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ABSTRACT OF THE THESIS

Genetic Compilation for Tiled Microprocessors

by

Jin Seok Lee

Master of Science in Computer Science

University of California, San Diego, 2007

Professor Michael B. Taylor, Chair

Recent microprocessor designers have turned to large-scale parallelism and

multicore processors as the means of continuing Moore’s Law. Tiled multicorepro-

cessors, one such class of multicore processors, offer extremely low latency commu-

nication over an on-chip scalar operand network (SON). Although academic projects

such as Raw and TRIPS have demonstrated that tiled multicoreprocessors are imple-

mentable, managing the complexity of optimizing compilersfor these distributed ar-

chitectures has become a serious issue. These compilers must simultaneously optimize

across a variety of inter-related NP-complete criteria in order to generate optimized

code.

Generating custom compiler heuristics for these NP-complete problems re-

quires high skill levels and is both time-consuming and prone to over-simplification of

the emerging factors that contribute to sub-optimal parallel speedup. Furthermore, the

implementation effort of these heuristics makes it almost impossible to adjust them in

order to evaluate tradeoffs in tiled microprocessor design.

This thesis presents a complete compiler backend that generates parallel code

for tiled microprocessors. It addresses complexity issuesby separating the concerns

of correctness and optimization. The optimization component uses standard machine

learning algorithms (genetic programming), while the correctness component ensures

that valid code is generated regardless of the input from themachine learning algo-

x



rithm. The evaluation measures the compiler’s ability to tune the placement of mem-

ory objects across tiles; in several cases it is able to perform placement better than

a graduate student. Furthermore, it does this with no understanding, beyond what is

necessary to generate correct code, of the particular target architecture (Raw).

xi
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Introduction

Until recently, modern microprocessors have focused on clock rate as the

means of exploiting improvements in silicon manufacturingdue to Moore’s Law [13]

and CMOS scaling. This approach has come up against complexity and scalability lim-

its, including those due to wire delay, power, and logic delay. Recently, microprocessor

designers have turned to large-scale parallelism and multicore processors, which inte-

grate many processors onto one silicon die, as the means of continuing Moore’s Law.

These new multicore processors carry with them significant challenges in programmer

productivity, as they frequently require explicit manual parallelization. One approach

to addressing this issue is to create architectures for which compilers can automati-

cally generate code.Tiled multicoreprocessors are a subclass of multicore proces-

sors which facilitate automatic compilation by providing extremely low latency com-

munication over an on-chip scalar operand network (SON) [18, 19]. RAW [17, 20],

Wavescalar [16] and TRIPS [4] are three examples of academictiled architectures.

Tiled architectures have integrated more simple and identical tiles into a chip to ad-

dress the limits. These projects have shown that tiled architectures have the ability to

run a variety of codes in parallel. In this chapter, we introduce the overall structure of

typical tiled architectures, the major concepts of compilers for tiled architectures, and

finally the motivation for this thesis.

1
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1.A Tiled architectures

Tiled architectures are designed to efficiently run programs in parallel across

a large silicon area. In order to exploit parallelism, tiledarchitectures are constructed

in a physically scalable and simple way. A tiled microprocessor consists of an array of

identical tiles (shown Figure 1.1). Each tile contains a compute portion and a network-

ing portion. The compute portion contains a compute pipeline (including ALU, and

FPU), an instruction cache, and a data cache. The communication components con-

tains programmable routers (also called switches) and network wires that connect the

tile to its neighbors and off-chip. The tiles are connected by a variety of point-to-point,

pipelined, on-chip networks which facilitates low-latency communication among tiles

and among tiles and off-chip devices, via the I/O ports. Thisconstruction provides

a variety of benefits for overcoming scalability limitations in microprocessor design.

Figure 1.2 shows a die photograph of the MIT Raw microprocessor, which contains 16

such tiles. The number of tiles is expected to double with each generation of Moore’s

Law (e.g., 1024 tiles at the 22 nm process node).

One of the important features of tiled architectures is thatthey are naturally

suitable for exploiting Instruction Level Parallelism (ILP) across multiple tiles, while a

monolithic superscalar processor requires complex hardware resources to do ILP. ILP

can be found and exploited automatically in sequential programs written in C or C++.

The compiler, targeted specially for tiled architectures,parallelizes the program across

the tiles. A separate instruction stream runs on each tile with its own Program Counter

(PC). Although independent programs may run simultaneously on different tiles in

the same way they do on multicore processors, tiled microprocessors also allow the

tiles to cooperate with their neighbors via static or dynamic interconnection network.

After individual instructions are mapped into tiles, each tile has to run instructions

assigned to the tile and also orchestrate instruction execution with neighboring tiles

via the interconnection networks, transporting scalar values from producer tiles to the

appropriate consumer tiles. Such a scheme is called aScalar Operand Networkor
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Figure 1.1: A tiled architecture. Used with permission fromProf. Michael Taylor.

SON [18].

Tiled architectures keep hardware as concise and simple as possible in order

to provide better scalability for computation and on-chip memory, in contrast to com-

plex modern super-scalar microprocessors. To efficiently utilize these scalable arrays

of resources, intelligent compilers must be constructed toorchestrate the mapping of

computations to architectural resources. As a result, manyaspects of the basic under-

lying architecture associated with program execution are completely exposed to com-

piler and runtime system. The compiler is responsible for assigning and scheduling

program instructions in order to exploit ILP. Program execution is almost completely

controlled by the compiler, and thus the performance of programs depends on efficient

resource assignment. The correctness of program executionis also determined by the

compiler.



4

Figure 1.2: The photograph of the silicon die of the 16-tile MIT Raw Tiled Micro-
processor. The 16 tiles are clearly visible. Used with permission from Prof. Michael
Taylor.
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1.B Compilation for Tiled Architectures

As discussed in the previous section, the hardware structure of tiled archi-

tectures is much simpler than traditional single-core wide-issue microprocessors. It

ensures high clock rates and the availability of many execution resources on-chip.

Instead of employing complex hardware on a chip, tiled microprocessors rely on com-

pilation techniques which attempt to assign elements in thesource code to hardware

resources through the Instruction Set Architecture (ISA) abstraction. Researchers at

MIT created a compiler for tiled architecture named RawCC [2, 3, 10]. However, this

compiler is tightly coupled to the Raw tiled microprocessor. To handle the class of

more general tiled architectures, we implemented a generalcompiler to compile a sin-

gle stream program into multiple streams and exploited ILP on tiled architecture.

In lieu of supporting complex run-time hardware, the compiler plays a dom-

inant role in determining a static path of program executionin compile-time with af-

fordable algorithms. Most resources used in a program’s execution are controlled by a

sequence of phases (orpasses) in a back-end of a compiler. This paper is devoted to

describing the design, implementation and performance of the back-end of the com-

piler. The overall back-end flow of the compiler is describedin Figure 2.1. We shall

examine the phases in Chapter 2 in more detail.

1.C Motivation

Central to this thesis are two ideas: first, a new method of organizing com-

pilers so that the concerns of correctness and optimizationare separated, reducing the

complexity of compiler implementation; and second, the application of brute-force

machine learning algorithms to replace the costly and time-consuming construction

of heuristic optimization functions for compilers for sophisticated distributed archi-

tectures. To explore these ideas, we construct a complete backend compiler for next

generation tiled architectures, and measure the benefit of applying machine learning
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techniques (genetic algorithms [8]) to optimize memory object placement, which has

significant downstream effects on compiled code performance.

This new backend infrastructure is designed to target the general class of

tiled architectures, and to support new emerging tiled architectures. Until now, tiled

architectures have been examined and implemented mostly inacademia. Compilers

for those architectures have targeted specific architectures and even specific proto-

types. As a result, targeting new tiled architecture typically will require an almost

from-scratch rewrite of the existing compilers, tuned withnew heuristics to address

particular issues of the individual architecture. Compiler writers have to spend much

of their time and energy in re-implementing new infrastructures, delaying work on

new compiler algorithms and new architectural features. Inthe interests of reducing

this effort, we propose a general compiler infrastructure for tiledarchitecture.

