
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Design and Architecture of Automatically-generated Energy-reducing
Coprocessors

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Science (Computer Engineering)

by

John Morgan Sampson

Committee in charge:

Professor Steven Swanson, Co-Chair
Professor Michael Taylor, Co-Chair
Professor James Buckwalter
Professor Lawrence Larson
Professor Dean Tullsen

2010

Copyright

John Morgan Sampson, 2010

All rights reserved.

The dissertation of John Morgan Sampson is approved,

and it is acceptable in quality and form for publication

on microfilm and electronically:

Co-Chair

Co-Chair

University of California, San Diego

2010

iii

DEDICATION

To all those willing to wait for the fruits of their labor.

iv

EPIGRAPH

When the facts change, I change my mind. What do you do, sir?

—John Maynard Keynes

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . x

Acknowledgements . xi

Vita and Publications . xiii

Abstract of the Dissertation . xv

Chapter 1 Introduction . 1

Chapter 2 The Utilization Wall . 7
2.1 The Utilization Wall . 7

2.1.1 Theory . 7
2.1.2 Practice . 8

2.2 Implications of the Utilization Wall 10
2.3 Using Heterogeneity to Scale the Utilization Wall 11

Chapter 3 The Design of Conservation Core Enabled Systems 14
3.1 Conservation cores: System overview 15

3.1.1 Basic chip-level architecture 16
3.1.2 Execution model 17
3.1.3 Future proofing 17

3.2 The C-Core Life Cycle 18
3.3 Conservation core architecture 21

3.3.1 Conservation core organization 22
3.3.2 The CPU/C-Core interface 25

3.4 Patching conservation cores 26
3.4.1 Integrating patching support 26
3.4.2 Patch generation 27

3.5 C-Core selection . 28
3.6 Automatic Synthesis of C-Cores 29

3.6.1 Compilation Toolchain 30

vi

3.6.2 Simulation infrastructure 32
3.6.3 Synthesis . 32
3.6.4 Power measurements 34

3.7 Results . 34
3.7.1 Methodology . 35
3.7.2 Energy savings 35
3.7.3 System E�ciency 39

3.8 Summary . 41

Chapter 4 From Conservation to Acceleration 43
4.1 Pipeline splitting . 44

4.1.1 Fast clock aligned operations 47
4.1.2 Pipesplitting implementation 48
4.1.3 Reducing patching overheads 49

4.2 Evaluating pipesplitting 50
4.2.1 Methodology . 50
4.2.2 ICC performance and EDP 54

4.3 Summary . 55

Chapter 5 Cachelets . 57
5.1 Cachelet architecture overview 59

5.1.1 Cachelets vs. L0 60
5.2 Coherence . 61
5.3 Cachelet selection . 61
5.4 Results . 62

5.4.1 Methodology . 62
5.4.2 Evaluating Cachelets 63

5.5 Summary . 65

Chapter 6 Conservation Core Structure and Scheduling 67
6.1 Scheduling for C-Cores 67

6.1.1 Alignment . 71
6.1.2 Rescheduling for cachelets 71

6.2 Analysis . 73
6.2.1 Memory and parallelism 75

6.3 Future work . 77
6.3.1 Unrolling . 77
6.3.2 Waves . 78
6.3.3 Speculation . 79

6.4 Summary . 80

vii

Chapter 7 Related Work . 81
7.1 Hardware specialization 81
7.2 Heterogeneous systems 83
7.3 Automatically generated hardware 86
7.4 Techniques . 87

7.4.1 Bit-level parallelism 88
7.4.2 Cache specialization 88
7.4.3 Clock gating . 89
7.4.4 Dynamic voltage and frequency scaling 89

7.5 Summary . 90

Chapter 8 Summary . 92

Bibliography . 95

viii

LIST OF FIGURES

Figure 3.1: The high-level structure of a C-Core-enabled system 16
Figure 3.2: Dynamic coverage for given static instruction counts 19
Figure 3.3: The C-Core Life Cycle . 20
Figure 3.4: Conservation core example . 24
Figure 3.5: The C-Core C-to-hardware toolchain 31
Figure 3.6: MCF 2006 conservation core for primal bea mpp() function . . 33
Figure 3.7: Conservation core energy e�ciency 37
Figure 3.8: Full application system energy, EDP, and execution time for

C-Cores, and projections for potential improvements 38

Figure 4.1: Example datapath and timing diagram demonstrating pipes-
plitting . 46

Figure 4.2: ICC performance and e�ciency 52
Figure 4.3: Application performance and e�ciency with ICCs 53

Figure 5.1: Cachelet architecture . 59
Figure 5.2: Cachelet performance and e�ciency 64

Figure 6.1: Schedule for a basic block . 70
Figure 6.2: Schedule for a basic block with cachelets 72
Figure 6.3: Schedule for a memory-constrained block 76

ix

LIST OF TABLES

Table 2.1: The utilization wall . 9
Table 2.2: Experiments quantifying the utilization wall 9

Table 3.1: Conservation core prototype statistics 36

Table 4.1: ICC Workloads . 51

Table 6.1: Properties of ICC schedules . 74

x

ACKNOWLEDGEMENTS

Many people have contributed directly and indirectly to my progress along

the journey that lead me to construct this document. They are too many to name,

and any attempt to impose a strict ordering on their contributions would be a

fool’s errand. I wish to thank those at UC Berkeley, UC San Diego, and at HP

labs, my advisors, my colleagues, my family, my significant others, all those who

let me kvetch incessantly, and all those who ever let me cook for them. You are

all a part of my journey, and you are all appreciated.

Chapters 1, 2, 3, 7, and 8 contain material from “Conservation cores: re-

ducing the energy of mature computations”, by Ganesh Venkatesh, Jack Samp-

son, Nathan Goulding, Saturnino Garcia, Vladyslav Bryksin, Jose Lugo-Martinez,

Steven Swanson and Michael Bedford Taylor, which appears in ASPLOS ’10: Pro-

ceedings of the fifteenth edition of ASPLOS on Architectural support for program-

ming languages and operating systems. The dissertation author was the secondary

investigator and author of this paper. The material in Chapter 1 is copyright

c�2010 by the Association for Computing Machinery, Inc. (ACM). Permission to

make digital or hard copies of part or all of this work for personal or classroom

use is granted without fee provided that the copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page in print or the first screen in digital media. Copyrights

for components of this work owned by others than ACM must be honored. Ab-

stracting with credit is permitted. To copy otherwise, to republish, to post on

servers, or to redistribute to lists, requires prior specific permission and/or a fee.

Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481,

or email permissions@acm.org.

Chapters 1, 4, 5, 6, 7, and 8 contain material from “Energy-Delay Op-

timized Accelerators for Irregular Code”, by Jack Sampson, Ganesh Venkatesh,

Nathan Goulding, Saturnino Garcia, Steven Swanson, and Michael Bedford Tay-

lor, which has been submitted for possible publication by IEEE in Proceedings of

the 17th IEEE International Symposium on High Performance Computer Archi-

tecture (HPCA). The dissertation author was the primary investigator and author

xi

of this paper.

xii

VITA AND PUBLICATIONS

2000-2003 Teaching assistant
University of California, Berkeley

2002 B. S. in Electrical Engineering and Computer Science
University of California, Berkeley

2003-2010 Research assistant
University of California, San Diego

2005 Internship
HP Labs
Palo Alto, California

2006 Internship
HP Labs
Palo Alto, California

2008 C. Phil. in Computer Engineering
University of California, San Diego

2010 Ph. D. in Computer Engineering
University of California, San Diego

PUBLICATIONS

Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Garcia, Vladyslav
Bryksin, Jose Lugo-Martinez, Steven Swanson, Michael Bedford Taylor, “Con-
servation Cores: Reducing the Energy of Mature Computations”, Proceedings of
the Fifteenth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), March 2010.

Jack Sampson, Ruben Gonzalez, Jean-Francois Collard, Norm Jouppi, Mike
Schlansker and Brad Calder, “Exploiting Fine-Grained Data Parallelism with Chip
Multiprocessors and Fast Barriers”, Proceedings of the 39th Inernational Sympo-
sium on Microarchitecture (MICRO), December 2006.

