a single core. The authors observe
that in graphs that exhibit small-world properties, the majority of vertices are discovered
in just a few iterations. Further, they note that multiple BFS traversals over the same
graph have a high likelihood of having overlapping sets of discovered vertices within the
same iteration. Based on these observations, they create data structures that allow for
combined accesses to the same vertices across multiple BFS instances. They use sets and
set operations to concurrently execute many BFS traversals at the same time. In practice,
these are implemented as bit operations over �xed width bit �elds where the width of the
bit �eld is the maximum number of concurrent BFS traversals that are supported. This
approach reduces cache-contention and redundant work.

We believe that the manycore will be well suited to this style of MS-BFS processing, and
that the use of bit�elds will work well with the small caches and scratchpad memories
present on the manycore. In addition, GraphIt has support for multi-source traversal
through its parallel_for operator. However, this is a feature that we do not currently
support in our HammerBlade code generation backend. An optimal implementation of
this operator could open up our code generation framework to a larger class of graph
applications.

parameter tuning and custom data structures
In graph processing, proposed optimizations are often tuned for one speci�c architecture.
This means that when an optimization is ported to a new architecture, a performance study
must be conducted to tune the optimization parameters to the speci�c features of the new
architecture. We began a study of parameter tuning in this work with the exploration of
hybrid traversal methods. From this we found that for optimal performance HammerBlade
required smaller � and � values for the hybrid traversal heuristics introduced by Beamer
et al.

Another area to evaluate would be tuning the Δ parameter in the delta-stepping SSSP
algorithm. As discussed in Chapter 2, delta-stepping is a variant that was proposed to
increase parallelism without dramatically increasing algorithmic work by introducing a
bucketed priority queue [73]. The bucketed priority queue increases parallelism by relaxing
the strict processing order imposed in Dijkstra’s algorithm. Vertices are sorted into buckets
within the priority queue of size Δ. Setting Δ = 1 e�ectively turns delta-stepping into
Dijkstra’s and setting Δ = ∞ turns it into Bellman-Ford.

It has been noted that the Δ parameter is sensitive to both input graph and architec-
ture [10]. Beamer et al. found that the range of optimal Δ values for a given input graph is
actually quite large [10]. However, there has been less study on how sensitive Δ values are
to di�erent architectures. A study of Δ values on road network and social network graphs
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to determine optimal values for the HammerBlade manycore could provide interesting
insights into the class of ordered graph algorithms.

In addition, there is room to improve the implementation of the bucketed priority
queue for a manycore architecture. Currently the priority queue is implemented on the
host and all bucket updates must happen on the host in between each iteration. At the
beginning of each iteration, the priority queue constructs a frontier to be dispatched to the
manycore for processing. We believe that the manycore could be well suited to a device
side implementation of the priority queue, and that moving the logic of the priority queue
to the device could greatly increase performance.
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