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As processor design complexities increase, so do their verification complexities. As a con-
sequence, processor verification has slowed down and become less reliable. The recent drift
towards agile chip design philosophies and increasingly expensive ramifications of bugs and
security vulnerabilities only aggravate the situation. Despite advancements in expensive com-
mercial verification solutions, there is still a need for cost-effective, fast and high-confidence
open-source verification solutions. Automated verification methodologies have emerged as
promising candidates for their speed and reliability; however, automation comes with its fair
share of open problems — which an inexpensive, easy-to-setup, and modifiable experimenta-
tion platform can help research.

This thesis presents an open-source framework, ZP Cosim, for FPGA-accelerated cosim-
ulation of RISC-V processors. The framework is cost-effective, customizable, and scalable to
FPGA-clusters, and has been field-tested against the silicon-validated BlackParrot processor.
The framework additionally offers a novel implementation of automated coverage instrumen-
tation and a customizable FPGA shell for coverage and trace extraction. ZP Cosim achieves
a speedup of over 2000x against cosimulation in a popular RTL simulator. The application
of the framework to BlackParrot resulted in the discovery of 4 designer-acknowledged mi-

croarchitectural bugs. The thesis discusses these in detail along with observations of the



coverage effected by popular benchmarks and randomly generated programs.
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Chapter 1
INTRODUCTION

Increased processor design complexity is generally an acceptable tradeoff for better per-
formance and energy efficiencies. This complexity is often a result of high-degree of hardware
customization through host coupled accelerators, coprocessors, complex memory hierarchies
and interfaces, and nuanced microarchitectural innovations. Consequently, verification of
complex processor hardware is significantly challenged in timespan, complexity, and reli-
ability. In addition, with the recent fascination with agile chip design philosophies [68],
aggressive time-to-market windows, aggravating ramifications of bug-fixes post-silicon and
resulting expensive ASIC respins, a fast and high-confidence verification becomes a funda-
mental necessity for commercial chip design.

Present-day processor designs easily span millions to billions of logic gates leading to
a humanly untamable, or practically inexhaustible, hardware state—spacelﬂ to verify, and
because of the nuances of the customized microarchitectures and the runtime ecosystems,
there is often a high non-recurring engineering (NRE) cost to setting up and exercising pro-
cessor verification. In practice, however, a significant fraction of the state space is safely
ignorable, never exercisable, or unimportant during verification for various reasons. In fact,
some fraction of the theoretically possible state-space of complex processors will likely never
be exercised in the entirety of the product lifetime ﬂ Moreover, it may often be crucial

to test nuanced microarchitectural innovations manually because complex states and state-

'Hardware state-space in the context of verification is the set of hardware states and/or functionalities
(that need to be tested and validated).

2Consider for example, a processor design with 1000 control path expressions (equivalent to decision
statements in the design description) which is not uncommon in a modern-day multicore. The resulting
hardware state-space is 2199,  Assuming that the processor runs at 5 GHz continuously for 10 years
without ever repeating a state, the state-space it would cover would be less than 26!



transitions may not lend themselves to randomized test Vectorsﬂ Nevertheless, it remains
theoretically possible to test the design reliably by maneuvering the structural design de-
scription automatically — presumably, through well-devised coverage metrics that prioritize
the annotation of important states and state-transition in the design followed by intelligent
test-vector mutations.

A concise hardware state-space enables effective hardware fuzzing!| over a chosen con-
straint — usually, program length (or equivalently, simulation time). Critical feedback, often
in the form of functional or structural coveragdﬂ, assists the fuzzer in reaching hitherto uncov-
ered (or unexercised) states, usually via learnable test vector mutations. However, manually
identifying reliable and useful coverpoints to infer coverage is laborious. This motivates
automated coverage metrics. Complementing fuzzing with cosimulation against a golden
reference model of the hardware obviates needing to define and reason about different states
of the hardware manually or formally, thus shorting high-confidence with fast and reliable
verification. Ultimately, the most important measure of a hardware verification infrastruc-
ture is the number of bugs discovered (new and inclusive of prior discoveries), and the ideal
verification infrastructure should excel at this.

With this in mind, the rest of the thesis presents ZP Cosim, a framework for fuzzing
and hardware verification of complex RISC-V processors, while remaining faithful to the

following adjectives:

Research-Fertile ZP Cosim allows accelerated critical evaluation of long running bench-
marks and the coverage they effect on the hardware. The insights gained through run-
ning SPEC benchmarks on BlackParrot processor are discussed in Chapter 4 More-

over, with the recent boom in hardware fuzzing based research [72, 124, 130], a ZP

3Randomized test vectors are one of the alternatives to manually constructing test vectors for testing
specialized states of the hardware.

4Hardware fuzzing is an iterative exercise of deploying random test vectors on the design-under-test for
converging an objective — usually, coverage.

5Coverage is discussed in Section [2.2



Cosim’s fast, cheap and open-source characteristics can accelerate fuzzing and security

research.

Cost-Effective ZP Cosim undercuts large scale verification costs which are often prohibitive
because of commercial tool licensing, expenses related to server-time acquisitions, and
non-recurring engineering costs, by being completely free to use, needing only modest

$300 FPGA boards, and being fairly portable.

Fast ZP Cosim is FPGA-accelerated and farm-deployabld®| on small to medium-scale FPGA

clusters with independently operable verification routines.

Portable ZP Cosim allows for easy swap-in of other RISC-V implementation with reason-
ably minimal modifications to the hardware descriptions. In addition, because ZP
Cosim’s coverage automation is based on Verilog/SystemVerilog which is a widely-
adopted hardware description language (HDL) and what most high-level HDLs lower
to, and because the instrumentation is non-intrusive and places no requirements on the

design description whatsoever, the infrastructure provides good portability.