Christophe Lemuet, Jack Sampson, Jean-Francois Collard, Norm Jouppi, “The
Potential Energy E�ciency of Vector Acceleration”, Proceedings of the 2006 ACM
/ IEEE conference on Supercomputing (SC), November 2006

Weihaw Chuang, Satish Narayanasamy, Ganesh Venkatesh, Jack Sampson, Michael
Van Biesbrouck, Gilles Pokam, Osvaldo Colavin, Brad Calder, “Unbounded Page-
Based Transactional Memory”, Proceedings of the Thirteenth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems,
October 2006

xiii

Erez Perelman, Marzia Polito, Jean-Yves Bouguet, John Sampson, Brad Calder,
Carole Dulong, “Detecting Phases in Parallel Applications on Shared Memory Ar-
chitectures”, Proceedings of the 20th IEEE International Parallel and Distributed
Processing Symposium, April 2006

Lieven Eeckhout, John Sampson, and Brad Calder, “Exploiting Program Microar-
chitecture Independent Characteristics and Phase Behavior for Reduced Bench-
mark Suite Simulation”, In Proceedings of the 2005 IEEE International Symposium
on Workload Characterization, October 2005

Jeremy Lau, Jack Sampson, Erez Perelman, Greg Hamerly, Brad Calder, “The
Strong Correlation Between Code Signatures and Performance”, Proceedings of the
5th International Symposium on Performance Analysis of Systems and Software,
March 2005

xiv

ABSTRACT OF THE DISSERTATION

Design and Architecture of Automatically-generated Energy-reducing
Coprocessors

by

John Morgan Sampson

Doctor of Philosophy in Computer Science (Computer Engineering)

University of California, San Diego, 2010

Professor Steven Swanson, Co-Chair
Professor Michael Taylor, Co-Chair

For many years, improvements to CMOS process technologies fueled rapid

growth in processor performance and throughput. Each process generation brought

exponentially more transistors and exponentially reduced the per-transistor switch-

ing power. However, concerns over leakage currents have moved us out of the

classical CMOS scaling regime. Although the number of available transistors con-

tinues to rise, their switching power no longer declines. In contrast to transistor

counts, power budgets remain fixed due to limitations on cooling or battery life.

Thus, with each new process generation, an exponentially decreasing fraction of the

available transistors can be simultaneously switched. The growing divide between

available transistors and utilizable transistors leads to a utilization wall.

This dissertation characterizes the utilization wall and proposes conserva-

tion cores as a means of surmounting its most pressing challenges. Conservation

cores, or C-Cores, are application-specific hardware circuits created to reduce en-

ergy consumption on computationally-intensive applications with complex control

xv

logic and irregular memory access patterns. C-Cores are drop-in replacements for

existing source code, and make use of limited reconfigurability to adapt to software

changes over time. The design and implementation of these specialized execution

engines pose challenges with respect to code selection, automatic synthesis, choice

of programming model, longevity/robustness, and system integration.

This dissertation addresses many of these challenges through the develop-

ment of an automated conservation core toolchain. The toolchain automatically

extracts the key kernels from a target workload and uses a custom C-to-silicon

infrastructure to generate 45 nm implementations of the C-Cores. C-Cores em-

ploy a new pipeline design technique called pipeline splitting, or pipesplitting. This

technique reduces clock power, increases memory parallelism, and further exploits

operation-level parallelism. C-Cores also incorporate specialized energy-e�cient

per-instruction data caches called cachelets into the datapath, which allow for

sub-cycle cache-coherent memory accesses.

An evaluation of C-Cores against an e�cient in-order processor shows that

C-Cores speed up the code they target by 1.5⇥, improve EDP by 6.9⇥ and ac-

celerate the whole application by 1.33⇥ on average, while reducing application

energy-delay by 57%.

xvi

Chapter 1

Introduction

For many years, improvements to CMOS process technologies fueled rapid

growth in processor performance and throughput. Each process generation brought

exponentially more transistors and exponentially reduced the per-transistor switch-

ing power. With these ample and e�cient resources, computer architects were able

to increase the number of cores per processor and employ increasingly sophisticated

mechanisms to improve the performance of each core.

In recent years, however, the benefits of newer process generations have

changed. Although the number of available transistors continues to rise, their

switching power no longer declines. Concerns over leakage currents have moved

us out of the classical CMOS scaling regime. We cannot employ the additional

transistors from newer process generations if their use violates the power bud-

get: Pragmatic concerns, such as thermal management, cost of ownership, and

battery life, hold power budgets fixed. Thus, with each process generation, an ex-

ponentially decreasing fraction of the available transistors can be simultaneously

switched. We term this growing divide between available transistors and utilizable

transistors the utilization wall. The homogeneous multi-core approach to designing

processors is ill-suited to face this challenge. However, the leakage-limited scaling

regime introduces a new landscape in which heterogeneous designs with specialized

hardware hold significant promise.

Faced with the utilization wall, designers find each new process generation

leaves them with undesirable choices. They could allow the area budget to scale

1

2

down with power, but that would signal the end of exponentially increasing circuit

integration. As this increasing integration, commonly known as Moore’s Law, has

powered the past several decades of architectural innovation, this is not an accept-

able option. For a fixed area budget, either some of that area must lay fallow at

any given time, dark silicon, or the area must contain underutilized transistors, dim

silicon. Such underutilization is most commonly accomplished via underclocking,

which limits performance. Heterogeneous designs o↵er a means to exploit dark

silicon: Only cores that are well matched to the current set of computations are

active, and all others remain dark. As the current set of computations changes,

cores can move between active and dark status, running threads on the most closely

matching silicon.

Specialization and heterogeneity are appealing from both power and per-

formance perspectives, and both are challenging from a system perspective. Pro-

ducing a su�cient diversity of specialized hardware to provide high coverage for a

non-trivial target workload requires significant design automation. Likewise, the

hardware produced must reduce energy for serial and irregular code, as well as

parallel code, or the technique will be of limited applicability. Custom ASICs and

accelerators for highly parallel computations are well studied, but many open ques-

tions remain for the systematic generation of hardware for irregular code regions.

This dissertation characterizes the utilization wall and proposes conserva-

tion cores as a means of addressing the challenges of dark silicon. Conservation

cores, or C-Cores, are application-specific hardware circuits created for the purpose

of reducing energy consumption on computationally intensive applications with ir-

regular code bases. C-Cores improve the energy e�ciency of irregular codes by

converting dark silicon into a collection of energy-saving, application-specialized

cores. Each C-Core is a drop-in replacement for a region of code in the source ap-

plication. These cores are produced by an automated toolchain which transforms

regions of C source into C-Cores and transparently modifies the original appli-

cations to use the C-Cores. C-Cores, unlike many other approaches, can target

nearly arbitrary code regions.

Conservation cores have a di↵erent goal than conventional application-

3

specific circuits, and we di↵erentiate between C-Cores and the more common ac-

celerators along several axes. Accelerators focus on improving performance, at

a potentially worse, equal, or better energy e�ciency. As their name suggests,

designers rarely deploy accelerators for code where performance does not greatly

benefit from customized hardware. Conservation cores, on the other hand, focus

on energy reduction. Serial and irregular codes are valid targets for energy reduc-

tion via conservation cores, even if performance benefits are limited. Conservation

cores aim to always reduce energy consumption and to accelerate where practi-

cal. Conservation cores that are also accelerators are possible: Chapters 4 and 5

explore techniques for improving the performance of C-Cores while maintaining

energy e�ciency.

Even if, for a given C-Core, the hardware specialization that provides energy

e�ciency does not translate into better performance, energy e�ciency can translate

directly to better throughput. Under the utilization wall, such specialized, energy-

e�cient processors can increase parallelism by reducing the per-computation power

requirements and allowing more computations to execute under the same power

budget. Therefore, while single-threaded performance is important, especially for

di�cult to parallelize irregular code bases, performance should not be purchased

at the expense of forsaking energy e�ciency.

Shifting the focus from performance-at-all-costs to e�ciency allows C-Cores

to target a broader range of applications than accelerators. C-Cores, unlike most

accelerators, can target both parallel and serial portions of an application. Ac-

celerators provide benefits for codes with large amounts of parallelism and pre-

dictable communication patterns, as these codes map naturally onto hardware.

Thus, parallelism-intensive regions of code that are hot (i.e., occupy a high per-

centage of running time) are the best candidates for implementation as accelerators.

On the other hand, C-Cores are parallelism-agnostic: Hot code with a tight critical

path, little parallelism, and/or very poor memory behavior is an excellent candi-

date for a C-Core: C-Cores can greatly reduce the number of transistor toggles

required to execute that code, saving energy. For instance, our results show that

C-Cores can deliver significant energy savings for irregular, integer applications

4

(e.g., MCF from SPEC 2006) that would be di�cult to automatically accelerate

with specialized hardware.

Over the course of this dissertation, we will examine the utilization wall,

conservation cores, and how these conservation cores rise to the challenges of a

leakage limited scaling regime. Chapter 2 examines the origins and implications

of the utilization wall. We discuss the theory behind classical and leakage limited

CMOS scaling, and present our own empirical results for the utilization wall. We

then discuss how the unique challenges of the utilization wall lead us to develop

the C-Core approach.

Chapter 3 describes the system architecture for C-Core enabled systems, our

toolchain for automatically creating and compiling for C-Cores, and presents and

evaluates a prototype C-Core architecture. The toolchain automatically extracts

the key kernels from a target workload and uses a custom C-to-silicon infrastructure

to generate 45 nm implementations of the C-Cores. It also automates the process

of evaluating and compiling for C-Core enabled systems. We use this toolchain to

produce and evaluate a set of prototype C-Cores from multiple versions of several

applications. We show that our prototype C-Cores provide significant energy and

energy-delay savings over an e�cient, in-order MIPS processor.