A compiler for a tiled architecture has to find approximations to a cascade

of NP-hard problems in order to generate optimized code. Compiler developers must

often struggle to manage the complexity of finding and implementing efficient approx-

imation algorithms. Although our compiler addresses many of the standard phases of

tiled architecture compilation, to keep the scope of this thesis maintainable, we will

focus on the compiler’s ability to find efficient memory objects placements, which is

central to the exploitation of parallelism in ILP codes. This both demonstrates the fea-

sibility of our machine-learning approach, but also extends the current state of the art

in tiled compiler research. Most of the extant research in tiled architecture compilation

tends to center around instruction placement and scheduling [10, 12]. Up until now,

few have attempted to address the issue of memory placement in tiled architectures.

The issue of memory placement is challenging because it simultaneously affects how

much memory parallelism is available in the application, while at the same time, it

heavily influences the ability of the architecture to place non-memory instructions in

ways that reduce network latency and congestion.

The remainder of the thesis is organized as follows: Chapter2 presents the
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overview of the compiler design and implementation. In Chapter 3, we evaluate the

compiler in the context of using genetic algorithms to optimize memory placement.

Finally, we conclude the discussion in Chapter 4, and overview the issue of memory

object migration in Appendix D.



2

Compilation phases

The compiler is organized as a series of compilation phases for mapping

programs to a set of tiled resources as efficiently as possible. We focus on the back-end

of the compiler, as the back-end component changes the most when tiled architectures

are targeted. This chapter explains in detail how each phasein the compiler works

and how it ensures the correctness of programs. Figure 2.1 shows the overall compiler

flow.

Shaded circles indicate subproblems, which are often NP-hard, that need to

be solved. To simplify the effort of constructing the compiler, we separated the imple-

mentation of code correctness and optimization. In the firstversion of the compiler,

the optimization functions were implemented with simple calls to therandomfunction.

This method of implementation helped us verify that the generated code was correct

regardless of the input of the machine learning optimization functions. Later, we em-

ployed simple heuristics and/or machine learning for theseoptimization functions.

2.A Input

The inputs for the compiler are Hardware Description XML andSource Code

XML. Hardware description XML is used to describe the hardware configuration for

the target tiled architecture. The compiler assigns resources and generates code based

9
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<root>

<RegisterNum>32</RegisterNum>

<TileLoc>0</TileLoc>

<TileLoc>1</TileLoc>

<Latency>

<LD>2</LD>

<ST>1</ST>

<ADD>1</ADD>

<SUB>1</SUB>

<MUL>12</MUL>

<DIV>35</DIV>

<FADD>2</FADD>

<FSUB>2</FSUB>

<FMUL>4</FMUL>

<FDIV>12</FDIV>

</Latency>

</root>

Figure 2.2: An example of hardware description XML

on the characteristics of the XML. Figure 2.2 shows an example of hardware descrip-

tion XML for the Raw microprocessor.

The other input file for the compiler is the source code XML file. The front-

end of the compiler translates program source code written in MATLAB, C or C++

into this XML format. The XML represents a control flow graph (CFG) of the source

code. It can include many control flow graph nodes, and each CFG node identifies the

locations of its successor and predecessor nodes. The graphstructure is provided by

the front-end of the compiler through control flow analysis.

While most instructions in a CFG are similar to typical assembly instruc-

tions, some high-level operations are defined in the Intermediate Representation (IR).

As this compiler has been designed for general tiled architecture, some features related

to specific target machines are abstracted out through the IR. Four IR instructions are

recognizable in the IR translation phase of the compiler - def, return, func and inargs.

The representation of each IR is listed below.

1. def IR allocates space for memory objects in a stack. The “size” element indef

decides the number of bytes to be allocated.

2. return IR returns a scalar value to a caller by default. It is also able to return
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<root>

    <CFG>

        <CFGNode>

            <NodeID>0</NodeID>

            <Succ1>0_0</Succ1>

            <InstructionNode>

                <Label>foo</Label>

            </InstructionNode>

            <InstructionNode>

                <OPCode>def</OPCode>

                <Scalar1>a0</Scalar1>

                <Non_Scalar>8</Non_Scalar>

                <Non_Scalar>8</Non_Scalar>

            </InstructionNode>

            <InstructionNode>

                <OPCode>def</OPCode>

                <Scalar1>a1</Scalar1>

                <Non_Scalar>8</Non_Scalar>

                <Non_Scalar>8</Non_Scalar>

            </InstructionNode>

            <InstructionNode>

Figure 2.3: An example of source code

multiple values, using a stack.

3. func IR calls a function. It has a target address of the function and the argument

list.

4. inargsIR represents an argument list of a function.

2.B Home assignment

Home assignmentassigns tile locations to memory objects. Thehome tile

refers to a single tile location in which a memory object resides. If we assume the

most general case, that the target tiled architecture is cache-incoherent, the memory

object in each procedure must belong to a specified tile called thehome tile[10]. Oth-

erwise, the correctness of a program is compromised. In thisversion of the compiler,

home assignments persist throughout the lifetime of the program. Load andstore

instructions that access a particular memory object are assigned to the same home tile

as the corresponding memory object.
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In a single stream In multiple stream

Tile 0 Tile 1

STORE A

LOAD A

STORE A

LOAD A

Data Dependency

Figure 2.4: An example of incorrectness and incoherence memory

Home assignment is necessary to handle problems of incorrectness and in-

coherence. The term ‘incorrectness’ refers to memory objects andload or store

instructions, which are not properly synchronized. The term ‘incoherence’ refers to

the case where a tile’s instruction stream accesses out-of-date versions of data even

when synchronization is correct. Let’s take a look at incorrectness in Figure 2.4.

A single stream code is transformed into multiple streams through this com-

piler. In Figure 2.4, tile 0 executes astore on A and tile 1 carries out aload on

the sameA as tile 0. Because each tile in a tiled architecture is only loosely coupled

with the others during execution, tile 0 may executeload A before tile 1 executes the

store A, which results in incorrect behavior.

In other words, a tile does not know if an instruction with dependent scalars

on another tile has or will produce the corresponding valuesor not.

Tiled architectures with incoherent memory systems also pose problems of

‘inconsistency’. Suppose the order of execution is correctin Figure 2.4. In some cases,

Tile 1 may not see the correct value from tile 0 at all times because of the effects of

caching. IfA on tile 0 is not written back to memory before the execution ofthe
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load on tile 1,A on tile 1 is from out-of-date memory, and is not equivalent totheA

manipulated bystore A on tile 0. Therefore, the compiler supports the concept of

“Home” to tackle cache-incoherence in a back-end of the compiler.

To verify the correctness of the compiler implementation, we initially used

therandomfunction in performing home assignment. Memory objects were assigned

to arbitrary tiles. As long as instructions such asload andstore follow the rule that

the instructions and referenced memory objects in them are in the same tile, a program

is guaranteed to execute correctly. This is becauseload andstore instructions in

other tiles do not manipulate those memory objects, and thuscannot create coherency

or synchronization issues.

For optimization of assigning memory objects, we have implemented home

assignment using a genetic algorithm. It generates faster executable codes as genera-

tions elapse. The efficacy of the algorithm is evaluated in chapter 3 in detail.

2.C Data flow analysis

In this phase, we construct conventional ‘def-use’ chains [1] within a CFG

node. This analysis identifies the data dependency relationships that exist between in-

structions that define scalars and instructions that use them. The dependency informa-

tion becomes a basis of instruction assignment, scalar assignment and the generation

of instructions is described in the following sections.

2.D Instruction assignment

This phase assigns each instruction within a CFG node to a specific tile and

is quite important to quality of performance. If they are assigned in an inefficient

way, data dependency between instructions across tiles generates redundant routing

instructions.

To ensure correctness, the first version of the compiler for tiled architecture
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assigned instructions across tiles in conjunction with arandomfunction. To demon-

strate the correctness of this phase, we should show that data transportation in a single

tile and in multi tile is done correctly. First, if data dependency exists between two in-

structions within a tile, ‘def-chain’ is used as a method to transfer correct data. Second,

if data dependency exists across tiles, routing instructions are responsible for transport-

ing correct data. Therefore, this phase ensures that assignment is executed correctly

whichever method is used.

For optimizing the execution of this phase, heuristics [11], [14] or machine

learning algorithms [5], [9], [15] assign instructions in compile-time. We have de-

veloped an instruction assignment algorithm based on Unified Assign and Schedule

(UAS) [14], which was originally created for Very Long Instruction Word (VLIW)

machine. The main idea of this algorithm is to assign and schedule instructions simul-

taneously.