Customizable Because ZP Cosim is open-source, it is completely customizable and inte-
grable with other tools in the open-source ecosystem for an expansive feature set. It
can be specialized according to individual needs and developed upon for custom testing
requirements. This is an important quality because many commercial solutions that

offer comparable feature set as ZP Cosim, often are limited in customizability.

Field-Tested ZP Cosim has been exercised on the silicon-validated, previously extensively

tested BlackParrot processor revealing 4 new and important bugs.

50n FPGA farms or FPGA-clusters that can be hooked up to a Local Area Network and operated
through a host machine.



Thesis Organization

Chapter [2| discusses popular concepts in processor verification and builds an outline of an
ideal, self-contained verification infrastructure. Chapter |3| describes the pith of this thesis —
an implementational baby-step towards a self-contained verification infrastructure. Chapter
discusses metrics to evaluate ZP Cosim, the insights gained as a result, and describes
critical bugs discovered through the exercising of ZP Cosim on BlackParrot processor. The

final chapter concludes the thesis with key takeaways.



Chapter 2
LANDSCAPE OF SYSTEM-ON-CHIP VERIFICATION

Verification of processors is a crucial exercise for reducing the aggregate costs of chip
design by lowering the probabilities of microarchitectural and security bugs which helps
avoid expensive ASIC respins and product recalls later in the product cycle. In fact, an
industry-wide study conducted by Harry Foster, shows that over 70% of a variety of chip
designs needed ASIC respins because of predominantly design-related defects|44] that a well-
implemented verification plan could theoretically mitigate. Additionally, the insights gained
during verification and performance modelling is often invaluable to future design iterations
— both with improvements to the design, and with avoiding costly pitfalls and bad design
practices in the future.

This thesis evaluates 3 key aspects of verification:

e Speed of verification, often under the constraints of a given time budget,

e Completeness of verification, or, the tendency to discover bugs and security vulnera-

bilities, and,

o Cost of verification.

Processor verification is a balance between many factors such as time-to-market and
New Product Introduction (NPI) windows, design and verification budgets — both in people-
years, and in dollars for the tools and infrastructure costs, accessibility and modifiability
of the tools and infrastructures according to specialized needs, and the reasonableness of
effecting and distributing software patches. A 2022 research study on a mix of commercial

ASIC verification projects by the Wilson Research Group [1] gives us useful insight on the



landscape of these tradeoffs: over 66% of the surveyed mix of ASIC projects are behind

schedules, and over 60% of the project lifetime is spent in verification.

However, with increasingly modular designs, practices of design reuse, and highly struc-
tured electronic design automation tools, verification has become highly conducive to au-
tomation. Despite long-standing practices of automation in verification, the process is still

fundamentally human-in-the-loop.

Empirically, chip designers have relied on software simulations, emulations/FPGA-prototyping,
and formal verification to satisfy various verification goals. And in each practice, there are
many people-hours invested in the infrastructure setup, exercise, debug, evaluation, and bug

fixes.

However, with growing complexity of designs, software simulations are inevitably getting
slower, although the increasing quality and reliability of cycle-accurate RTL simulators such
as Synopsys VCS, and functional modelers such as Verilator [100] maintain the simplicity
of setting up software simulations. Formal verification is getting harder and more time-
consuming to set up for complex systems and more complex specifications, and are often
limited to localized modular verifications or security evaluations, despite their reliability.
Modern practices notoriously under-formalize hardware in the design-time which makes set-
ting up formal models time-consuming and laborious in verification-time. And emulating
designs, has the advantage of order of magnitude of speedups over simulations, and, with
the improving FPGA synthesis and placement tools, continue to remain simple and efficient
in limited number of cases. Of course, with FPGA emulations, the test-time debuggability
is severely limited and often involves complex test harnesses and scaffolding in the original

design for even the most minimal debuggability.

In practice, however, commercial-grade verification methodologies rely on a combination
of human intelligence with each of these verification composites at various developmental
stages of the chip design, and use a variety of commercial ASIC verification tools and tool-

experts for achieving final verification sign-offs.



2.1 Faster Verification

Fast verification leads to early fixing of bugs and security vulnerabilities, and in time-
constrained cases, discovery of more bugs. Two major enablers of faster processor verifi-
cation are design-reuse and design modularity which are embraced by many commercial and
open-source processor designs to varying extents. BaseJump STL [I19] is one of the earliest
SystemVerilog standard template libraries (STL) [4, 2] popularized in the open-source com-
munity that promotes a high degree of design modularity. The use of such parameterized,
pre-verified, reliable templates obviates the need to verify template-internals every time the

functionality is implemented in a larger design.

Standardized 10O interfaces, and decoupled module interfaces are integral parts of such
STLs. Standard interfaces enable reuse of verification infrastructures, reducing or sometimes
eliminating the time needed to setup and adapt new or existing simulation, emulation, and
testing infrastructures. Additionally, raising the abstraction level in which designers describe
hardware, such as with domain-specific languages (DSLs) like Chisel|23], TL Verilog[61],
Bluespec[27], etc., also raises the abstraction of verification. Similarly, with the use of hard-
ware generator infrastructures such as the RocketChip (part of Chipyard)[18], furthers the
philosophy of design (and verification infrastructure) reuse and composability, and with high-

quality, verified generators, the verification time can be reduced manifold.