Chapters 4 and 5 describe enhancements to C-Core performance and energy

e�ciency. Our prototype C-Cores o↵er substantial energy savings, but have room

to improve on performance and energy e�ciency in three key areas: Memory order-

ing enforcement, reconfiguration mechanisms, and load-use latency all benefit from

targeted optimizations. To improve C-Core performance we employ a new pipeline

design technique called pipeline splitting, or pipesplitting. This technique reduces

clock power, increases memory parallelism, and further exploits ILP. To reduce the

energy, area, and operator delay costs incurred by the software adaptation mech-

anisms from [VSG+10] we exploit a more nuanced form of reconfiguration. We

also explore incorporating specialized energy-e�cient per-instruction data caches

called cachelets, which allow for sub-cycle cache-coherent memory accesses. The

first two of these advances are presented in Chapter 4, and the third is the focus

of Chapter 5.

5

Chapter 6 analyzes the hardware produced by our automated toolchain,

and explores the impact and challenges of scheduling operations on C-Cores. We

discuss why operation scheduling is important for C-Cores and why traditional

modulo scheduling techniques are not applicable. We examine the limitations of a

block-based execution and scheduling model in the face of small basic blocks, and

highlight possible avenues for improving block size and exposed parallelism.

Chapter 7 surveys other approaches to energy reduction, accelerator ar-

chitectures, and automated hardware generation. It also discusses di↵erences in

technique from related work for our implementations of scheduling, caching, and

other components of our approach. Through these comparisons, we place conserva-

tion cores in the context of broader e↵orts in hardware specialization and highlight

novel aspects of the C-Core approach.

Finally, in Chapter 8 we summarize the contributions of this dissertation,

including the introduction of the utilization wall and the design and evaluation of

C-Cores and C-Core enhancing techniques.

Acknowledgments

Portions of this research were funded by the US National Science Founda-

tion under NSF CAREER Awards 06483880 and 0846152, and under NSF CCF

Award 0811794.

This chapter contains material from “Conservation cores: reducing the

energy of mature computations”, by Ganesh Venkatesh, Jack Sampson, Nathan

Goulding, Saturnino Garcia, Vladyslav Bryksin, Jose Lugo-Martinez, Steven Swan-

son and Michael Bedford Taylor, which appears in ASPLOS ’10: Proceedings of the

fifteenth edition of ASPLOS on Architectural support for programming languages

and operating systems. The dissertation author was the secondary investigator

and author of this paper. The material in this chapter is copyright c�2010 by the

Association for Computing Machinery, Inc. (ACM). Permission to make digital

or hard copies of part or all of this work for personal or classroom use is granted

without fee provided that the copies are not made or distributed for profit or

6

commercial advantage and that copies bear this notice and the full citation on

the first page in print or the first screen in digital media. Copyrights for com-

ponents of this work owned by others than ACM must be honored. Abstracting

with credit is permitted. To copy otherwise, to republish, to post on servers, or

to redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or email

permissions@acm.org.

This chapter contains material from “Energy-Delay Optimized Accelera-

tors for Irregular Code”, by Jack Sampson, Ganesh Venkatesh, Nathan Goulding,

Saturnino Garcia, Steven Swanson, and Michael Bedford Taylor, which has been

submitted for possible publication by IEEE in Proceedings of the 17th IEEE Inter-

national Symposium on High Performance Computer Architecture (HPCA). The

dissertation author was the primary investigator and author of this paper.

Chapter 2

The Utilization Wall

In this chapter, we examine the nature of the utilization wall in detail,

and motivate heterogeneous multiprocessors with application specialized cores as

a means of dealing with its consequences. We show how scaling theory predicts that

the transition from classical to leakage-limited regime will lead to the utilization

wall. We then demonstrate how these theoretical models predict current practice,

confirming the exponential nature of the utilization wall. Finally, we discuss how

heterogeneous multi-core processors address the challenges posed by utilization

wall in ways that homogeneous multi-core processors do not.

2.1 The Utilization Wall

In this section we provide the theoretical background for the utilization

wall and then provide evidence of how it is already a↵ecting designs. We show

that scaling theory predicts the utilization wall to be an exponentially worsening

problem. We then lend support to this prediction with our own experiments at 90

and 45 nm process nodes.

2.1.1 Theory

The utilization wall arises because of a breakdown of the classical CMOS

scaling described by Dennard [DGR+74] in his 1974 paper. The “Classical Scaling”

7

8

column in Table 2.1 shows the key elements of the classical CMOS scaling model.

Associated with each transition between CMOS processes is a geometry scaling

factor S, typically 1.4⇥. Classical CMOS scaling holds that transistor capacitances

decrease roughly by this factor of S with each process shrink. At the same time,

transistor switching frequency rises by S and the number of transistors on the die

increases by S2. Until recently, it has been possible to scale supply voltage by

1/S, leading to constant power consumption for a fixed-size chip running at full

frequency. Scaling the supply voltage requires that we also scale the threshold

voltage proportionally if we wish to maintain switching frequency. Historically,

this was not an issue because leakage, although increasing exponentially, was not

significant in process nodes above 130 nm.

In the current process scaling regime, transistor densities and speeds con-

tinue to increase with Moore’s Law. Unfortunately, to curtail leakage currents,

limits on threshold voltage scaling now prevent supply voltage scaling. As a re-

sult, full chip, full frequency power is now rising as S2. The introduction of 3D

CMOS technology will exacerbate this trend further. Table 2.1 summarizes these

trends. The equations in the “Classical Scaling” column governed scaling up until

130 nm. The equations in the “Leakage Limited” column govern scaling at 90 nm

and below.

2.1.2 Practice

The result of these trends is a technology-imposed utilization wall that

limits the fraction of the chip we can use at full speed at one time. The e↵ects of

the utilization wall are already indirectly apparent in modern processors: Intel’s

Nehalem provides a “turbo mode” that powers o↵ some cores in order to run

others at higher speeds. Another strong indication is the divergence between native

transistor switching speeds and processor frequencies. Although the former have

continued to double every two process generations, the latter have not increased

substantially over the last 5 years.

To quantify the current impact of the utilization wall, we synthesized,

placed, and routed several circuits using the Synopsys Design and IC Compilers.

9

Table 2.1: The utilization wall The utilization wall is a consequence of CMOS
scaling theory and current-day technology constraints, assuming fixed power and
chip area. The Classical Scaling column assumes that designers can lower V

t

ar-
bitrarily. In the Leakage Limited case, constraints on V

t

, necessary to prevent
unmanageable leakage currents, hinder scaling and create the utilization wall.

Param. Description Relation
Classical Leakage
Scaling Limited

B power budget 1 1
A chip size 1 1
V

t

threshold voltage 1/S 1
V

dd

supply voltage ⇠ V
t

⇥ 3 1/S 1
t
ox

oxide thickness 1/S 1/S

W, L transistor dimensions 1/S 1/S
I
sat

saturation current WV
dd

/t
ox

1/S 1

p
device power

I
sat

V
dd

1/S2 1
at full frequency

C
gate

capacitance WL/t
ox

1/S 1/S

F device frequency Isat
CgateVdd

S S

D devices per chip A/(WL) S2 S2

P
full die, full

D ⇥ p 1 S2

frequency power

U
utilization at

B/P 1 1/S2

fixed power

Table 2.2: Experiments quantifying the utilization wall We use Synopsys
CAD tools and TSMC standard cell libraries to evaluate the power and utilization
of a 300 mm2 chip filled with 64-bit adders, separated by registers. We use these
operators to approximate active logic in a processor.

Process 90 nm TSMC 45 nm TSMC 32 nm ITRS

Frequency (GHz) 2.1 5.2 7.3
mm2 Per Op. .00724 .00164 .00082
Operators 41k 180k 360k
Full Chip Watts 455 1225 2401
Utilization at 80 W 17.6% 6.5% 3.3%

10

Table 2.2 summarizes our findings. For each process, we used the corresponding

TSMC standard cell libraries to evaluate power and area. We filled a 300 mm2

chip with 64-bit operators to approximate active logic on a microprocessor die.

Each operator is a 64-bit adder with registered inputs and outputs, which runs at

its maximum frequency in that process. In a 90 nm TSMC process, running a chip

at full frequency would require 455 W. This means that only 17.6% of the chip

could be simultaneously active in an 80 W budget. In a 45 nm TSMC process, a

similar design would require 1225 W, resulting in just 6.5% utilization at 80 W.

This shows a reduction of 2.6⇥ attributable to the utilization wall. The equations

in Table 2.1 predicted a larger, 4⇥ reduction. The di↵erence is due to process and

standard cell tweaks implemented between the 90 nm and 45 nm generations.