Though our compiler bears a resemblance to UAS in the assigning and schedul-

ing functions, the compiler has different features such as interconnection network type,

a space-time map and instruction assignment for tiled architectures.

The first difference is that the compiler for tiled architectures regards the

network as a point-to-point network while UAS considers thenetwork as inter-cluster

buses. Secondly, the compiler makes different space-time map. Before instruction

assignment, the compiler builds one two-dimensional space-time map (Figure 2.5). A

row refers to one machine cycle on each tile, incrementing from top to bottom. A

column represents a tile with two slots - one for a computation unit and the other for

a switching unit. Third, the compiler assigns tile locations to instructions. A detailed

scheme of instruction assignment is explained in appendix A.

2.E Scalar operand assignment

In this phase, the compiler decides where scalar values in a live-in list and

a live-out list are located in a CFG node. In a monolithic microprocessor, each CFG
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Figure 2.5: A space-time map of 8 tiles (cu : a slot for a computation unit, su : a slot
for a switching unit)

node has a live-in list and a live-out list only for scalars. In tiled architectures, scalars

as well as their locations are assigned to a live-in list of a tile and a live-out list because

scalars in the two live lists are distributed across tiles. To facilitate this phase, we have

built three sub-phases calledmaking a live-in list and a live-out list of each CFG node,

assigning locations and registers to scalars in a live-in list and a live-out list of each

CFG nodeandassigning scalar locations of instructions in each CFG node.

. Making a live-in list and a live-out list of each CFG node: In this phase, the

compiler runs a fixed-point algorithm [1], which continues to find scalars in a

live-in list and a live-out list until there is no change in those lists.

Figure 2.6, (b) shows an example of making a live-in list and alive-out list from

the following instructionadd a,b,c andadd d,e,f on 2 tiles.

. Assigning locations and registers to scalars in a live-in list and a live-out list

of each CFG node: The compiler assigns tile locations and virtual registersto

scalars in a live-in list and a live-out list. Figure 2.6, (c)depicts an example
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of assigning tile locations and virtual registers to scalars in a live-in list and a

live-out list on 2 tiles.

. Assigning locations and registers to scalars of instructions in each CFG node:

This phase assigns virtual registers and tile locations to scalars of instructions.

The information is based on the routing instructions that have been generated.

Receiving instructions recognize the register values thathave been transferred.

(d) of Figure 2.6 shows an example of assigning tile locations and virtual registers

to scalars in every instruction within a CFG node on 2 tiles.

To ensure correctness, we applied therandom function in scalar operand

assignment. The function causes two problems - scalar inconsistency within a CFG

node and scalar inconsistency between CFG nodes. (d) of Figure 2.6 shows two scalar

inconsistency cases within a CFG node (live-in to instructions and instruction to live-

out). These problems are addressed by generating routing instructions between them.

Scalar inconsistency between CFG nodes are handled bystitchnodes. The concept of

Stitchnode is discussed in 2.F.

To optimize scalar operand assignment, we used a simple heuristic to assign

the scalar operands. To create a live-in list, scalars in thelive-in list copy the locations

and register values of similarusescalars which is first appeared in a CFG node. To

create a live-out list, scalars in a live-out list copy locations and register values of same

def scalars which last appeared in a CFG node. If the CFG node doesnot havedef or

usescalars for live lists, the scalars retrieve tile location and register values from the

closest CFG node.

2.F Stitch node insertion

A Stitch node ensures consistency between two adjacent nodes. In some

cases, a live-out list of a predecessor node and a live-in list of a successor node do

not match. Therefore, inconsistency occurs between two live lists in tile locations
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add d e fadd a b c
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add d,e,fadd a,b,c

(a) initial memory placement
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(a) initial memory placement

Live-out : a,b

add a,b,c add d,e,f

Tile 0 Tile 1

Live-in : b(1,$13), c(0,$14), e(1,$10), f(1,$16)

(b) Making a live-in list and a live-out list of each CFG node

type: scalar(tile, register)
( ,$ ), ( ,$ ), ( ,$ ), ( ,$ )

Live out : a(1 $12) b(0 $15)

add a,b,c add d,e,f

Tile 0 Tile 1

Live-out : a(1,$12), b(0,$15)

(c) Assigning locations and registers to scalars in a live-in list and a live-out list of each CFG node

Live-in : b(1,$13), c(0,$14), e(1,$10), f(1,$16)

add a(0,$16), b(0,$17),c(0,$18) add d(1,$14),e(1,$15),f(1,$19)

Tile 0 Tile 1

Live-out : a(1,$12), b(0,$15)

(d) Assigning locations and registers to scalar of instructions in each CFG node

Figure 2.6: Scalar assignment flow example ((a, d) : def scalars, (b, c, e, f) : use
scalars)



19

of scalars. The compiler deals with such a conflict, usingstitch nodes. This phase

handles possible mismatches of scalar operand assignment.The procedure is decided

mechanically and is not greatly related to optimization. Appendix B shows how to

insert a stitch node.

2.G Routing instruction generation

Based on ‘def-use’ chains, data dependency between two instructions across

tiles is constructed. If the data dependency is across tiles, routing instructions are

explicitly generated to transfer a scalar from one instruction, which produces a output,

to another instruction, which consumes an input through dimensional order routing [6].

Appendix C shows how to generate routing instructions.

2.G.1 Optimization with ReDefScalars

Previous data analysis for routing generation was constructed with an as-

sumption that only one tile remained alive. This type of analysis results in network

overhead on multi tiles. The analysis could cause redundantcodes to spread over on-

chip networks. Consider Figure 2.7. Tile 0 producesa in add and tile 15 consumes

it in instructionssub andmul. According to routing generation, routing instructions

should be created for each scalar on tile 15.

This type of data analysis ignores newdefs in routing generation although

scalars routed over networks become newdefs on destination tiles.ReDefScalarsis

able to those make those scalar values into newdefs if no other instructions exist to

define the scalar values between two instructions.

The compiler createsReDefScalarsfor each tile. It contains scalar values

and virtual registers. Whenever a scalar is routed to a destination tile in a CFG node,

the tile writes a routed scalar and a virtual register inReDefScalarsof a tile. If the

scalar is re-defined in other tiles, the scalar is deleted inReDefScalars. Otherwise, the
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tile 0 tile 15

Without “ReDefScalars”

add a,b,c

sub e,d,a

mul g,f,a

tile 0 tile 15

routing  scalar “a”

With “ReDefScalars”

Using the same “a”

on tile 15

sub e,d,a

mul g,f,arouting  scalar “a”

add a,b,c

routing  scalar “a”

Figure 2.7: Examples ofwithout ReDefScalarsandwith ReDefScalars((a on tile 0,e,
g on tile 15) : def scalars, (a, d, f on tile 15) : use scalars)
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scalar survives inReDefScalars. If the scalar inReDefScalarsof a tile exists, the scalar

is reused in the tile without routing generation. In a case like 2.7, 8 cycles are saved,

avoiding routing generation between tile 0 and tile 15.

2.H Register allocator

So far, all registers employed in every instruction are virtual registers or spe-

cial registers such as the stack pointer or return address register. In register allocation,

the compiler replaces virtual registers with real machine registers. To facilitate this

process, we have adapted a standard coloring method used in [7] for multiple tiles.

The standard coloring method is different from a coloring method in two ways.

1. Each tile owns its own register allocator as a slave. A single master register

allocator supervises whole register allocators in every tile. The master allocator

forces register allocators to run until all register allocations are not necessary

anymore.

2. Stitch nodes are excluded in register allocation. All instructions institchnodes

comprise routing instructions in which registers are defined in a switching unit

and physically allocated in advance.

2.I Assembly generation

The last phase of the compiler enables the analysis of a single stream code

and the creation of assembly ‘.S’ files for multiple streams.‘.S’ files incorporate two

assembly code sections (one for a computation unit and another for a switching unit).

The instructions on a single stream are stored into each ‘.S’files based on their tile

locations. Instructions for computation units are moved toa section of computation

codes of the ‘.S’ files and instructions regarding to the switch unit are placed in a

section of switch codes.
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Evaluation

The evaluation section of this thesis uses the complete compiler infrastruc-

ture, described in Chapter 2, to go from an XML description ofthe program to final

object code for the Raw tiled microprocessor. In order to narrow the scope of inquiry,

we focus on the evaluation of automatic genetic-algorithm-based memory placement.