Despite such practices, verification is still the predominant phase of chip design. The
key insight here is that even with high degrees of modularity and design reuse that enable
larger and more complex designs, the integrations and interfacial behaviors of the composite
modules and hardware IPs remains to be verified. Even considering just the extra-modular
design elements is a high-enough hardware state-space for exhaustive hardware verification.
However, because of the aforementioned nature of hardware design, much of this state-space
is an unintentional consequence of modularity and often, it is hidden behind parameteriza-
tions and functional redundancies. Understandably, such instances lend themselves better

to being recognized and tested manually, thereafter increasing human involvement in veri-



fication iterations — which slows-down verification and reduces reliability. In most cases, a
randomized application of test vectors to the hardware interfaces, referred to as fuzzing, helps
in exercising much of the typical state-space, and the specialized states are manually tested
and accounted for. At such a juncture, the property of coverage of verification, discussed in

Section [2.2] becomes important.

2.1.1 FPGA-Accelerated Verification

One way of naively increasing speed of verification is to invest in servers for large scale
parallel simulations of designs. Commercial solutions like this include the Synopsys Zebu
Server 5[102]. Another possibility is moving to cloud-FPGA emulations [73] instead of large
scale simulations, with higher initial setup time that can be easily amortized over many
verification iterations. Commercial solutions such as the Cadence Palladium Z1/7Z2 and
Proteum X1/X2 31} B0] provide many different kinds of acceleration and support larger
design emulation and software bringup. Each of the options come with their own drawbacks

of being expensive and non-pliable.

2.2 DMore Complete Verification

Completeness of verification is most commonly measured with the Coverage metric. Coverage
is an important quality of verification and is defined as an approximate indication of the
extent to which a round of testing satisfies a set of predefined verification objectives — usually,

the completeness or the effectiveness of the round of testing in exercising the hardware.

Coverage in hardware designs is broadly categorized as structural or functional. Struc-
tural coverage assesses coverage over structural elements of the design — usually, as described
with a hardware description language, and as such, can be automated in practice. Functional
coverage, on the other hand, assesses coverage over (usually) higher-level functional behaviors

of the design and as such, functional coverage, at times, relies on manual specification which



involves high engineering effort, although, certain metrics like FSM Coverageﬂ do a reasonably
good job in assessing functional coverage in well structured hardware descriptions.

The abstractions in which coverage is assessed can vary:

e Architectural or ISA-level coverage usually assesses coverage over instruction mixes,
operand combinations, ISA-defined CSRs. These can be evaluated with functional ISA

simulators.

e Microarchitectural coverage, on the other hand, assesses coverage over implemented
hardware entities. ISA-level coverage is, generally, a subset of microarchitectural cov-
erage, assuming all ISA-defined abstract elements are physically implemented in the
microarchitecture. Of course, the chosen coverage metric, can sometimes identify no
more coverpoints in the microarchitecture than defined by the ISA, such as with the
CSR coverage metric that only identifies CSR registers in the mircroarchitecture as

coverpoints.

ZP Cosim’s coverage metric assesses microarchitectural coverage as it scans the microar-
chitecture description (hardware) for identifying coverpoints. Because of microarchitectural
coverage’s wider statespace, there is a better chance of finding bugs.

Other aspects of coverage such as unreachability, toggle-only coverage, etc., are presented
in section 3.1.7, A key point to remember is that coverage is an approzimate indication and
by itself, does not guarantee correct execution in the covered states of hardware. One would
need to rely on formal proofs or compliance with golden reference models for that. Most
importantly, coverage and verified execution of the benchmarks that effected the coverage
only guarantee the hardware is bug-free so much as coverage thoroughly assesses all possible
permutations of the inputs (instructions in the test vector) and the states of all the other

hardware elements around the chosen coverpoints.

'Finite State Machine (FSM) coverage metric computes coverage on FSMs identified in the design.
FSMs are usually a result of complex human coding than automated lowering from higher level hardware
description languages.
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2.2.1 Cosimulation and Formal Verification

Cosimulation is the practice of simulating two instances — one of a hardware under test and
another, a reference model — with the same input vectors for comparing execution traces.
Functional verification conducted this way is simpler and faster when there is a reliable
reference model, often called a golden-reference, in the form of ISA simulators for example.
The alternative would be to have mathematical or formalized model of the hardware derived
through formal specifications while ensuring fidelity, or a set of formalized properties an

implementation has to respect, and evaluating the model properties.
2.3 A Case for Self-Contained Hardware Verification

A well-reasoned combination of coverage metrics as critical feedback for fuzzing closes the

automation loop in verification — with a few additional elements in the setup.

2.3.1 Program Generator

Firstly, we need a controllable program generator that can generate semantically, syntac-
tically valid, executable test Vectorsﬂ. Valid and executable test vectors are Instruction
Set Architecture (ISA)-compliant and execute an appropriate set of setup procedures for
the hardware under test involving, for example, register file initialization, setting up execu-
tion privilege modes, page tables, stack, and trap-handlers. This is an essential quality of
generated test programs that constrain execution to well-defined and supported execution
pathways. There are of course, deviations from these pathways that need to be tested de-
pending on the hardware and the architectures in question. Design-specificity of generated
programs is another quality that needs to be taken into consideration during program gen-
eration as customized features of the hardware can only be exercised by specialized program
generations. The generated programs can be either in binary — in which case they can be

readily executed, or in assembly or higher-level languages — in which case, they need to be

2Test vectors are minimal programs that can be readily executed on the hardware under test
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compiled and linked into binaries for execution. A good example of a program generator is
RISC-V DV [34]. The controllable aspect of a program generator is important for generating
targeted test cases that can be used to target specific components or hitherto-untargeted
components. The randomization ability of the generator helps span as much of the hardware
state-space as possible. Targeted program generation, on the other hand, focuses on a subset

of the state-space to increment coverage methodically — often driven by a fuzzer.