2.2 Implications of the Utilization Wall

Table 2.2 also extrapolates to 32 nm based on ITRS data for 45 and 32 nm

processes. ITRS roadmap projections and CMOS scaling theory suggest that this

percentage will decrease to less than 3.5% in 32 nm, and will continue to decrease

by almost half with each process generation. Thus, the utilization wall is getting

exponentially worse, roughly by a factor of two, with each process generation.

The remainder of the transistor budget must be either left unused, leaving

dark silicon, or purchased at the expense of underutilizing all transistors in the

design. The latter renders the whole processor dim silicon. For scaling existing

multi-core processor designs, designers have choices that span a variety of design

points. However, the best they can do is exploit the factor of S (e.g., 1.4⇥)

reduction in transistor switching energy that each generation brings. Regardless

of whether designers a) increase frequency by a factor of 1.4⇥, b) increase core

count by 1.4⇥, c) increase core count by 2⇥, and reduce frequency by 1.4⇥, or d)

some compromise of the three, the utilization wall ensures transistor speeds and

densities are rapidly out-pacing the available power budget to switch them.

The situation is brighter for less conventional designs. Provided that only a

subset of the transistors are active at the same time, designers can still harness all

11

of the available transistor budget at full speed. In a homogeneous design, turning

o↵ one compute unit in favor of an identical one o↵ers few benefits. In contrast,

for a heterogeneous design, there are clear benefits to turning o↵ one compute unit

in favor of turning on another that is more specialized for the current task.

2.3 Using Heterogeneity to Scale the Utilization

Wall

Heterogeneity and specialization are e↵ective responses to the utilization

wall and the dark silicon problem. Increasingly, specialized processors o↵er large

energy savings with little to no opportunity cost: The silicon area that they con-

sume would otherwise go unused because of the utilization wall. Thus, specialized

silicon can trade cheap area for valuable energy e�ciency.

Specialization is especially profitable in extremely power-constrained de-

signs. This includes the mobile application processors that power the world’s

emerging computing platforms, including cell phones, e-book readers, media play-

ers, and other portable devices. Mobile application processors di↵er from conven-

tional laptop or desktop processors. They have vastly lower power budgets – often

less than 375 mW – and usage is heavily concentrated around a core collection of

applications. Mobile designs already tend to be heterogeneous platforms. Mobile

designers reduce power consumption, in part, by leveraging customized low-power

hardware implementations of common functions such as audio and video decoders

and 3G/4G radio processing. These computations are highly parallel and excep-

tionally well-suited to traditional accelerator or custom ASIC implementations.

The remaining code (user interface elements, application logic, operating

system, etc.) resembles traditional desktop code and is ill-suited to conventional,

parallelism-centric accelerator architectures. This code has traditionally been of

limited importance. However, the rising popularity of sophisticated mobile appli-

cations suggests this code will become more prominent and consume larger frac-

tions of device power budgets. As a result, applying hardware specialization to

frequently-executed irregular code regions will become a profitable system-level op-

12

timization. Likewise, the resemblance between these code regions and traditional

desktop applications means that hardware beneficial to either should benefit both.

For parallel and highly regular regions of code, traditional accelerator ap-

proaches will continue to apply. Many already produce low-power hardware, or

o↵er su�cient performance to trade performance for power. However, to address

the challenges of the utilization wall, we must provide specialization for more than

just those portions of code trivially mapped into hardware. Similarly, to be a

scalable solution, we must be able to map new codes onto new or existing spe-

cialized hardware as workloads change and applications evolve. Our approach to

addressing the utilization wall is the construction of a fully automated toolchain

that produces specialized execution engines called conservation cores that act as

drop-in replacements for existing code. In the next chapter, we will explore both

the conservation core approach and the conservation core toolchain.

Acknowledgments

Portions of this research were funded by the US National Science Founda-

tion under NSF CAREER Awards 06483880 and 0846152, and under NSF CCF

Award 0811794.

This chapter contains material from “Conservation cores: reducing the

energy of mature computations”, by Ganesh Venkatesh, Jack Sampson, Nathan

Goulding, Saturnino Garcia, Vladyslav Bryksin, Jose Lugo-Martinez, Steven Swan-

son and Michael Bedford Taylor, which appears in ASPLOS ’10: Proceedings of the

fifteenth edition of ASPLOS on Architectural support for programming languages

and operating systems. The dissertation author was the secondary investigator

and author of this paper. The material in this chapter is copyright c�2010 by the

Association for Computing Machinery, Inc. (ACM). Permission to make digital

or hard copies of part or all of this work for personal or classroom use is granted

without fee provided that the copies are not made or distributed for profit or

commercial advantage and that copies bear this notice and the full citation on

the first page in print or the first screen in digital media. Copyrights for com-

13

ponents of this work owned by others than ACM must be honored. Abstracting

with credit is permitted. To copy otherwise, to republish, to post on servers, or

to redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or email

permissions@acm.org.

This chapter contains material from “Energy-Delay Optimized Accelera-

tors for Irregular Code”, by Jack Sampson, Ganesh Venkatesh, Nathan Goulding,

Saturnino Garcia, Steven Swanson, and Michael Bedford Taylor, which has been

submitted for possible publication by IEEE in Proceedings of the 43rd annual In-

ternational Symposium on Microarchitecture (MICRO). The dissertation author

was the primary investigator and author of this paper.

Chapter 3

The Design of Conservation Core

Enabled Systems

In the previous chapter, we saw how growing transistor counts, limited

power budgets, and the breakdown of voltage scaling conspire to create a utilization

wall that limits the fraction of a chip that can run at full speed at one time. This

leads to an increase in dark silicon with every process generation. Likewise, we

saw indications that heterogeneous systems that can translate increasing transistor

budgets into increasing levels of specialization may be able to exploit the dark

silicon. Our approach to heterogeneous system design is built around automatically

generated specialized processors that focus on reducing energy and energy-delay

for code regions with irregular control flow and memory patterns. We call these

processors conservation cores, or C-Cores,

Incorporating C-Cores into multi-processors, especially at a scale large

enough to save power across many applications with multiple hot spots, raises

a number of challenges:

1. C-Core Selection In order to build C-Cores, we must be able to identify

which pieces of code are the best candidates for conversion into C-Cores.

The code should account for a significant portion of runtime and energy, and

stem from a relatively stable code base.

2. Automatic synthesis Designing numerous C-Cores by hand is not scalable,

14

15

so it must be possible to synthesize C-Cores automatically and correctly,

without significant human intervention.

3. Programming model It should not be necessary to rewrite applications to

make use of C-Cores. The system must utilize them automatically.

4. Longevity Conservation cores should remain useful even as the code they

are designed to replace evolves.

5. System integration Since C-Cores should work seamlessly with existing

code, the C-Core hardware and memory model must be tightly integrated

with the rest of system.

In this chapter, we develop the conservation core architecture and show

how our design addresses programming model and system integration challenges.

We present our vision for how C-Cores will be selected, created, integrated, used,

and adapted to workload and application changes over time. We call this the C-

Core’s “life cycle,” and present our toolchain which automates each of the stages

in that life cycle. We describe our toolchain in detail and evaluate the prototype

C-Cores that it produces. Subsequent chapters will focus on improving both the

performance and energy e�ciency of these initial prototype C-Cores.

3.1 Conservation cores: System overview

This section provides an overview, describing the composition of a proto-

typical C-Core system. Architectures based on specialized hardware must address

three core issues: 1) how the specialized core maintains coherence with the host

system, 2) how the specialized core integrates with more general processing re-

sources to handle code that does not justify building specialized hardware, and 3)

how the system withstands changes to the software that it targets. We address

these three core questions in turn, discussing the sharing of our coherent L1, the

movement of execution between CPU and C-Core, and our approach to handling

target application program changes.

16

D-CacheI-Cache

CPU

FPU

Tile

S
c
a
n
 C

h
a
in

 S
e
le

c
t

C-core

C-core

C-core

C-core

OCN

cond==0

ld

0

<

init

stValid==0

Control

Path

Cache

Interface

Scan

Chain

C-core

Data Path

Operations

st

ldValid==0

(a) (b) (c)

Figure 3.1: The high-level structure of a C-Core-enabled system A C-
Core-enabled system (a) is made up of multiple individual tiles (b), each of which
contains multiple C-Cores (c). Conservation cores communicate with the rest of
the system through a coherent memory system and a simple scan-chain-based
interface. Di↵erent tiles may contain di↵erent C-Cores. Not drawn to scale.

3.1.1 Basic chip-level architecture

A C-Core-enabled system includes multiple C-Cores embedded in a multi-

or many-core tiled array like the one in Figure 3.1(a). Each tile of the array contains

a general purpose processor (the “CPU”), cache and interconnect resources, and

a collection of tightly-coupled C-Cores. Collectively, the C-Cores and CPU share

the tile’s resources, including the coherent L1 data cache, the on-chip network

interface, and FPU.