First, we present how experimental infrastructure is organized. Second, we evaluate

the effectiveness of using a genetic algorithm to automatically perform memory place-

ment.

3.A Experimental infrastructure

We implemented memory placement using a genetic algorithm.Figure 3.1

shows the execution flow of memory placement in genetic algorithm. First, it obtains

a list of all memory objects in the source code. Then, it configures the parameters that

control the genetic algorithm: the number of generations, the size of the population, the

crossover rate and the mutation rate. After that, it createsan initial random population

in which each memory object has been assigned a random tile number. To evaluate

the efficiency of the members population (in this experiment, the tile assignment of all

memory objects), a fitness value is generated through the measurement of the actual

execution time. The genetic algorithm selects parent chromosomes which survive to

22
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in next generation. Crossover and mutation are applied to the parents. Finally, a new

generation is created with parental crossover and mutation. It continues to compare

fitness values and to select the best chromosome until it generates the last generation.

A crucial factor in producing good object code from genetic algorithm is the

accuracy of the fitness function. The more precise the fitnessfunction, the more likely

a genetic algorithm is able to discover solutions that optimize the many factors that

contribute to performance. We employed the Raw cycle-accurate simulator (which is

accurate to the exact cycle for over 250,000 lines of test code) in conjunction with the

actual generated code and a sample data set in order to evaluate the fitness of a gen-

erated program. This approach has two advantages over usingcompiler estimates of

program run-time. First, it does not burden the compiler-writer with the task of deter-

mining an appropriate algorithm for estimating execution time on a given algorithm.

Understanding the first-, second-, and third- order effectsof inter-related program pa-

rameters is a challenging task requiring not only high levels of skill but also substantial

experience with a particular architecture. Relying on thisdeep level of understanding

would impact our ability to quickly build compilers for new tiled architectures in or-

der to explore the design space of tiled architectures. Second, using actual execution

times reflects the most accurate possible estimate of runtime. This allows the genetic

algorithm to take advantage of – or avoid – unexpected performance anomalies that

result from the interaction of different factors in a program (e.g., register pressure,

scheduling, and cache size).

Although this compiler is created to target the class of general tiled archi-

tectures, for accurate results, it remains to optimize for aspecific machine. For this

purpose, we choose the MIT Raw Tiled Microprocessor, for which a detailed cycle-

accurate simulator exists. Evaluation of benchmarks is performed on a cycle-accurate

simulator of the Raw machine. The compiler is made cognizantof only the most ba-

sic hardware characteristics (instruction types, number of tiles) of the Raw machine

through the use of an XML description.
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Figure 3.1: Genetic Algorithm in memory placement of the compiler
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3.B High-level Source code transformations

The benchmarks we evaluate areconvolution, dot-product andhaar. A

front-end part of this compiler analyzes input code and findsmemory objects and

scalars which are able to be parallelized. The compiler partitions memory objects

into a number of memory objects that is on the same order as thenumber of tiles that

is to be used to accelerate the program. Scalars, which control conditional branches,

are also duplicated over all tiles.

Convolution is a discrete mathematical function which expresses the amount

of overlap of onekernelwhen it passes one matrixA. Figure 3.2 shows how memory

objects and scalars are transformed through a front-end of the compiler inconvolution.

Input memory objectA is broken down into 16 memory objects. The compiler divides

its width and height by 4. Each tile accesses the memory object by manipulated width

and height. A scalarsum is also duplicated because it will be store in duplicatedC.

All control scalars such as width, height, uc and vc are replicated all tiles to eliminate

transporting those scalars over tiles.

Dot-product takes two vector memory objects and multiplies each element

with the same index in the two vectors (i.e., an elementwise vector multiplication). It

returns the sum of these multiplied elements. Figure 3.3 shows that the compiler front

end applies almost the same strategy as it does fordot-product. The input memory

objectsA andB are distributed across tiles. The scalarsum is also replicated.Dot-

product returns the sum before the control is handed over to a callee.

Haar works by transforming an array of values into an array of average and

differences-from-the-average. Figure 3.4 shows thatHaar in this experiment is multi-

layerHaar. First, a code runs the firstHaar computation with original memory object

input. Then, a front half of the first input becomes an input for next level of theHaar

computation. The program continues thehaar filtering until the layer number is one.

Through the code transformation, the compiler partitions the input object forHaar

into 16 memory objects, just like for the other algorithms above. A recursive call is
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Table 3.1: Genetic algorithm parameters (population=the number of different geno-
types per generation)

size of generations 100
size of populations 200

crossover rate 90%
mutation rate 10%

transformed into 4 iterations in a single function.

3.C Speedup of the genetic algorithm

In order to evaluate our automatic memory placement algorithm, we evalu-

ate the benefit of a manually determined memory placement, which evenly distributes

memory objects across tiles. The reasoning is that, if memory objects are evenly dis-

tributed over all tiles, this results in high levels of memory parallelism, and at least in

theory, the best performance is gained with fully parallelized memory objects. We

measure how much the genetic algorithm improves performance, compared to the

manual memory placement. Parameters used from the genetic algorithm are described

in Table 3.1.

Convolution uses two matrixesA (64×64),C (64×64) and akernel (4×4).

Figure 3.7 shows the interesting result that, forconvolution, an unevenly-distributed

memory object layout created by the genetic algorithm can outperform the evenly-

distributed manual placement.Convolution has no relationship between matrixes. In

Figure 3.2,convolution betweenA andkernel is stored insum. After akernel is

applied toA, thesum is written inC. Therefore, evenly distributed manual placement

has no effect on this evaluation. A result of evaluation depends on location of each

scalarsum which sumsconvolution values from matrixA and delivers it to matrix

C. The genetic algorithm has no problem with assigning memoryobjects at random.
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A[0…width][0…height]
C[0…width][0…height]
for x:=0 to x<width do

for y:=0 to y<height do
sum: = 0sum: = 0
for v:=-vc to v<=vc do

for u:=-uc to u<=uc do
sum += A[x+v][y+u] * kernel[v+vc][u+uc]

C[x][y]:=sum

A_0[0…width/4][0…height/4]  =  A[0…width/4][0…height/4]
A_1[0…width/4][0…height/4]  =  A[width/4…width*2/4][0…height/4]

A_15[0…width/4][0…height/4]  =  A[width*3/4…width][height*3/4…height]

C_0[0…width/4][0…height/4]  =  C[0…width/4][0…height/4]
C 1[0…width/4][0…height/4] = C[width/4…width*2/4][0…height/4]

…

C_1[0…width/4][0…height/4]    C[width/4…width 2/4][0…height/4]

C_15[0…width/4][0…height/4]  =  C[width*3/4…width][height*3/4…height]

for x:=0 to x<width/4  do
f 0 t <h i ht /4 d

…

for y:= 0 to y<height /4 do
sum_0:=0 ; sum_1:=0 ; sum_2:=0 ; …  sum_14=0; sum_15=0 
for v:=-vc to v<=vc do

for u:=-uc to u<=uc do
sum _0:= sum_0 + A_0[x+v][y+u]  *  kernel[v+vc][u+uc]
sum 1:= sum 1 + A 1[x+v][y+u]  *  kernel[v+vc][u+uc]_ _ _ [ ][y ] [ ][ ]
sum _2:= sum_2 + A_2[x+v][y+u]  *  kernel[v+vc][u+uc]
sum _3:= sum_3 + A_3[x+v][y+u]  *  kernel[v+vc][u+uc]
sum _4:= sum_4 + A_4[x+v][y+u]  *  kernel[v+vc][u+uc]
sum _5:= sum_5 + A_5[x+v][y+u]  *  kernel[v+vc][u+uc]
sum _6:= sum_6 + A_6[x+v][y+u]  *  kernel[v+vc][u+uc]
sum 7:= sum 7 + A 7[x+v][y+u] * kernel[v+vc][u+uc]sum _7:= sum_7 + A_7[x+v][y+u]    kernel[v+vc][u+uc]
sum _8:= sum_8 + A_8[x+v][y+u]  *  kernel[v+vc][u+uc]
sum _9:= sum_9 + A_9[x+v][y+u]  *  kernel[v+vc][u+uc]
sum _10:= sum_10 + A_10[x+v][y+u]  *  kernel[v+vc][u+uc]
sum _11:= sum_11 +  A_11[x+v][y+u]  *  kernel[v+vc][u+uc]
sum _12:= sum_12 + A_12[x+v][y+u]  *  kernel[v+vc][u+uc]
sum _13:= sum_13 + A_13[x+v][y+u]  *  kernel[v+vc][u+uc]
sum _14:= sum_14 + A_14[x+v][y+u]  *  kernel[v+vc][u+uc]
sum _15:= sum_15 + A_15[x+v][y+u]  *  kernel[v+vc][u+uc]