2.3.2  Program Loading and Ezecution Environment

Secondly, we need a supporting application execution environment, or a software stack ca-
pable of loading the binary, responding to environment calls, and facilitating IO operations.
An example of such an offering with RISC-V is the RISC-V Proxy Kernel [5]. ZP Cosim
provides a control program for loading program binaries and limited support for environment

calls.

2.3.8 Mutation Engine

Thirdly, we need a mutator. A mutator is a software entity that induces a minor change
in the test vector — while, ideally, maintaining the validity and executability of it — for a
subsequent rereun on the hardware for an increment in progress towards a verification goal

— usually, coverage. A mutator can be imagined in two different ways:

e A mutator analyzes coverage over the hardware states and, optionally, other forms
of critical feedback, and turns specific knobs in the program generator (hence the

controllability requirement of it) to create more targeted test cases for coverage closure.

e Another way to define a mutator is that a mutator operates directly on the generated
program and effects mutations on the test vector. Seemingly innocuous random muta-
tions such as instruction reordering, and changing the register operands and opcodes,

can often reveal tricky microarchitectural bugs.
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In some cases, the program generator can be tightly coupled with a mutator to compose
a fuzzer. AFL++ [43] is a popular example in software testing. FuzzFactory [87] is more
in the context of fuzzing for hardware verification. There is active research [95, 83, 29] in
the area of effecting reliable mutations — some exploring Reinforcement Learning models to

effect learnable mutations.

2.3.4 Debug Infrastructure

Finally, there needs to be support for saving interesting’| test cases for fuzzing and mutation
insights, and saving failingﬁ test cases for later, usually offline, debug. Offline debuggability
necessitates reproducibility of failing or interesting test cases.

This series of enablements allow for an iterative, self-contained verification infrastructure

which forms the ultimate target of ZP Cosim.

2.3.5 Cheaper, Modifiable, Portable Verification Infrastructures

Commercial solutions to reliable processor verification are expensive and unfavourable to
modifications. Open-source alternatives, on the other hand, mitigate this problem by being
free and easily modifiable. However, open-source solutions usually lack reliability and tech-
nical support structures to be useful in commercial settings. Research use-cases, however,
benefit hugely from the advantages of the open-source solutions. Open-source and standard
interfaces to hardware-under-test, and easy debuggability of tools and community-driven
bug-fixes in the tools is also greatly advantageous.

With this motivation, the thesis transitions to describing ZP Cosim.

3Interesting test vectors are those that have effected coverage over hitherto unexercised states of the
hardware.

4Failing test cases are the intended products of fuzzing which need to be analyzed to isolate the bugs or
defects from allowed implementational differences or tolerable functional behavior, or unintended software-
related defects.
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Chapter 3
ZP COSIM

One of the primary alignments of ZP Cosim is towards the previously described self-
contained hardware verification. As such, Figure illustrates the ambition. Notice that
the blue fuzzing loop drives towards coverage convergence, and the pink verification loop
kicks in upon bug-encounter for fixing the bugs discovered as a result of co-emulation. The
tools exercised on the host support the identification of coverpoints, reduction of the cov-
erpoint state-space formed, inclusion of user-provided coverpoints (not implemented in ZP
Cosim), instrumentation of the original design wrapper, and FPGA synthesis and bitstream
generation.

The PL is the FPGA on-board, which has a synthesized FPGA-shell enveloping the
Processor-Under-Test (PUT).

The PS (the Processing Subsystem), which is a host processor for the FPGA in close

proximity, receives the bitstream, flashes it on the FPGA, launch the control program which:

e Orchestrates loading of test programs on both the PUT on the Programmable Logic
and an instance of the Dromajo golden-reference ISA simulator, iteratively stepping

through the PUT’s execution trace, cosimulating it with Dromajo, and analysis, and,

e Coverage extraction from the PUT upon program termination, processing of the cov-
erage, derivation of mutations (which has not been implemented on ZP Cosim, and

program-generation or benchmark step-through.

In case of a mismatch, the PS would save the failing test program for later offline debug

through software RTL simulations for greater visibility into the microarchitecture.
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Figure 3.1: Reference Block Diagram for self-contained, iterative verification. The blue loop

depicts the fuzzing loop, and the pink loop depicts the verification loop.

ZP Cosim builds on the existing Zyng-Parrot infrastructure [9] that enables rapid FPGA
prototyping for BlackParrot processor on Zynq 7000 and Ultrascale FPGA devices. The fol-
lowing sections methodically describe the infrastructure of ZP Cosim and detail the nuances
that make ZP Cosim a highly-reliable, portable, cost-effective, rapid verification research

platform.

3.1 Automated Coverage Instrumentation

Coverage is an important aspect of hardware verification. ZP Cosim introduces a new au-
tomated coverage collection implementation with the help of existing open-source offerings.
The fundamental requirement of coverage instrumentation is identifying key design elements
whose states need to be monitored during simulation or emulation for inferring the coverage
effected by test programs. Depending on the coverage metric in question, the design elements

can be:
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e Structural elements in the code, like expressions in assignment statements, case state-

ments, assertions, etc., or,

e Functional elements in the design, like complex composite expressions corresponding

to specific functionalities of the hardware.

The literature on which coverage metrics perform well in which situations is unclear, and
there is much research insights to be had on this frontier [103].

In ZP Cosim, we demonstrate and implement automated Mux Toggle Coverage popular-
ized by Kevin Laeufer et. al. [81], and a proof-of-concept case-statement coverage.

Muz Toggle Coverage is similar in spirit to the popular branch-coverage in software test-
ing. The idea behind Mux Toggle Coverage is that muxes are the sources of multiplicity in
hardware states — i.e., being the fundamental functional switches (or decision statements),
the cumulative combination of toggles in mux-selects across all the muxes amount to all the
different possible control paths in the hardware. The cumulative combinations are usually
identified by the cross-product of the toggles on all the (interacting) muxes, and this is the
truer indication of the actual coverage compared to individual toggles. Later works [63]
explore other coverage metrics for efficiency, applicability, and performance reasons.