Within a tile (Figure 3.1(b)), the C-Cores interface to the host CPU via a

direct, multiplexed connection to the L1 cache. They also connect directly to the

host CPU through a collection of scan chains. These allow the CPU to read and

write all state within the C-Cores. The CPU uses these scan chains for passing

arguments, for context switching, and for patching the C-Cores. The scan chain

interface is covered in more detail in section 3.3.2. These facilities allow the system

to reconfigure a C-Core to run future and past modified versions of the source code

that was used to generate the C-Cores. Most data transfer occurs through the

coherent L1 cache connection.

A shared, coherent cache is an attractive option for conservation cores be-

cause of their focus on irregular code. With irregular accesses and control flows

17

unsuited to modulo scheduling, C-Cores are sensitive to memory latency as well as

bandwidth. Caching can greatly reduce average memory access time, especially for

dependent loads. As C-Cores already target code with irregular control flows, the

variability in memory access time doesn’t add significant additional complexity.

By having C-Cores share the same path to memory as the processor, drop-

in semantics are easier to maintain. Likewise, C-Cores are trivially kept coherent

with processor memory because the accesses go to the same cache. For applications

with cache-friendly access patterns, caching also improves energy e�ciency over

directly accessing main memory.

3.1.2 Execution model

Each C-Core targets frequently executed, or hot, regions of an application.

It achieves energy and power savings by creating specialized hardware datapaths

that eliminate much of the overhead in conventional processor pipelines. Overheads

reduced or removed include instruction fetch, register file accesses, and bypassing.

These datapaths are controlled by a set of state machines that closely mirror

the control flow graph of the source program. This mirroring allows for precise

replication of the same semantics that the code would have if it were executing

on the CPU. The shared, coherent L1 makes this as true for memory state as for

control flow.

Portions of applications not important enough to be supported by C-Cores

continue to run on the CPU. The CPU also serves as a fallback to support applica-

tions that were not available at the time of the manufacture of the chip. Similarly,

exceptional behavior is supported with traps to the CPU. Execution shifts back

and forth between the CPU and various C-Cores as an application enters and exits

the code regions that C-Cores support.

3.1.3 Future proofing

Although the C-Cores are created to support existing versions of specific

applications, they also need to support newer versions that are released after the

18

original C-Cores were synthesized. To do this, we implement all three reconfigu-

ration mechanisms described in [VSG+10]. The C-Cores include reconfiguration

bits which allow the behavior of C-Cores to adapt to commonly found changes in

programs. Small changes, such as replacing one constant value in a program with

another, are handled within the C-Core via reconfiguration. Larger changes are

handled by forcing traps to software on certain CFG edges. Section 3.4 briefly dis-

cusses how the patching process fits into our automated toolchain and how these

reconfiguration bits are configured. However, the details of the patching algorithms

are outside the scope of this dissertation and can be found in [VSG+10].

3.2 The C-Core Life Cycle

For the C-Core approach to be successful, we must be able to map most

execution onto C-Cores. Furthermore, for C-Cores to achieve high coverage in a

reasonable amount of area, a relatively small fraction of the application’s static

instructions must account for a large fraction of execution. Fortunately, this is

true for many programs. Figure 3.2 shows the fraction of dynamically executed

x86 instructions (y-axis) covered by the number of static x86 instructions (x-axis)

for a broad-ranging set of applications. These applications include SPECCPU2006

integer benchmarks astar and hmmer, desktop applications evince, emacs, grep,

gcc, perl, and scp, and five applications for which we will construct C-Cores proto-

types in this chapter. For many applications, the curve is quite steep. This means

that converting a relatively small number of static instructions into hardware will

cover a very large fraction of execution.

The C-Core approach must be scalable in design e↵ort as well as area. We

will address this through automation. As workloads change, new applications and

new versions of applications can be run through our automated toolchain. Drop-

in semantics allow the specialized hardware to be used transparently, without

manual code changes. While this approach imposes some constraints on potential

optimizations, especially on the memory system, it makes the conservation core

approach scalable in e↵ort.

19

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Fr
ac

tio
n

of
 d

yn
am

ic
al

ly
 e

xe
cu

te
d

in
st

ru
ct

io
ns

Static instructions

 % Coverage at
 # static insts
2500 5000 10000

99.6 99.9 99.9 astar
99.4 99.9 99.9 hmmer
99.4 99.8 99.9 djpeg
99.1 99.8 99.9 cjpeg
98.8 99.3 99.7 grep
91.7 96.6 99.2 scp
88.9 97.7 99.7 mcf
87.6 94.5 98.0 gcc
85.0 96.5 99.6 vpr
84.1 95.8 99.1 bzip2
75.6 86.9 94.5 perl
65.5 75.8 83.6 evince
65.0 75.9 86.3 emacs

Figure 3.2: Dynamic coverage for given static instruction counts We show
the cumulative distribution of dynamic coverage (on the vertical axis) as a function
of the number of static instructions executed. For many x86 programs profiled, a
small number of static instructions cover much of dynamic execution. This implies
that a small amount of specialized hardware could cover large portions of execution
for each of these programs.

20

Versions
Released
Over Time

10

00
11101

Extracted
Energy-Intensive
Code Regions

Patchable
C-core
Specifications Conservation Cores

Many-core
Processor
with C-cores

1.2 1.21 1.22 1.3

3.4 3.5 4.2 4.212.96

.9

Stable
Applications

Patching-Aware Compiler

(a)

(b) (c)

(d)

(e)

Figure 3.3: The C-Core Life Cycle A profiler (a) extracts a set of energy-
intensive code regions from a corpus of stable applications in the processor’s target
domain. The toolchain generalizes these regions into patchable C-Core specifica-
tions (b), translates them into circuits via an automated synthesis infrastructure
(c), and integrates them into a multi-core processor (d). A patching-aware com-
piler maintains a database of C-Core specifications and generates binaries that
execute on a combination of C-Cores and the local CPU. The compiler (e) gen-
erates a patching configuration that allows the C-Cores to run future (and past)
versions of the original applications.

While hardware release cycles are long, software release cycles are often

much more rapid. Our design vision for C-Cores takes this into account in two

key ways: First, we limit the non-recurring engineering costs for successive gen-

erations of C-Core enabled systems through automation. It is not feasible to rely

on manual specification of every hot spot in every workload every time a new sys-

tem is designed. Therefore, we have heavily automated this process. Second, we

ensure that a C-Core enabled system can retain the utility of its C-Cores over the

expected lifetime of the system. For this, we rely heavily on the patching mech-

anisms proposed in [VSG+10], and automatic generation of the requisite patches

via our compiler infrastructure.

Figure 3.3 depicts the generation of a many-core processor equipped with

C-Cores and the toolchain needed to target them. The process starts with the

21

processor designer characterizing the workload. This requires identifying applica-

tions that make up a significant fraction of the processor’s target workload. The

toolchain begins by extracting from these applications the most frequently used

(or “hot”) code regions (a). It then augments them with a small amount of re-

configurability (b) and synthesizes C-Core hardware using a 45 nm standard cell

CAD flow (c). A single processor contains many tiles, each with a general purpose

CPU and collection of di↵erent C-Cores (d).

In order to generate code for the processor, we extend a standard compiler

infrastructure to support automatic code generation for C-Cores. In our case, we

use a combination of LLVM [LA04], OpenIMPACT [Ope] and GCC. Any standard

compiler infrastructure such as GCC, the Intel C++ compiler, or Microsoft Visual

Studio would have been suitable. The compiler incorporates a description of the C-

Core that the manufacturer has shipped silicon for. The compiler uses a matching

algorithm to find similarities between the input code and the C-Core specifications

(e). In cases where there are close matches, the compiler will generate both CPU-

only object code and object code that makes use of the C-Core. The latter version

of the code includes patching information that is downloaded into the C-Core via

scan chains. This transfer occurs before the C-Core is invoked. The decision

of whether to use the C-Core-enabled version of the code or the “software-only”

version is made at run time, based on C-Core availability and other factors.

The next several sections describe how we turn our design vision into a

concrete system. Section 3.3 describes the C-Core architecture. Sections 3.5, 3.6,

and 3.4 detail our toolchain for automating the C-Core life cycle. We focus first

on our system level architecture.

3.3 Conservation core architecture

This section describes the architecture of a C-Core-enabled system in more

detail. We describe the organization of the C-Cores themselves and the interface

between the C-Cores and the rest of the system.

22

3.3.1 Conservation core organization

Each C-Core acts as a drop-in replacement for a region of code. An individ-

ual C-Core comprises a datapath and control state machine derived directly from

the code it targets. Figure 3.1(c) shows the architecture of a prototypical C-Core.

The principle components are the datapath, the control unit, the cache interface,

and the scan chain interface to the CPU.The scan chain interface provides access

to internal state. Specialized load and store units share ports to memory and use a

simple token-based protocol to enforce correct memory ordering. For simplicity of

correctness in our C-Core prototypes, this protocol restricts the number of concur-

rent memory accesses to one. Later, in Chapter 4, we will investigate performance

optimizations for the memory ordering interface.