C_0[x][y]:=sum_0; C_1[x][y]:=sum_1; … C_14[x][y]:=sum_14; C_15[x][y]:=sum_15

Figure 3.2:convolution pseudocode after high-level transformation ( width = width
of inputA, height = height of inputA, vc : (width of kernelB)/2 , uc : (width of kernel
B)/2) )
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A[0…width][0…height]
B[0…width][0…height]
sum:=0
for i:=0 to width do 

f j 0 t h i ht dfor j:=0 to height do
sum:=sum+A[i,j]*B[i,j]

return sum

A_0[0…width/4][0…height/4]  =  A[0…width/4][0…height/4]
A_1[0…width/4][0…height/4] =  A[width/4…width*2/4][0…height/4]

A_15[0…width/4][0…height/4]  =  A[width*3/4…width][height*3/4…height]

…

B_0[0…width/4][0…height/4]  =  B[0…width/4][0…height/4]
B_1[0…width/4][0…height/4]  =  B[width/4…width*2/4][0…height/4]

B 15[0 width/4][0 height/4] = B[width*3/4 width][height*3/4 height]

…

B_15[0…width/4][0…height/4]    B[width 3/4…width][height 3/4…height]

sum_0:=0 ; sum_1:=0 ; sum_2:=0 ; …  sum_14=0; sum_15=0 

for i:=0 to width/4  do 
for  j:=0 to height/4  do 

0 0 A 0[i j] * B 0[i j]sum_0:=sum_0  +  A_0[i,j] * B_0[i,j]
sum_1:= sum_1 +  A_1[I,j]  *  B_1[i,j]
sum_2:=sum_2  +  A_2[i,j]  *  B_2[i,j]
sum_3:=sum_3  +  A_3[I,j]  *  B_3[i,j]
sum_4:=sum_4  +  A_4[i,j]  *  B_4[i,j]
sum 5:=sum 5  +  A 5[I,j]  *  B 5[i,j]_ _ _ [ ,j] _ [ ,j]
sum_6:=sum_6  +  A_6[i,j]  *  B_6[i,j]
sum_7:=sum_7  +  A_7[I,j]  *  B_7[i,j]
sum_8:=sum_8  +  A_8[i,j]  *  B_8[i,j]
sum_9:=sum_9  +  A_9[I,j]  *  B_9[i,j]
sum_10=sum_10  +  A_10[i,j]  *  B_10[i,j]
sum 11: sum 11 + A 11[I j] * B 11[i j]sum_11:=sum_11 + A_11[I,j] * B_11[i,j]
sum_12:=sum_12  +  A_12[i,j]  *  B_12[i,j]
sum_13:=sum_13  +  A_13[I,j]  *  B_13[i,j]
sum_14:=sum_14  +  A_14[i,j]  *  B_14[i,j]
sum_15:=sum_15  +  A_15[i,j]  *  B_15[i,j]

return sum_0+sum_1+….+sum_15

Figure 3.3:dot-product pseudocode after high-level transformation (width : widthof
A, height : height ofA)
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A[0…width]

haar_filter( A, N, L)
w=N/2

A_0[0…width/16] = A[0…width/16]
A_1[0…width/16] = A[width/16…width*2/16]

A_15[0…width/16] = A[width*15/16…width]
N/2

…

for i:=0 to w-1 do
A’[i]=A[2i]+A[2i-1]
A’[i+w]=A[2i]+A[2i-1]

A=A’
if L-1>0

haar filter( A N/2 L-1)

w:=N/2

for i:=0 to w-1 do
A_0[i]:= A_0[2i]  +  A_0[2i-1]
A_0[i+w]:=A_1[2i]  +  A_1[2i-1]
A_1[i]:= A_2[2i]  +  A_2[2i-1]
A_1[i+w]:=A_3[2i]  +  A_3[2i-1]haar_filter( A, N/2, L-1)
A_2[i]:= A_4[2i]  +  A_4[2i-1]
A_2[i+w]:=A_5[2i]  +  A_5[2i-1]

A_7[i]:= A_14[2i]  +  A_14[2i-1]
A_7[i+w]:=A_14[2i]  +  A_14[2i-1]

A 8[i]:= A 0[2i] - A 0[2i-1]

…

A_8[i]: A_0[2i] A_0[2i 1]
A_8[i+w]:=A_1[2i]  +  A_1[2i-1]
A_9[i]:= A_2[2i]  - A_2[2i-1]
A_9[i+w]:=A_3[2i]  +  A_3[2i-1]
A_10[i]:= A_4[2i]  - A_4[2i-1]
A_10[i+w]:=A_5[2i]  +  A_5[2i-1]

A 15[i] A 14[2i] A 14[2i 1]

…

A_15[i]:= A_14[2i]  - A_14[2i-1]
A_15[i+w]:=A_15[2i]  +  A_15[2i-1]

for i:=0 to w-1 do
A_0[i]:= A_0[2i]  +  A_0[2i-1]
A_0[i+w]:=A_1[2i]  +  A_1[2i-1]…

A_3[i]:= A_6[2i]  +  A_6[2i-1]
A_3[i+w]:=A_7[2i]  +  A_7[2i-1]

A_4[i]:= A_0[2i]  - A_0[2i-1]
A_4[i+w]:=A_1[2i]  +  A_1[2i-1]

A 7[i]:= A 6[2i] - A 6[2i-1]

…

A_7[i]: A_6[2i] A_6[2i 1]
A_7[i+w]:=A_7[2i]  +  A_7[2i-1]

for i:=0 to w-1 do
A_0[i]:= A_0[2i]  +  A_0[2i-1]
A_0[i+w]:=A_1[2i]  +  A_1[2i-1]
A_1[i]:= A_2[2i]  +  A_2[2i-1]
A 1[i+ ] A 3[2i] + A 3[2i 1]A_1[i+w]:=A_3[2i] + A_3[2i-1]

A_2[i]:= A_0[2i]  - A_0[2i-1]
A_2[i+w]:=A_1[2i]  +  A_1[2i-1]
A_3[i]:= A_2[2i]  - A_2[2i-1]
A_3[i+w]:=A_3[2i]  +  A_3[2i-1]

for i:=0 to w-1 do
A_0[i]:= A_0[2i]  +  A_0[2i-1]
A_0[i+w]:=A_1[2i]  +  A_1[2i-1]

A_1[i]:= A_0[2i]  - A_0[2i-1]
A_1[i+w]:=A_1[2i]  +  A_1[2i-1]

Figure 3.4: multi-layerhaar pseudocode after high-level transformation (A : memory
object input,N : length of the memory object,L : layer)
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s 5 0 0 0 06 0 0 0 07 0 0 0 0
cycl e 1 0 0 0 02 0 0 0 03 0 0 0 04 0 0 0 0 m a n u a lg e n e t i c

# o f t i l e s01 0 0 0 0 1 2 4 8 1 6
Figure 3.5: Execution time forconvolution with varying numbers of tiles. The genetic
algorithm runs for 100 generations with population size 200.

From the analysis ofconvolution assembly code, the manual placement results in se-

rialized routing instructions, which cause low performance of object codes. According

to the Raw profiler the version generated via manual placement spends 30,870 cycles

while the version generated by the genetic algorithm spendsonly 21,107 on a part of

serialized routing generation. Figure 3.7 illustrates howmemory objects are arranged

on 16 tiles. From this figure, we speculate that if the total size of memory objects

assigned to a tile is significantly less than the data cache size, the load imbalance due

to uneven distribution of memory objects is less important than the resulting impact on

other instructions’ and operands’ placement, scheduling and routing.