Case-statement coverage is a structural /code coverage metric that assesses the complete-
ness of a test vector in exercising all the case statement control paths. It is not a standalone

metric; it simply provides another perspective on one frontier of verification progress.

3.1.1  Implementation

In order to identify muxes to monitor for coverage collection, ZP Cosim packages a pa-
rameterized, modifiable walker that parses the hardware design description and outputs

hierarchically referenced[] full-pathnames of mux select-signals in the design. There are three

Werilog or System Verilog’s hierarchical referencing is a mechanism of referencing identifiers such as wires
or registers outside of the scope of the module they are referenced in, by prefixing the instance names of
connecting scope hierarchies. Xilinx tools support the synthesis of hierarchical referencing.
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parts to the coverage metric implementation:

e Surelog [37], an open-source SystemVerilog parser and compiler that takes in a Sys-
temVerilog hardware description of the design and generates a walkable parse tree-like

object,

e Universal Hardware Data Model (UHDM) [38], the data object produced by Surelog
that can be thought of as an elaborated intermediate representation of the hardware

design description, and,

e A customizable walker that can operate on the UHDM object to produce the hierar-

chical instance names of the muxes, or coverpointsﬂ, for monitoring coverage.

The coverpoints generated thereof, need to be assembled into the top-level wrapper of the

hardware design. This can be done in two ways:

e For simulations: SystemVerilog assertions that can be assessed through debug prints

and debugged via waveform dumps, or,

e For emulations and post processing capabilities: Wired into dedicated coverage collec-
tion modules with memory modules for storage of coverage information during emula-

tion, and read interfaces for retrieval from test environment post emulation.

ZP Cosim provides GNU Make routines to automatically package the identified hierarchically
referenced coverpoints by grouping and wiring them into coverage modules in the top-level

wrapper of the design in consideration.

2Coverpoints are boolean or multi-bit expressions (wires or registers) in the Hardware Description Lan-
guage that are assessed, usually for toggles, for determining the coverage of a test case on the hardware
in question.
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3.1.2  Surelog

Surelog [37] is a SystemVerilog pre-processor, parser, elaborator, and UHDM compiler.
Surelog adheres to the SystemVerilog 2017 standard [13]. Surelog also provides IEEE De-
sign/TB C/C++ Verilog Procedural Interface (VPI) [40] and Python AST Application
Programming Interfaces (APIs). In ZP Cosim, Surelog functions as a parser, elaborator,
and compiler that takes as input, a file list of distributed hardware design description in
SystemVerilog, among other crucial parameters, and generates a walkable UHDM object.
Among the parameters taken, some of the important ones are: the specification of the top-
module, SystemVerilog library extensions, compilation ordering, parameter value overrides,

a switch to request full or folded UHDM elaboration, and trace and debug options.

3.1.8 Universal Hardware Data Model

UHDM [38], the product of compiling SystemVerilog hardware designs, is a representational
model of the input design according to the IEEE SystemVerilog Object Model. UHDM can
be operated on though the provided VPI interfaces. The provided default visitor, invokable
via uhdm-dump, can dump out the elaborated UHDM object in textual, human-readable

format.

3.1.4 Coverage Walker

ZP Cosim’s Coverage Walker [85] is a parameterized visitor written to walk the compiled
UHDM model of an input processor design, to identify key design elements for use as coverage
indicators. The coverage metric chosen dictates the walk algorithm. The walker holds C++
STL list data structures for saving the key design elements identified during the walk which
are ultimately written to an output file.

The following subsection limitedly describes the walk for the mux-toggle coverage metric

as an example.
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3.1.5 Implementation of Mux Toggle Coverage Metric

Recall that for the Mux Toggle Coverage metric, the walker identifies multiplexer select-
signals in the design. Depending on the parameters passed into the walker, either the entire
design of a specific subset can be walked, and muxes therein, identified. ZP Cosim’s imple-
mentation of the walker identifies muxes by parsing the structural hardware description.

In behaviourally described designs, muxes can manifest through if-else statements,
case statements, ternary statements, and occasionally, implicitly. Note that sometimes, in
longer if-else statements, priority encoders are inferred in place of muxes; and other logic
optimizations can affect inferring muxes. Despite deviating from the metric, the ultimate
goal of establishing the indicators of different possible states of the hardware is still preserved.

Of the UHDM-provided VPI APIs, there are 3 main APIs utilized while walking the
generated UHDM:

1. Obtaining and releasing handles to UHDM objects via vpi_handle and vpi_release _handle,

2. Iterating through multiple UHDM objects at a depth under a chosen object type via

vpi_iterate and vpi_scan, and,

3. Obtaining object or design element attribute attributes via vpi_get and vpi_get_str

APIs.

When using the VPI API Within the UHDM abstraction, every node of the tree is a
unique structural code element that has its own VPI handle. The VPI handles are unique
and exhaustively refer to all elaborated code elements. Every node also contains pointers
to its children nodes — each with their own VPI handles. The root of the tree is the design
instance node. The top module(s) are children of the design instance node. A typical walker
starts with the handle of the design and the top-module nodes thereof, obtains VPI handles
for relevant children nodes and recurses until there are no more children nodes. Relevant

children nodes can be nodes that correspond to:
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Submodules, which begin a new recursion,

Generate blocks, which elaborate and begin new recursions,

Procedural blocks which can hold the aforementioned structural elements which need

to be collected algorithmically, and,

Continuous assignment statements which can hold ternary statements.