Datapath and control By design, the C-Core datapath and control very closely

resemble the internal representation that our toolchain extracts from the C source

code. The datapath contains the functional units (adders, shifters, etc.), the muxes

to implement control decisions, and the registers to hold program values across

clock cycles.

The control unit implements a state machine that mimics the control flow

graph of the code. Every basic block in the code’s original CFG has at least one

corresponding state in the C-Core’s control unit. Where there are memory or other

variable latency operations within a basic block, the basic block is partitioned into

multiple basic blocks. One control state is then created for every basic block in the

new CFG. The control unit tracks branch outcomes (computed in the datapath)

to determine which state to enter on each cycle. The control path sets the enable

and select lines on the registers and muxes so that the correct basic block is active

each cycle.

The close correspondence between the program’s structure and the C-Core

is important for two reasons: First, it makes it easier to enforce correct memory

ordering in irregular programs. The ordering that the control path’s state machine

enforces corresponds to the order that the program counter provides in general

purpose processors. We use that ordering to enforce memory dependencies. Sec-

23

ond, close correspondence enhances robustness. Structural similarity improves the

likelihood that small changes in the source code (which are the common case) will

require correspondingly small reconfiguration facilities from the hardware. This

maximizes the probability that the patching mechanisms from [VSG+10] will pro-

vide su�cient flexibility to adapt to the application changes.

To maintain this correspondence and to reduce the number of registers

required in the datapath, the registers in the C-Core datapaths adhere to SSA form:

Each static SSA variable has a corresponding register. This invariant minimizes

the number of register updates: Exactly one register value changes per new value

that the program generates.

Memory interface and ordering Memory operations require special attention

to ensure that the C-Core enforces memory ordering constraints. Our prototype

conservation cores enforce these constraints by allowing only one memory operation

per basic block. The C-Core only activates one basic block at a time, guaranteeing

that memory operations within the C-Core execute in the correct order. During

C-Core execution, the CPU is inactive and all CPU accesses will have completed

before C-Core execution begins or resumes. Thus, as both C-Cores and the CPU

access the same cache, ordering between CPU and C-Core memory accesses is

trivially maintained, although this does limit potential memory optimizations for

the C-Core.

The load/store units connect to a coherent data cache. This ensures that all

loads and stores are visible to the rest of the system regardless of which addresses

the C-Core accesses.

Cache accesses can take multiple cycles. Moreover, the number of cycles is

variable. To address this, the toolchain adds a self-loop to the basic block that

contains each memory operation and exports a “valid” line to the control path.

When the memory operation is complete, it asserts the “valid” signal and control

exits the loop and proceeds with the following basic block. The “valid” signal is

similar to the memory ordering token used in systems such as Tartan [MCC+06]

and WaveScalar [SSM+07].

Most of the communication between C-Cores and the CPU occurs via the

24

computeArraySum
{

 sum = 0;

 for(i = 0; i < n; i++)

 {

 sum += a[i];

 }

 return(sum);

}

i = 0

sum = 0

phi(i)

phi(sum)

i < n

sum+=a[i]

i++
return(sum)

F

(a) (b) (c)

isum a

+

ld unit

addr

valid

e
n

v
a

lu
e+

0 0

+
1

muxSel

muxSel

ldEn

ldValid

<

n

cond

Data Path

sInit

s1

s2

s3 ldValid==0

sRet
cond==0

Control

Path

Cache

Interface

Scan Chain

Interface

Scan Chain

Figure 3.4: Conservation core example An example showing the translation
from C code (a), to the compiler’s internal representation (b), and finally to hard-
ware (c). The hardware schematic and state machine correspond very closely to
the data and control flow graphs of the C code.

shared L1 cache. A coherent, shared memory interface allows us to construct

C-Cores for applications with unpredictable access patterns. Conventional accel-

erators cannot speed up these applications, because they cannot extract enough

memory parallelism. Such applications can be an excellent fit for C-Cores, however,

as performance is not the primary concern. Since the CPU and C-Cores do not

simultaneously access the cache, the impact on the CPU cycle time is negligible.

Multi-cycle instructions Conservation cores handle other multi-cycle instruc-

tions (e.g., integer division and floating point operations) in the same way as

memory operations. Each multi-cycle instruction resides in a basic block with a

self-loop and generates a “valid” signal when it completes.

Example Figure 3.4 shows the translation from C souece code (a) to hardware

schematic and state machine (c). The hardware corresponds very closely to the

CFG of the sample code (b). It has muxes for variables i and sum corresponding

to the phi operators in the CFG. Also, the state machine of the C-Core is almost

identical to the CFG, but with additional self-loops for multi-cycle operations. The

datapath has a load unit to access the memory hierarchy to read the array a.

25

3.3.2 The CPU/C-Core interface

Aside from the cache, the only connection between the CPU and the C-

Cores is a set of scan chains. These scan chains are the mechanism that allows the

CPU access to all of the C-Core’s internal state. The CPU side of the interface

is shared among all C-Cores on the CPU’s tile. The CPU can communicate via

scan chains with only one C-Core at a time, with switching controlled by the CPU.

The CPU uses the scan chains to install patches that will be used across many

invocations, and to pass initial arguments for individual invocations. The scan

chains also allow the CPU to read and modify internal C-Core state to implement

exceptions.

Conservation core scan chains are divided into two groups, fixed-function

and data. There are a small number of short, fixed-function scan chains for control,

argument passing, and patch installation. The bulk of the scan chains provide

access to datapath registers. A C-Core may have up to 32 such data scan chains.

The scan chains for arguments are short (just 64 bits) to make invocation

fast, but the patch installation scan chains can be much longer. In our biggest

C-Core prototype, the patch chains reach up to 12,772 bits. However, patch in-

stallation is infrequent, so the cost of accessing the scan chain is minor: In general

usage, patches will only be installed once per program invocation. A special “mas-

ter control” scan chain contains a single bit and allows the CPU to start and stop

the C-Core’s execution as needed.

Datapath scan chains allow the CPU to manipulate arbitrary execution

state during an exception. Datapath scan chains range in length from 32 to 448

bits in our largest C-Core.

To access the interface, the CPU provides three new instructions: Move-

From-ScanChain (MFSC), Move-To-ScanChain (MTSC), and ScanChain-Rotate-

Left (SCRL). MFSC moves the 32 bits at the head of a scan chain into a general

purpose processor register, and MTSC does the reverse. SCRL rotates a scan

chain left by n bits. SCRL executes asynchronously but MFSC and MTSC have

blocking semantics: They will wait for previously issued SCRLs on a scan chain to

finish before returning a value from that scan chain. As the C-Cores are drop-in

26

replacements for existing code, programs need not block if the correct C-Core is

not available (i.e., if it is in use by another program or currently configured with

the incorrect patch). The original CPU (software) implementation is still available,

and the program can use it instead.

3.4 Patching conservation cores

When a C-Core-equipped processor ships, it can run the latest versions of

the targeted applications without modification. We refer to this version as the

original. When a new version of an application becomes available, our toolchain

must determine how to map the new version of the software onto the existing C-

Core hardware. We refer to the new version of the software as the target. The goal

of the patching process is to generate a patch for the original hardware that will

let it run the target software version.

The longevity provided by patching is an important aspect of the C-Core

life cycle. However, the details of the patching process are outside the scope of

this dissertation. Below, we briefly describe how we support the patching approach

from [VSG+10] in C-Cores.

3.4.1 Integrating patching support

The bold box in Figure 3.5 shows how the patching system fits into the

toolchain. We work directly on the program’s dataflow and control graphs, a rep-

resentation that can be generated from either source code or a compiled binary.

Our implementation of the reconfiguration technique described in [VSG+10] pro-

vides C-Cores with three facilities to adjust their behavior after fabrication.

Configurable constants We generalize all hard-coded immediate values into

configurable registers. This supports changes to the values of compile-time con-

stants and the insertion, deletion, or rearrangement of structure fields.

27

Generalized single-cycle datapath operators To support the replacement

of one operator with another, we generalize several operators. Any addition or

subtraction is replaced by an adder-subtractor, any comparison operation by a

generalized comparator, and any bit-wise operation by a bit-wise ALU. A small,

four-bit configuration register is then added for each such operator, determining

which operation is currently active.

Control flow changes In order to handle changes in the CFG’s structure and

changes to basic blocks that go beyond what the above mechanisms can handle,

the C-Cores provide a flexible exception mechanism. The control path contains a

bit for each state transition that determines whether the C-Core should treat it as

an exception. This same mechanism is also used to handle system calls and other

features not yet supported within our C-Core prototypes.