In dot-product, (sum = A[] · B[]), on two tiles and four tiles, the perfor-

mance of the genetic algorithm is better than the manual placement by about 2,300

cycles and about 800 cycles respectively. This result is dueto a relationship between

a memory objectC(16×16), which is only seen in assembly code and stores the result

from dot-product of A(16×16) andB(16×16). According to instruction scheduling, a

location of a scalar and a location of related memory object are not guaranteed to be in

the same tile. On two tiles, locations of a series of half of scalars (sum) are different
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s 2 0 0 0 02 5 0 0 0
cycl e 5 0 0 01 0 0 0 01 5 0 0 0 m a n u a lg e n e t i c

# o f t i l e s0 1 2 4 8 1 6
Figure 3.6: Execution time fordot-product. The genetic algorithm runs for 100 gen-
erations with population size 200.

from locations of the memory objects (c) when the compiler uses a manual placement.

It generates serialized routing instructions at the end of aCFG node. Consequently,

the routing instructions becomes a severe bottleneck, preventing other tiles from ad-

vancing to next CFG node. On the other hand, the genetic algorithm randomly assigns

memory objects and avoids continuous serialized routing generation.

Contrary to previous results, an intuitive manual scheme on8 tiles and 16

tiles performs better than the genetic algorithm.Dot-product shows the best perfor-

mance when all memory objects related to computation belongto same tile (in this

case,A andB in same tile). Even though the genetic algorithm prevents serialized

routing instructions, it can not prevent the communicationoverhead between mem-

ory objects fordot-product computation. As more tiles are included indot-product,

memory objects are more dispersed over tiles in the genetic algorithm. We pay atten-

tion to a low probability of memory objects with the same tilelocations because the

genetic algorithm distributes memory objects at random. Tables 3.2 and 3.3 present

how far memory objects are assigned among memory objects. Note that on 2 tiles,

13 sets ofA andB are in same tile while only 2 sets ofA andB are in same tile on
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a 1 1 1 1 0 0 0 1 1 1 0 0 1 1 1 1
b 0 0 1 1 0 0 0 1 1 1 0 0 1 0 1 1
c 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0

Table 3.2: Tile locations of memory objects on 2 tiles in a genetic algorithm ofcon-
volution

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a 7 7 6 3 9 14 1 1 8 1 12 7 12 14 1 13
b 8 4 15 13 9 11 14 5 15 1 10 5 13 7 6 2
c 8 11 15 13 5 11 2 14 11 11 3 0 11 11 6 9

Table 3.3: Tile locations of memory objects on 16 tiles in a genetic algorithm ofcon-
volution

16 tiles. ON 16 tiles, Routing overhead between memory objects causes a decline in

performance to computeA[] · B[].

After transformation,Haar includes only one matrix (16 distributed objects,

A0..A15). The result indicates that the genetic algorithm is betterthan manual place-

ment on 2 tiles, 4 tiles and 8 tiles. In the first phase ofhaar, all input objects are used.

However, in the second phase ofhaar only half of the memory objects (A0..A7) are

used in one CFG node while the rest of memory objects (A8..A15) are used in another

CFG node.Haar continues until it has no memory objects as input. Manual placement

keeps half of the tiles idle in the CFG node in firsthaar. Manual placement keeps only

quarter of the tiles active in the CFG node in secondhaar. In the end, a tile with A0 is

overloaded because it is utilized in every iteration ofhaar. From the control flow strat-

egy of this compiler, we note that in a given CFG node, tiles with little scheduled work

must wait for tiles that have more assigned work. This makes the genetic algorithm

more suitable forhaar because idle memory objects and active memory objects can
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idle (cycle) active (cycle)
2 tiles 128 4224
4 tiles 128 3264
8 tiles 128 2488
16 tiles 128 1997

Table 3.4: Total execution cycles of an active tile and an idle tile in a CFG node of
haar

be placed in same tile within the CFG node. On 16 tiles, manualplacement produces

better qualified codes, because the impact of the imbalance is diminished as the work

becomes more spread out. Thus, as memory objects are distributed, the idle time is

also reduced. Table 3.4 shows that the execution time gap between idle tiles and active

tiles keeps shrinking as the number of tiles increases inhaar.

3.C.1 Performance improvement in more generations

Figure 3.9, 3.10 and 3.11 indicate that as generations elapse, the genetic

algorithm produces faster executable codes. To help us analyze the performance im-

provement, three tables shows that overall speedups dependmost on the reduction

of receive-stalls. We observe how many gains are obtained ineach case. After 100

generations on 16 tiles, receive-stalls change from 4,261 cycles from 3,496 cycles in

dot-product. They decrease from 21,667 cycles to 16,934 cycles inconvolution and

from 3,081 cycles to 2,875 cycles inhaar. As a result, the genetic algorithm makes ex-

ecutable codes that observe relatively less communicationoverhead between memory

objects.
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A 5C 1 A 3C 5 A 1 4C 4 A 8A 9Tile 0 Tile 1 Tile 2 Tile 3

Tile 4 Tile 5 Tile 6 Tile 7C 1 3 A 1 1 A 1 3C 3 A 6A 7C 7A 0Tile 4 Tile 5 Tile 6 Tile 7

Tile 8 Tile 9 Tile 10 Tile 11A 1 5C 2C 6 A 1 C 1 2A 1 2 A 1 0 A 2tile 12 tile 13 tile 14 tile 15A 1 2C 1 1C 1 5 A 1 0C 8C 1 4 A 2A 4C 9 C 0C 1 0
Tile 4 Tile 5 Tile 6 Tile 7Tile 4 Tile 5 Tile 6 Tile 7

GeneticA 0C 0 A 1C 1 A 2C 2 A 3C 3Tile 0 Tile 1 Tile 2 Tile 3

Tile 4 Tile 5 Tile 6 Tile 7A 4C 4 A 5C 5 A 6C 6 A 7C 7Tile 4 Tile 5 Tile 6 Tile 7

Tile 8 Tile 9 Tile 10 Tile 11A 8C 8 A 9C 9 A 1 0C 1 0 A 1 1C 1 1
tile 12 tile 13 tile 14 tile 15A 1 2C 1 2 A 1 3C 1 3 A 1 4C 1 4 A 1 5C 1 5

Manual

Figure 3.7: Comparing the genetic algorithm and manual placement of memory objects
on 16 files forconvolution
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s 3 0 0 0 03 5 0 0 04 0 0 0 04 5 0 0 0
c ycl e 1 0 0 0 01 5 0 0 02 0 0 0 02 5 0 0 03 0 0 0 0 m a n u a lg e n e t i c

# o f t i l e s05 0 0 0 1 2 4 8 1 6
Figure 3.8: Execution time forhaar. The genetic algorithm runs for 100 generations
with population size 200.
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3 0 0 0 0
s 2 0 0 0 02 5 0 0 0 r e c e i v e � s t a l l si n t e r r u p t � s t a l l sm i s p r e d i c t e d � s t a l l scycl e 1 0 0 0 01 5 0 0 0 m i s p r e d i c t e d s t a l l sb y p a s s � s t a l l si m e m � s t a l l ss e n d � s t a l l s5 0 0 01 0 0 0 0 r e s o u r c e � s t a l l sc a c h e � s t a l l sn o n � s t a l l s# o f g e n e r a t i o n s0 1 3 5 7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 3 2 5 2 7 2 9 3 1 3 3 3 5 3 7 3 9 4 1 4 3 4 5 4 7 4 9

Figure 3.9: 50 generations ofconvolution on 16 tiles. The graph shows, for each
generation, where cycles are spent in the most fit specimen inthe population. Non-
stalls are cycles spent successfully executing instructions. Cache-stalls are cycles spent
cache missing. Resource-stalls (which do not occur in theseprograms) are cycles
spent waiting for a functional unit to become available. Bypass-stalls are cycles spent
waiting for a value to emerge from a local functional unit. Mispredicted-stalls are
stalls caused by branch mispredictions. Interrupt-stalls(which do not occur here) are
cycles lost because of interrupts. Send-stalls are cycles spent waiting for a network
output port to have free buffer space. Finally, receive-stalls are cycles spent waiting
for an incoming value. Interestingly, of these, send-stalls and receive-stalls are the
stalls most optimized by changing memory object placement.In contrast, cache-stalls
are relatively infrequent and thus do not constitute a significant enough factor in overall
execution time.
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6 0 0 07 0 0 0
4 0 0 05 0 0 0 r e c e i v e ª s t a l l si n t e r r u p t ª s t a l l sm i s p r e d i c t e d ª s t a l l ss 3 0 0 04 0 0 0 pb y p a s s ª s t a l l si m e m ª s t a l l ss e n d ª s t a l l scycl e
1 0 0 02 0 0 0 r e s o u r c e ª s t a l l sc a c h e ª s t a l l sn o n ª s t a l l s0 1 3 5 7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 3 2 5 2 7 2 9 3 1 3 3 3 5 3 7 3 9 4 1 4 3 4 5 4 7 4 9# f t i# o f g e n e r a t i o n s