Figure[3.2)represents a flow diagram for identifying almosty all of the code structures birthing
muxes in the elaborated UHDM object.

Coverpoints can be identified in two different ways in the design process:

e During design time, design engineers can manually identify and establish key cover-
points in the design for functional coverage. The obvious advantage here is the easier
expressed complex functional coverpoints, and the concision of the Coverspaceﬂ thus
formed. The disadvantage is the manual nature of the exercise, and the potential of

human oversight.

e During compile time, design compilation tools such as VCS and Verilator, can identify
key coverpoints based on common coverage metrics such as line-coverage, expression-
coverage, etc., with the hardware description, or more accurately, an Intermediate
Representation (IR). The synthsized netlist might also offer key coverpoints for other
verification objectives. The advantage is the more-complete coverspace and the poten-
tial for algorithm-based automation. The disadvantages are the redundancies, irrele-
vant coverpoints, missing of potentially important complex functional coverpoints in

constrained coverspaces, and the resulting increased coverspace in general.

3A drawback of the implementation mentioned in Section discusses a gap in the algorithm.

4Coverage state-space



Figure 3.2: Flow Diagram of ZP Cosim’s Automate Coverage Metric Walker
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ZP Cosim implements compile-time, automated identification of coverpoints. There is planned
support for design-time source-level coverpoints via user-provided SystemVerilog coverpoint
and covergroup constructs identifiable, during the walk, through their UHDM object VPI
handles.

3.1.6  Coverspace Preprocessing

Coverpoints identified automatically usually suffer from duplicate or redundant, and unin-

teresting coverpoints.

Duplicate coverpoints : Duplicate coverpoints are a result of duplication both through
structural duplications such as through multiple module instances or generate blocks,
and through inherent duplication of branch conditions that are based on common wires
or boolean expressions. While the latter can be blindly ignored, the former could be
important depending on how the coverpoints interact external to the instances they

are defined in. ZP Cosim’s post processing eliminates duplicate coverpoints.

Uninteresting coverpoints : For example, values of an operand register in the ALU, could
be interpreted as coverpoints in certain automated metrics — one example being control-
register coverage [63]. However, they are not as important as other control-flow-related
coverpoints that refer to branches and other critical functional properties of a design
description. ProcessorFuzz [33], for instance, identifies such unimportant coverpoints
in the FPU operands that were found to derail coverage computations in an existing
implementation [63], and ignores them by construction (by only looking for Control and
Status Registers and transitions). Two more examples are the misidentification of reset-
conditions as mux-select signals, and the identification of parameters and constants
based conditions which never toggle. ZP Cosim’s post-processing also eliminates reset-
conditions, and ignores parameters-only and constants-only conditions during the walk.
And since ZP Cosim only identifies control-flow-related coverpoints, they are never

uninteresting in the metric chosen.



22

1 wire sel X | o~x;

> assign result = ~sel 7 el : e2;

Listing 3.1: Example of unreachable coverage targets

3.1.7 Cowverspace Optimization

In general, coverpoints identified in the Mux Toggle Coverage metric in the aforementioned

manner suffer three major drawbacks:

Drawback 1 The post-processed coverspace is still large
Drawback 2 Many of the muxes identified this way suffer from aliasing issues

Drawback 3 Covering the identified individual coverpoints singly does not imply conver-
gencd’l In fact, assuming there are N coverpoints identified, the coverage over the
individual coverpoints would indicate exercising of 2/N hardware states. However, the
true hardware state-space is actually the cross-product (i.e., cartesian product) of the

N states, equal to 2V.

Following subsections describe how ZP Cosim fares against the above drawbacks.

3.1.8 Unreachability Analysis

Firstly, the large number of coverpoints are unreachable. Unreachable coverpoints are those
coverpoint boolean expressions that cannot be satisfied within the normal operation of the
hardware. For example, in the below hardware description, One coverpoint that is identified
automatically in Mux Toggle Coverage metric, is ~sel. However, it is not a satisfiable

expression because ~sel can never be true, and so, the coverpoint is never covered. When

5Coverage convergence is a term used to indicate a state of testing where all the possible hardware states
are tested.
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the root expression H for the coverpoint is available, unreachability can be determined by
framing it as a boolean satisfiability problem. Algorithms, or tools thereof, for solving
such problems are called SAT solvers, and today’s SAT solvers are capable of determining
the satisfiability of an expression of millions of boolean variables [86]. Sometimes design
compilation often eliminate some of these cases through optimizations such as dead code

elimination (DCE) or constant folding.

In ZP Cosim, Synopsys’s VC Formal tools-suite with a dedicated tool, called the For-
mal Coverage Analyzer (FCA), helps determine unreachability of coverpoint expressions.
FCA determines unreachability using proprietary constraint solvers. In addition, for the
coverpoints in question, the root expressions does not have to be manually isolated — FCA
leverages the VCS-compiled design representation to derive the root expressions for satis-
fiability checks. FCA formally proves that certain uncovered coverpoints in coverage goals
(sum total of coverpoints) are indeed unreachable with the expression hierarchies that derive

the coverpoints.

ZP Cosim provides a GNU Make routine to invoke VC Formal’s FCA tool to automatically
analyze input hardware designs, and to output an unreachable coverpoints file, called the
exclusion file. This process is compute-intensive to carry out on large designs. However,
having a simulation database, with randomly covered coverpoints in the design makes the

process significantly faster. ZP Cosim also provides this option within the Make routine.

Once the unreachable coverage targets are determined, they can be safely excluded. This
might help reduce the coverspace, thereby saving manual effort from verification engineers
or fuzzers. Quantitative evaluation is presented in [4 shows that unreachability analysis does

in fact help reduce the coverspace, albeit a little.