When the state machine makes an exceptional transition, the C-Core stops

executing and transfers control to the general-purpose core. The exception handler

begins by extracting current variable values from the C-Core via the scan-chain-

based interface. It then executes the replacement code segment, transfers new

values back into the C-Core, and resumes execution. The exception handler can

restart C-Core execution at any point in the CFG, so exceptions can arbitrarily

alter control flow and/or replace arbitrary portions of the CFG.

3.4.2 Patch generation

The patching algorithm developed by Venkatesh, et al. [VSG+10] proceeds

in four stages: basic block mapping, control flow mapping, register remapping,

and patch generation. The details and implementation of the patching algorithm

are outside the scope of this dissertation, but we will briefly describe its operation:

The algorithm operates at basic block granularity. It identifies potential matches,

based on internal structure, from basic blocks in the target versions to those in the

original. Then, the CFG and a register renaming scheme are used to further refine

whether two blocks are a match. Matching connected subgraphs of the CFG are

then identified as hardware regions, portions of the target CFG that will execute

28

in hardware. Remaining portions of the CFG are considered software regions and

entry into them will be treated as an exception. Once the patching algorithm has

identified all such regions, our toolchain can begin patch generation.

At this point we have all the information required to generate a patch that

will let the target code run on the original hardware. The patch itself consists of

three parts:

• the configuration bits for each of the configurable datapath elements along

with values for each of the configurable constant registers

• exception bits for each of the control flow edges that pass from a hardware

region into a software region

• code to implement each of the software regions

The software region code is subdivided into three sections. First, the pro-

logue uses the scan chain interface to retrieve values from the C-Core’s datapath

into the processor core. Next, the patch code implements the software region. The

region may have multiple exit points, each leading back to a di↵erent point in the

datapath. At exit, the epilogue uses the scan chain interface again to insert the

results back into the datapath and return control to the C-Core.

3.5 C-Core selection

In order to evaluate a prototype C-Core-enabled system, we must first con-

struct a set of C-Core prototypes. Over the course of the following sections, we will

show how we have developed our automated toolchain to support each phase of a

C-Core’s life cycle. We also discuss the measurement and validation infrastructure

built into our toolchain that provides the data used throughout this dissertation.

We begin with the selection phase of the C-Core life cycle.

To select regions of code appropriate for transforming into C-Cores, we

must accurately estimate the area and energy-saving potential of software to hard-

ware conversion. This includes identifying key and constraining overheads. The

29

overhead of transferring control to and from the C-Core is an important factor

in C-Core selection. This overhead places a lower bound on how much work a

C-Core must do to achieve net benefits. It also limits how frequently we can use

the exception mechanism during patching without nullifying the C-Core’s energy

gains.

To quantify this cost, we created a C-Core that returns immediately and

executed it in a tight loop. The results show that transferring control to and from

the C-Core takes, on average, 317 cycles or 211 ns. Of this, the stub function that

invokes the C-Core accounts for 63%. Using the scan chains to pass arguments

and return values to and from the C-Core accounts for the remaining 37%.

The exception cost likewise a↵ects selection criteria for C-Cores using the

exception mechanism to perform system calls or other features currently not di-

rectly supported on C-Cores. To quantify this cost, we synthesized a simple C-Core

that executed an empty loop. We compared the run time of the C-Core with a

patched version of the same C-Core. The patched version used the exception mech-

anism to transfer control to the CPU and directly back again. The transfer takes

260 cycles (173 ns) on average.

With invocation and exception overheads known, we can filter the list of

high-coverage code regions and target the appropriate levels of the call-graph. We

have implemented a completely automated tool for C-Core selection and isola-

tion, but it has so far proved di�cult to fine-tune. For the results throughout

this dissertation, we instead rely on a hybrid method for C-Core selection. After

automatic profiling, there is a manual review of the suggested code regions, fil-

tering out any problematic selections. The filtered list is then fed back into the

toolchain, which will automatically perform all processing required to turn those

selected code regions into C-Cores.

3.6 Automatic Synthesis of C-Cores

Our C-Core synthesis toolchain automatically transforms portions of C pro-

grams into silicon. In the previous section, we discussed how hot regions are profiled

30

and marked for extraction. Once we have wrapped these functions with stubs, we

compile them into an intermediate three-address representation. We split these

functions into datapath and control segments, and then uses a state-of-the-art

EDA tool flow to generate a circuit fully realizable in silicon. The toolchain also

generates a cycle-accurate system simulator for the new hardware. We use the

simulator for performance measurements and to generate traces that drive Synop-

sys VCS and PrimeTime simulation of the placed-and-routed netlist. Below, we

describe these components in more detail.

3.6.1 Compilation Toolchain

Figure 3.5 summarizes the C-Core toolchain. The toolchain is based on the

OpenIMPACT (1.0rc4) [Ope], CodeSurfer (2.1p1) [Cod], and LLVM (2.4) [LA04]

compiler infrastructures. It accepts a large subset of the C language, including

arbitrary pointer references, switch statements, and loops with complex conditions.

In the C-Core identification stage, functions or subregions of functions (e.g.,

key loops) are tagged for conversion into C-Cores based on profile information. The

toolchain uses outlining to isolate the region and then uses exhaustive inlining to

remove function calls. We pass global variables by reference as additional input

arguments.

The C-to-Verilog stage generates the control and dataflow graphs for the

function in SSA [CFR+89] form. This stage then adds basic blocks and control

states for each memory operation and multi-cycle instruction. The final step of the

C-to-Verilog stage generates synthesizeable Verilog for the C-Core. This requires

converting � operators into muxes, inserting registers at the definition of each

value, and adding self loops to the control flow graph for the multi-cycle operations.

Then, it generates the control unit with a state machine that matches the control

flow graph. This stage of the toolchain also generates a cycle-accurate module for

our architectural simulator.

31

Patching Enabled

Compiler

Original
Version

C-core
Identification

Configuration
Generator

BTL Simulator

VCS + PrimeTime

Synopsys
CAD Tool Flow

Source Code

C-core Code

HW Spec in C
Verilog

Placed and Routed
Circuit

Memory Trace

New
Version

C-core
Identification

C-core Code

Patching
Algorithm

3 Address Code

Fully Configured HW

Source Code

C to Verilog C to Binary

Performance
ResultsPower Results

Figure 3.5: The C-Core C-to-hardware toolchain Our toolchain proceeds
through hardware generation, patching, simulation, and power measurement over
several stages. Program source enters our toolchain and passes through our C-Core
selection stage, which identifies regions of code as C-Core candidates. Our C-to-
Verilog compiler transforms these regions and produces a cycle-accurate simulator
model for each region. Our simulator uses these models to produce traces, which
we pass to VCS and PrimeTime to generate power results. The bold box contains
the patch generation infrastructure based on our patching enabled compiler.

32

3.6.2 Simulation infrastructure

Our cycle-accurate simulation infrastructure is based on btl, the Raw simu-

lator [TLM+04]. We have modified btl to model a cache-coherent memory among

multiple processors, to include a scan chain interface between the CPU and all of

the local C-Cores, and to simulate the C-Cores themselves. The prototype C-Cores

may operate at di↵erent clock frequencies from each other and from the core clock.

These di↵erent cycle times are modeled in simulation by adjusting the duty cycle

in clocking the C-Core.

In our prototype C-Core system model, the cache clock is synchronized to

the C-Core when control is transferred to the C-Core. Minimum load-use latency

for prototype C-Cores, as frequency is usually less than system frequency, is set at

two C-Core cycles. In Chapter 4, we introduce a redesign of the C-Core pipeline

such that all C-Cores operate synchronized with the system memory frequency,

simplifying frequency modeling. Results in and after Chapter 4 presume a three-

cycle load-use latency, matching that of the CPU.

3.6.3 Synthesis

For synthesis we target a TSMC 45 nm GS process using Synopsys Design

Compiler (C-2009.06-SP2) and IC Compiler (C-2009.06-SP2). Our toolchain gen-

erates synthesizeable Verilog and automatically processes the design in the Synop-

sys CAD tool flow. The flow starts with netlist generation and continues through

placement, clock tree synthesis, and routing before performing post-route opti-

mizations. We specifically optimize for speed and power. We also make use of the

Synopsys Module Compiler (C-2009.06-ICC-SP2), in order to generate technology-

specific custom functional units for basic arithmetic (addition, multiplication, etc.)

and bit-shifting. These modules have been optimized for speed and power usage.

Figure 3.6 shows a placed and routed standard cell layout for an automat-

ically generated prototype C-Core from the MCF 2006 application. Over 50% of

the area is devoted to performing arithmetic operations in the datapath, 7% is

dedicated to the control logic, and 40% is registers. This circuit meets timing at

clock frequencies up to 1412 MHz.

33

Figure 3.6: MCF 2006 conservation core for primal bea mpp() function
The C-Core synthesizes to 0.077mm2, operates at speeds up to 1412 MHz, and
provides 53% coverage for the application. The light gray elements are datapath
logic (adders, comparators, etc.), dark gray elements are registers, and the white
elements constitute the control path.