Figure 3.10: 50 generations ofdot-product on 16 tiles

8 0 0 09 0 0 01 0 0 0 0 i t l l5 0 0 06 0 0 07 0 0 0 r e c e i v e Ú s t a l l si n t e r r u p t Ú s t a l l sm i s p r e d i c t e d Ú s t a l l sb y p a s s Ú s t a l l ss 3 0 0 04 0 0 05 0 0 0 i m e m Ú s t a l l ss e n d Ú s t a l l sr e s o u r c e Ú s t a l l sh t l lcycl e
01 0 0 02 0 0 0 c a c h e Ú s t a l l sn o n Ú s t a l l s1 3 5 7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 3 2 5 2 7 2 9 3 1 3 3 3 5 3 7 3 9 4 1 4 3 4 5 4 7 4 9# o f g e n e r a t i o n s

Figure 3.11: 50 generations ofhaar on 16 tiles
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Conclusion

In the field of computer architecture, the trend has become tointegrate ex-

ponentially more tiles into a single chip. Although single tile performance is largely

dictated by microarchitecture, fast multi-tile performance can only be achieved through

the use of a robust compiler and runtime infrastructure. In this thesis, we have pro-

posed a methodology for constructing this infrastructure.

This thesis presents a complete compiler backend that generates parallel code

for tiled microprocessors. It addresses complexity issuesby separating the concerns

of correctness and optimization. The optimization component uses standard machine

learning algorithms (genetic programming), while the correctness component ensures

that valid code is generated regardless of the input from themachine learning algo-

rithm. The evaluation measures the compiler’s ability to tune the placement of mem-

ory objects across tiles; in several cases it is able to perform placement better than

a graduate student. Furthermore, it does this with no understanding, beyond what is

necessary to generate correct code, of the particular target architecture (Raw).

Our compiler for tiled architectures includes several phases. In theXML

parserphase, the compiler inputs two files and constructs the CFG graph. IR transla-

tion deals with instructions which depend on the hardware characteristics in the tiled

architecture. Inhome assignment, all of memory objects are assigned to specific home

38
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tile. In scalar data analysis, data dependency lists are created. Ininstruction assign-

ment, all instructions have tile locations based on modified UAS.In scalar location

assignment, tile locations are allotted scalars in instructions, live-in lists and live-out

lists of a CFG node. Institch node insertion, the compiler adds stitch nodes to force

two adjacent CFG nodes to become consistent in live-in listsand live-out lists. In

routing instruction generation, the compiler creates routing instructions, transporting

scalars between tiles. Inregister allocation, a graph-coloring of the compiler replaces

virtual registers with real ones. Finally, the compiler generates codes executable on

every tile.

To evaluate the genetic algorithm for memory placement, we first evaluated a

manual placement in which memory objects are evenly distributed across tiles. Then,

we evaluated the use of a genetic algorithm in three benchmarks (convolution, dot

product and haar). To obtain fitness values, we used execution time on a cycle-

accurate simulator as the fitness function in order to attainmore precise time measure-

ments than heuristic in-compiler time approximations. As the generations elapse, the

genetic algorithm converges with execution times that are close to the execution time

of manual placement or better. Results of three benchmarks shows better performance

in most cases. We observe that as the generation progress, performance is improved

on most of tiles. Indot, a genetic algorithm shows improved performance on 2 tiles

(19%) and 4 tiles (13%). Inconvolution, a genetic algorithm always shows better

performance (35%–41%) than manual placement. On 16 tiles, it outperforms manual

placement by 41%. Inhaar, the genetic algorithm outperforms manual placement by

15% on 2 tiles and 16% on 4 tiles.

For future work, the idea of using machine learning in the compiler to re-

move complexity could be further explored in the context of other NP-hard problems in

tiled architecture compilation such as scalar assignment,instruction scheduling, rout-

ing generation and register allocation. Also, comparisonsto existing algorithms to

determine the net benefit in terms of complexity and quality of results could be evalu-
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ated. A last interesting topic is to understand the impact ofusing compile-time fitness

evaluation functions. This could potentially reduce the time required to evaluate a

candidate program in the genetic algorithm.



Appendix A

Flow of instruction assignment

Figure A.1 depicts how to assign instructions across all tiles in compile-

time. We sort all instructions by ready-time (ready-time refers to the time when an

instruction is capable of occupying a computation unit). First, a list of data-ready

instructions is formed.

Second, if the compiler acknowledges that a ready instruction has no data

dependency with any other instructions, the compiler places the instruction in best slot

among empty slots. A best slot refers to the location a place where an instruction can

stay as close to center of tile configuration as possible. It avoids the worst distance

from every other dependent tiles. It results in the acquisition of convincing average

network latency from any tile. In Figure A.2, a ready-instruction will be placed into

tile 5 in cycle time 1.

Third, if only one scalar in an instruction is dependent on another instruction,

the compiler attempts to find the earliest empty slot in the same space column as an

instruction with the scalar. It places a dependent instruction in the empty slot.

Fourth, if both scalars in an instruction rely on scalars in other instructions,

the following different approach is adopted.

1. The compiler compares the ready time of two instructions producing scalar val-

ues and selects an instruction having a late ready time. It inserts a dependent
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While ( Unprocessed instructions exist)

data dependency?

only one scalar 

no

yes
Assign and schedule it

on the same slot

as a dependent instruction

with late ready time 

Assign and schedule it

on any earlist slot

Assign and schedule it

on the same slot

as a dependent instruction 

no

yes

Assign and schedule

route instructions 

Figure A.1: A framework for instruction assignment
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Figure A.2: A space-time map of 8 tiles (cu : a slot for a computation unit, su : a slot
for a switching unit)

instruction in the same tile where the instruction was executed. The gap between

routing time and time waiting for a late ready instruction might be compromised.

2. After routing instructions are generated in a map on dimensional order routing

algorithm [6], they are inserted into slots of a map.

We have modeled a switch which holds only one switch instruction, without

incoming buffers and outgoing buffers. If one switching instruction enters a slot in

advance, any other instructions which attempt to enter the slot will be pushed into

the next-cycle slot. It results in switching units changingidle status. Nevertheless,

the current compiler supports this feature because it promises correct execution and

prevents a deadlock in interconnection networks.



Appendix B

Stitch node insertion

In a CFG graph, two adjacent basic nodes, which are in the samecontrol

path, always have to remain consistent with a live-in list ofa successor node and a

live-out list of a predecessor node to ensure generation of correct routing instructions.

However, in some cases, this premise might be broken. Let’s take a look at Figure B.1.

In a loop, a live-in list of CFG node 2 should be equivalent to alive-out list

of CFG node 1 with respect to scalar locations and virtual registers. Also, a live-out

list of CFG node 3 should be identical to live-in lists of CFG node 2. (a) of Figure B.1

illustrates that the two conditions are contracted. To address this problem, a stitch

node is inserted between CFG node 2 and CFG node 3 ((b) of Figure B.1). This stitch

node contains routing instructions which transport scalarvalues between CFG nodes,

that have different ideal scalar locations. A live-in list of a stitch node is copied from a

live-out list of a predecessor of a stitch node. Conversely,a live-out list of a stitch node

is obtained from a live-in list of a successor of a stitch node. From the live-in list and

the live-out list, the stitch node generates routing instructions. As a result, consistency

between CFG nodes is ensured throughstitchnodes.
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Node 1Node 1 L i v e ý o u t :a ( 1 , $ 1 3 ) , b ( 2 , $ 1 2 )Node 1L i v e ý o u t :a ( 1 , $ 1 3 ) , b ( 2 , $ 1 2 )Node 1