SRoot expression is an in-house term for expressions in the hardware descriptions that are composed
purely of constants and variables that can be externally set or determined. For example, in code listing
assuming x is an input to the module of that logic, the expanded expression of ~selisx & x | ~x.
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3.1.9 Coverage Aliasing

Mux Toggle Coverage metric generally overlaps in the coverage information it provides. This
is because many muxes are coupled to common wires and registers in the design. This intro-
duces aliasing in coverage data that can be reduced with additional processing of coverage
metricsﬂ. Currently, ZP Cosim does not provide any support for detecting or reducing alias-

ing.

3.1.10 Toggle-Only Coverage on Coverpoints

Toggle-only coverage is the default case of assessing coverage over individual coverpoints
in isolation. Because correct execution on hardware is dependant on interactions of many
hardware design elements in the right states and transitioning to the right states individual
assessments of design elements as implied by individual coverpoints do not cover the full

scope of the hardware functionalities.

Despite seeming not very helpful at first glance, toggle-only coverage of the coverpoints
identified can, at times, provide crucial insights on benchmark simulations on hardware
targets — mainly, coverage holes, which are uncovered or untoggled coverpoints in the design.
Chapter [4] discusses some insights obtained through analyzing toggle-only coverage effected
by benchmarks on the BlackParrot processor. Some of the bugs discovered were in fact due

to the insights had from this.

"Coverage Aliasing is a term to refer to instances where a coverage target is correlated with one of more
other targets and can be proven to be fully covered when the correlated targets are fully covered. For
example, a coverpoint A aliases with two coverpoints A&B and B, because when A&B has covered 0 and
B transitions 0 — 1 or 1 — 0, both values of A are covered; therefore coverpoint A becomes redundant.
Redundancies in the coverspace can unnecessarily increase instrumentation costs and may occasionally
lead to increased verification effort and time; however, redundancies do not affect verification’s reliability
or functional correctness in bug finding. Nevertheless, for the former reason, it is considered crucial
to reduce redundancies in coverage statespace. Aliasing in Mux Toggle Coverage can be reduced in
design compilation time by assessing common ancestry of mux select signals and isolating unique and
independently driven muxes.
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3.1.11 Localized Cross Products

The third drawback mentioned is a bit more broader scoped. As mentioned previously, indi-
vidual coverpoint assessments are not extremely useful. Taking cross-products on coverpoints
is one way to expand the relevance of coverage to more realistic testing goals. Cross-products
take into consideration, the states of the interacting design elements in combination, and of-
ten, those are significantly more revealing of bugs. Often, the coverage map corresponding
to the cross product of the coverpoints thus obtained, are hashed down for better storage

footprints on the hardware [63].

The major drawback of assessing cross-products are that they explode the state-space
of coverage exponentially as described in Drawback 3. ZP Cosim overcomes this limitation
by limiting the cross-product scan window. The key insight from the coverage obtained
on running SPEC benchmarks is that the coverpoints do not interact exhaustively — i.e.,
not every coverpoint interacts with every other coverpoint. Covering non-interacting cross-
products is then a redundant exercise. For example, the cross product of two coverpoints —
one corresponding to a mux in the FPU, and the other to a mux in the integer multiplier
functional unit — do not need to be covered because the state of one of them most definitely
does not affect the state of the other in any functional sensd’} ZP Cosim allows for grouping
coverpoints and performing the cross-product within the groups. This reduces the coverage
state-space (in implementation) to:

&l 2°
IN

where N is the number of coverpoints, G is the grouping size with G << N and [z] is the ceil
of x. In Chapter [4] we quantify the reduction with actual values. The obvious trade-off for

the reduced coverspace is the potential of missing bugs in ignored crossings of coverpoints.

8Presumably, this exercise could still be useful in training Machine Learning models to derive and isolate
mutations on the program to encourage exploration of new coverspace.
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3.2 Simulation

A concise enough coverspace for useful coverage feedback enables more reliable hardware
verification. Verification of a hardware target can be done through simulation or emulation.

This section talks about simulation.

3.2.1 Dromajo

Dromajo [122] is a formally proven RISC-V RV64qu| functional reference model and a
multi-CPU simulator written in C++ that is extensively verified. Dromajo allows for spec-
ification of operable memory address ranges, any 10 mappings therein, bootrom sequence,
and ISA extensions and custom extensions support. One of the most important features
of Dromajo, that ZP Cosim considers critical is its ability to checkpoint a snapshot of the
simulating system state for later resumption, thus allowing replay of key sections of long-
running programs. In addition, Dromajo provides APIs for cosimulation which is crucial for
ZP Cosim. Cosimulation in Draomjo is discussed in subsection |3.2.2

Dromajo, by itself, can be useful for quick insights on ISA-level coverage effected by
benchmarks. For microarchitectural coverage on the hardware design elements, which is a
more complete indication of coverage, ZP Cosim leverages Dromajo cosimulation with an

instance of the processor providing microarchitectural coverage information.

3.2.2 Cosimulation

Cosimulation is the process of simulating two (or more) instances of the same design with,
generally, the same inputs. The expectation is that if they are both compliant with a
formalized specification of the implementation, the observable states at the granularity of

architecturally visible event boundaries such as instruction retirements, CSR updates, etc.,

9G and C are initials of extensions to the base RV64I ISA — G is a stand-in for I, M, A, F, and D. I is
the base integer ISA, M is the multiplication extension, F and D are single and double precision floating
point instruction extensions, A is the atomics instruction extension, and C is the compressed instructions
extension.
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would match within reason. At the very least, deviations would indicate one or both of the
instances are not compliant with the specification.

In ZP Cosim, we explore a few different options for cosimulation. One constant instance
is the Dromajo functional reference model, treated as a golden reference model for simulating
BlackParrot. For the other instance, there is support for simulating BlackParrot with the
ZP Cosim infrastructure in Verilator [100], Synopsys VCS [12], and emulation of ZP Cosim
on the FPGA which is discussed in Section 3.3

Verilator Verilator is an open-source Verilog and SystemVerilog simulator that works by
converting the input hardware designs to functional, optionally multi-threaded, C++
functional models (among other options) that can be compiled together with an in-
stantiation code (generally in C++) and other optional C++ functional models for 10
interactions. Execution of the compiled binary simulates the hardware functionalities.
In ZP Cosim’s case, Verilator generates the functional models for the ZP Cosim hard-
ware infrastructure (synthesizable on the FPGA), and BlackParrot. The compilation
also takes in the control program, Dramajo’s Cosimulation libraries that instantiate
the Dramajo virtual machine and provide APIs for stepping through program execu-
tion and comparing the executions. More details on the control program is available

in Section B.3l

Synopsys VCS Synopsys VCS is a high-performance commercial functional verification
solution widely used in the industry. ZP Cosim utilizes VCS simulation support for
simulating hardware designs. Like Verilator, VCS also allows for linking C/C++ mod-

els with the hardware design description.

The inputs to the cosimulation instances are managed by the control program, which
itself takes the executable program binary as the input along with other parameters. For
comparison of execution, ZP Cosim relies on the default trace comparison option provided

by Dromajo. The essence of trace comparison is that the execution trace, consisting of the
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retired instruction word, the side-effects on the hardware (registers in the Register Files
written, important CSRs modified), the program counter. Any asynchronous events encoun-
tered during execution such as external interrupts, and unmodelled IO interactions, if any,
are manually overridden in Dromajo to match the state of the instance of ZP Cosim being
simulated. More details on this is available in Section [3.4] In addition, the trace comparison
is done in ” almost”m real time so as to reduce the amount of time spent on early-fail test
cases, and lessen the deviation of hardware state from the point of bug, which improves

human debuggability and the deviation of the coverage.
3.3 Emulation: Zynq-Parrot

Zyng-Parrot [9] was conceived as a customizable FPGA shell to present a flexible AXI wrap-
per around accelerators and soft processors such as the open-source BlackParrot processor
[91], to facilitate easy interfacing with the host Zynqg-7000 series FPGA boards. At its current
state, Zyng-Parrot has evolved into a rapid emulation/prototyping solution for more proces-
sor designs on more FPGA boards, along with a host of new features and capabilities. In this
thesis, however, we restrict our discussion to evaluating BlackParrot on the Avnet Ultra96v2

[10] FPGA board featuring Zynq Ultrascale+ Multiprocessor System-on-Chip (MPSoC).

3.3.1 Infrastructure

Zyng-Parrot’s hardware system involves the Xilinx Zynq Ultrascale+ MPSoC component
with a customizable FPGA shell. In Xilinx’s nomenclature, the MPSoC component is re-
ferred to as the Processing System (PS), while the FPGA component is referred to as the
Programmable Logic (PL). In the Ultra96v2 board, the MPSoC is the Xilinx Zynq Ultra-
Scale+ MPSoC ZU3EG A484 which comprises of a quad-core ARM Cortex-A53 processor
with support for ARM’s Single Instruction Multiple Data (SIMD) extension, called NEON.
The MPSoC also comes standard with 2 GB (512M x 32) of LPDDR4 memory and Delkin

107t is not exactly real-time because of the FIFO interfaces (asynchronous and synchronous) used to
communicate the commit information.
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Core Configuration | Quad-core ARM Cortex-A53

CPU Frequency Up to 1.5GHz

Architecture Armv8-A Architecture in A64 or A32/T32
NEON Advanced SIMD instructions

Features
Single and double precision Floating Point instructions

Cost $299

Table 3.1: Specification of Zynq Ultrascale+ MPSoC in Ultra96v2 board

System Logic Cells | 154,350
CLB Flip-Flops 141,120

CLB LUTSs 70,560
Distributed RAM 1.8 Mb
Block RAM 216 blocks; 7.16 Mb

36 Kb block granularity

Table 3.2: Specification of Zynq Ultrascale+ PL (FPGA) in Ultra96v2 board

16 GB microSD card for storage. More details on the MPSoC is presented in Table [3.1 The
details of the FPGA package is presented in Table (3.2

The PS is capable of booting Linux and communicating with the PL through a variety of
PS-PL interfaces. Zyng-Parrot utilizes 2 of 6 high-performance slave AXI interfaces in 32-bit
configuration for DRAM communication (m00 in Figure , and the 2 high-performance
master AXI interfaces in 32-bit configuration for communication with the FPGA shell (s01
in Figure and the slave port of BlackParrot (s00 in Figure .

The PS runs a control program (in C++ or Python), ps.cpp, that memory-maps the

address space of the AXI interface to user memory, and is capable of:
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Figure 3.3: Concise Block Diagram of Zyng-Parrot FPGA shell.
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e Flashing the system bitstream on the PL using APIs made available by the PYNQ

development environment,

e Resetting BlackParrot hardware, initializing DRAM pointers and other configuration
registers in the shell (PL) by writing to CSRs in the shell.

e Loading RISC-V compliant program binaries and writing configuration registers in the

address space of BlackParrot,

e Processing and responding to some environment calls, and interpreting termination

signals from BlackParrot, and,

e Reading and writing FIFOs and registers in the FPGA shell for any auxiliary informa-
tion like profiling data.

On the PL is the synthesized FPGA shell that wraps over a unicore configuration of
BlackParrot. The FPGA shell hosts a parameterized number of 