L i v e ý i n :a ( 1 , $ 1 3 ) , b ( 2 , $ 1 2 )
Stitch

d L i v e ý o u t :a ( 0 , $ 1 2 ) , b ( 2 , $ 1 3 )nodeL i v e ý i n :a ( 0 , $ 1 2 ) , b ( 2 , $ 1 3 )
Node 2 L i v e ý i n :a ( 0 , $ 1 2 ) , b ( 2 , $ 1 3 )

Node 2

L i v e ý o u t :a ( 2 , $ 1 5 ) , b ( 3 , $ 1 0 )Node 2

L i v e ý o u t :a ( 2 , $ 1 5 ) , b ( 3 , $ 1 0 )Node 2L i v e ý i n :a ( 2 , $ 1 5 ) , b ( 3 , $ 1 0 )
Node 3 L i v e ý i n :a ( 2 , $ 1 5 ) , b ( 3 , $ 1 0 )

Node 3

L i v e 0 o u t :a ( 0 , $ 1 2 ) , b ( 2 , $ 1 3 )Node 3

L i v e 0 o u t :a ( 0 , $ 1 2 ) , b ( 2 , $ 1 3 )Node 3

(a) before stitch node insertion (b) after stitch node insertion

Figure B.1: A stitch node insertion example (a, b : scalars in a live-in list and a live-out
list)



Appendix C

Routing instruction generation

Figure C.1 portrays how routing instructions are generated. Suppose that a

scalara of mul on tile 3 is dependent on scalara of codeadd on tile 0.mul is aware

of the location from whicha has been retrieved, based on previous scalar assignment.

Scalara is transferred to a switch. On behalf of the computation unit, the switch on

tile 0 sends the value to another switch via an interconnection network. In the end, a

switch on tile 3 receives the value and delivers it to a computation unit.

Routing generation occurs in four regions within a CFG node.All routing

generation must be carried out through one of four processes.

1. Some scalar values are transported from live-in lists to consuming instructions.

2. Some scalar values travel from producing instructions toconsuming instructions.

3. Some scalar values are transferred from producing instructions to live-out lists.

4. The remaining of scalar values have to be sent from live-inlists to live-out lists.

All routing instructions created in this phase reside only within a CFG node.

Inter-CFG routing instructions are eliminated through a consistent live-in list and live-

out list of scalar assignment andstitchnodes.
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add a,b,c mul e,a,d

Tile 0 Tile 3

data dependency

add a,b,c

move outreg,a

route E,outreg

mul e,a,d

move a,inreg

route inreg,W

Tile 0 Tile 3

A path of a routed scalar

Tile 1 Tile 2

route E,W route E,W

Figure C.1: An example of routing generation (inreg : an incoming register of a
switching unit,outreg : an outgoing register of a switching unit,W(west),E(east) :
routing directions, (a on tile 0,e) : def scalars, (a on tile 1,b, c, d) : use scalars)



Appendix D

Handling object migration in control

flow

We have examined phases of the compiler in Chapter 2, and the issue of

memory object placement in Chapter 3. In previous compilers, the “home” location

of a memory object was fixed throughout the lifetime of the program. In the compiler

described in this thesis, we allow memory objects to migratebetween function calls,

which can allow for greater scalability in the parallelization of large applications. If

memory object migration is allowed, the issues of cache coherency and memory de-

pendencies can arise. This section briefly overviews the solution that we employ in

the compiler’s runtime in order to address this issue. The cost of this migration is ac-

counted for in the genetic algorithm. However, due to time limitations, we were not

able to thoroughly analyze the results, and so we describe the basic approach in this

appendix.

D.A Allowing memory object migration

The compiler has assigned every memory object to ever-lasting tile locations

in memory placement phase. The program with a CFG works thoroughly with assigned

memory objects. If a CFG has functions inside, function calls in a CFG node may
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D E FA B C

Tile 1Tile 0

B CA D

Tile 1Tile 0

Foo

Boo

Figure D.1: Inconsistent memory object description

trigger a migration problem with respect to memory objects.

D.A.1 A problem

Suppose that functionFoo (caller) callsBoo (callee)(It could be libraries

outside or a function inFoo) and some memory objects are passed as arguments. Tile

locations of memory objects in a caller might not be identical to ones of arguments in

a callee. They might have different descriptions about memory locations, contradict-

ing consistent memory locations in memory placement. In cache-incoherent system,

which this compiler assumes, incorrect data in memory mightbe in use across function

calls.

In Figure D.1, locations ofB, C andD on Foo should be the same asBoo

across function calls due to interprocedual analysis of memory placement. However,

function calls put this principle in chaos. Through severalanalysis, the compiler as-

signs memory objects in a callee to tiles, which is differentfrom tiles of a caller for

better performance.
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D.A.2 Remap function

To tackle this inconsistency, we propose a function calledremap. It func-

tions to make memory objects remain in consistent status at all time across function

calls. The process is calledrehoming. We have defined 3 data structures to implement

remapping. These are only interfaces to help compiler writers to implementremap

codes.

We also created new data structures torehome. They facilitate the process of

ehome. They are called Memory Object Description (MOD), Runtime Memory Object

Description (RMOD) and architecture features (AF).

MOD includes elements below which are used mainly for analysis in compile-

time.

• Memory object name: a scalar name in “def” IR or “inargs” IR

• Tile number of Memory object : a statically assigned tile location of a memory

object

RMOD is defined for analysis in run-time. Elements are as follows.

• Memory object size : a size of a memory object which should be consistent

across functions

• Starting address of memory object: an address where “Rehome” begins.

Last, AF defines attributes of tiled architecture.

• Instruction latency : instruction latency

• Architecture cache type: cache-coherent type or cache-incoherent type

• SON Type : a type of SON on tiled architecture
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D.B How to handle it

In this section, we suggest some ways to deal with this problem. We limit

ourselves in implementing “Remap” only if callees are inside a CFG. In library calls

outside, we do not know the memory locations of callees. Therefore, if a caller has

memory objects as arguments, all of memory objects are flushed into memory with-

out intervention of the compiler. As for static strategies,there are three manners to

deal with these problems - Migration in Compile-Time, Migration in Run-Time and

Migration on SON. There are pros and cons in each way.

First, Migration in Compile-Timeis to make them consistent on cache level

in compile-time. This is convenient and fast in compiler implementation. There is

no need to add management codes in a source. Instead, this scheme wastes time in

flushing cache lines with same address repeatedly. Second,Migration in Run-Time

is to make them consistent on cache level in run-time. This needs more implementa-

tion of compiler writer, even though execution-time may be faster than former. Last,

Migration on SONleverages SON to migrate memory objects in register level via in-

terconnection network.

• Migration in compile-time

This handles memory object migration in compile-time. In Figure D.2, all of

memory objects as arguments in a callee are flushed into memory, regardless

of residing on cache. This benefits simple implementation for compiler writers.

However, repeating redundant cache flushing is irresistible. We have adopted this

scheme in current compiler.

In Figure D.3, all of memory objects on data cache are flushed into memory. If a

size of cache is much smaller than memory objects in tiles, this might show better

performance

• Migration in run-time

This addresses memory object migration in rum-time. It needs more complicated



52

Caller

Tile 1 Tile 2

A B C D E F

Callee

Tile 1 Tile 2

A D B C
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Flush cache lines

Retrieve memory objects

Figure D.2: The first migration in compile-time
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Figure D.3: The Second migration in compile-time
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Figure D.4: The first migration in run-time
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Memory

Flush cache lines

Retrieve memory objects

Figure D.5: The Second migration in run-time

analysis and attaches additional assembly codes for real-time analysis. Yet, the

size of memory objects to be flushed is much smaller than methods in Figure D.2

and Figure D.3.

In Figure D.4, only cache lines with address, which must reflect changes in mem-

ory, are flushed into memory. Cache lines are not flushed into memory if memory

objects with the address is only read by instructions or not accessed by other in-

structions.

In Figure D.5, only addresses with dirty data are flushed intomemory. Control

registers in tiled architecture enables the compiler to acknowledge if data in a
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Caller

Tile 1 Tile 2

A B C D E F

Callee

Tile 1 Tile 2

A D B C

Transport memory objects

Figure D.6: A migration on SON

cache line is dirty or not. It totally depends on hardware characteristics of tiled

architecture.

• Migration on SON

The compiler runs migration via SON. This only manipulates register values on

a chip, not accessing memory. If a size of memory objects to beflushed is quite

small, this would be faster than flushing cache lines of memory objects one by

one.
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