34

3.6.4 Power measurements

In order to measure C-Core power usage, our simulator periodically sam-

ples execution by storing traces of all inputs and outputs to the C-Core. Each

sample starts with a “snapshot” recording the entire register state of the C-Core

and continues for 10,000 cycles. The current sampling policy is to sample 10,000

out of every 50,000 cycles, and we discard sampling periods corresponding to the

initialization phase of the application.

We feed each trace sample into the Synopsys VCS (C-2009.06) logic sim-

ulator. Along with the Verilog code our toolchain also automatically generates a

Verilog testbench module for each C-Core. This testbench initiates the simula-

tion of each sample by scanning in the register values from each trace snapshot.

The VCS simulation generates a VCD activity file, which we pipe as input into

Synopsys PrimeTime (C-2009.06-SP2). PrimeTime computes both the static and

dynamic power for each sampling period. We model fine-grained clock gating for

inactive C-Core states via post-processing.

3.7 Results

This section describes the performance and e�ciency of our C-Core-enabled

architecture and the impact of our C-Core prototypes on performance and energy

consumption. We will also examine the e↵ectiveness of our prototype C-Core-

enabled architecture at the application level, focusing on system energy consump-

tion. We will show that our C-Core prototypes succeed at greatly reducing energy

for converted code regions, by up to 16⇥. Benefits at the system level are like-

wise substantial, but limited by coverage and other overheads. However, we will

also see that, in their current state, our prototype C-Cores o↵er limited perfor-

mance benefits. Improving on the design of our C-Core prototypes, optimizing for

performance and increasing system e�ciency, is the focus of Chapters 4 and 5.

35

3.7.1 Methodology

The results in this section, and throughout this dissertation, rely on out-

puts from the toolchain described in detail in section 3.6. The primary components

of this toolchain produce full-system performance numbers, and provide detailed

power and performance models for the C-Cores themselves. To model power for

other system components, we derive processor and clock power values from specifi-

cations for a MIPS 24KE processor in TSMC 90 nm and 65 nm processes [MIP09],

and component ratios for Raw reported in [KTMW03]. We have scaled these val-

ues for a 45 nm process and assume a MIPS core frequency of 1.5 GHz with 0.077

mW/MHz for average CPU operation. Finally, we use CACTI 5.3 [TMAJ08] for

I- and D-cache power.

3.7.2 Energy savings

Figure 3.7 shows the relative energy e�ciency, EDP improvement, and

speedup of prototype C-Cores vs. a MIPS processor executing the same code.

For fairness, and to quantify the benefits of converting instructions into our C-

Core prototypes, we exclude cache power for both cases. The figure compares

both patchable and non-patchable C-Cores to a general-purpose MIPS core for

six versions of bzip2 (1.0.0�1.0.5), and two versions each of cjpeg (v1�v2), djpeg

(v5�v6), mcf (2000�2006), and vpr (4.22�4.30). Table 3.1 summarizes the C-Core

prototypes.

The data show that patchable C-Cores are, on average, 9.52⇥ as energy-

e�cient as a MIPS core at executing the code they were built to execute. The

non-patchable C-Core prototypes are even more energy e�cient, but their inability

to adapt to software changes limits their useful lifetime: Results from [VSG+10]

showed that, without patching support, application specific hardware for four out

of five applications was unable to run any later application version.

36

Table 3.1: Conservation core prototype statistics The prototype C-Cores we
generated vary greatly in size and complexity. In the “Key” column, the letters
correspond to application versions and the Roman numerals denote specific func-
tions from the application that a C-Core targets. “LoC” is lines of C source code,
and “% Exe.” is the percentage of execution that each function comprises in the
application.

C-Core Ver. Key LoC Ops
% Exe. Area Frequency

(mm2) (MHz)
Non-P./Patch. Non-P./Patch.

bzip2
fallbackSort 1.0.0 A i 231 647 71.1 0.128 0.275 1345 1161
fallbackSort 1.0.5 F i 231 647 71.1 0.128 0.275 1345 1161

cjpeg
extract MCUs v1 A i 266 406 49.3 0.108 0.205 1556 916

get rgb ycc rows v1 A ii 39 68 5.1 0.020 0.044 1808 1039
subsample v1 A iii 40 85 17.7 0.023 0.039 1651 1568

extract MCUs v2 B i 277 406 49.5 0.108 0.205 1556 916
get rgb ycc rows v2 B ii 37 68 5.1 0.020 0.044 1808 1039

subsample v2 B iii 36 85 17.8 0.023 0.039 1651 1568
djpeg

jpeg idct islow v5 A i 223 432 21.5 0.133 0.222 1336 932
ycc rgb convert v5 A ii 35 82 33.0 0.023 0.043 1663 1539
jpeg idct islow v6 B i 236 432 21.7 0.135 0.222 1390 932
ycc rgb convert v6 B ii 35 82 33.7 0.024 0.043 1676 1539

mcf
primal bea mpp 2000 A i 64 144 35.2 0.033 0.077 1628 1412
refresh potential 2000 A ii 44 70 8.8 0.017 0.033 1899 1647
primal bea mpp 2006 B i 64 144 53.3 0.032 0.077 1568 1412
refresh potential 2006 B ii 41 60 1.3 0.015 0.028 1871 1639

vpr
try swap 4.22 A i 858 1095 61.1 0.181 0.326 1199 912
try swap 4.3 B i 861 1095 27.0 0.181 0.326 1199 912

37

 S

W
 u

np
at

ch
ab

le
 p

at
ch

ab
le

 p
at

ch
ed

SW

un

pa
tc

ha
bl

e

pa
tc

ha
bl

e

pa
tc

he
d

 S

W

 u
np

at
ch

ab
le

 p

at
ch

ab
le

 p

at
ch

ed

 S

W

 u
np

at
ch

ab
le

 p

at
ch

ab
le

 p

at
ch

ed

SW

un

pa
tc

ha
bl

e

pa

tc
ha

bl
e

pa
tc

he
d

 S
W

 u
np

at
ch

ab
le

 p
at

ch
ab

le

 p

at
ch

ed

 S
W

 u
np

at
ch

ab
le

 p
at

ch
ab

le

 p

at
ch

ed

SW

un

pa
tc

ha
bl

e

pa
tc

ha
bl

e

pa
tc

he
d

 S
W

 u

np
at

ch
ab

le

 p
at

ch
ab

le

 p
at

ch
ed

 S

W

 u
np

at
ch

ab
le

 p

at
ch

ab
le

 p

at
ch

ed

Pe
r−

fu
nc

tio
n

ef
fic

ie
nc

y
(w

or
k/

J)

0

5

10

15

20

25

30

35

1.
00

18
.5

2
10

.7
4

10
.7

4

1.
00

17
.3

0
10

.0
1

10
.0

1

1.
00

29
.8

6
15

.9
6

8.
53

1.
00

27
.0

5
14

.6
3

14
.5

1

1.
00

6.
21

3.
38

3.
38

1.
00

7.
42

4.
08

4.
08

1.
00

21
.1

7
10

.2
1

10
.2

1

1.
00

21
.2

5
10

.2
2

10
.2

2

1.
00

12
.6

5
6.

43
6.

43

1.
00

17
.9

4
9.

52
8.

68

djpeg A

djpeg B

 mcf A

 mcf B

 vpr A

 vpr B

cjpeg A

cjpeg B

bzip2 A−F Avg.

Dynamic
Leakage

 S

W
 u

np
at

ch
ab

le
 p

at
ch

ab
le

 p
at

ch
ed

SW

un

pa
tc

ha
bl

e

pa
tc

ha
bl

e

pa
tc

he
d

 S

W

 u
np

at
ch

ab
le

 p

at
ch

ab
le

 p

at
ch

ed

 S

W

 u
np

at
ch

ab
le

 p

at
ch

ab
le

 p

at
ch

ed

SW

un

pa
tc

ha
bl

e

pa

tc
ha

bl
e

pa
tc

he
d

 S
W

 u
np

at
ch

ab
le

 p
at

ch
ab

le

 p

at
ch

ed

 S
W

 u
np

at
ch

ab
le

 p
at

ch
ab

le

 p

at
ch

ed

SW

un

pa
tc

ha
bl

e

pa
tc

ha
bl

e

pa
tc

he
d

 S
W

 u

np
at

ch
ab

le

 p
at

ch
ab

le

 p
at

ch
ed

 S

W

 u
np

at
ch

ab
le

 p

at
ch

ab
le

 p

at
ch

edPe
r−

fu
nc

tio
n

ED
P

im
pr

ov
em

en
t (

1/
ED

P)

0

5

10

15

20

25

30

35

40

1.
00

21
.2

9
10

.7
3

10
.7

3

1.
00

18
.9

6
9.

33
9.

33

1.
00

30
.5

3
16

.1
1

8.
07

1.
00

27
.5

4
14

.6
5

14
.5

6

1.
00

5.
09

2.
25

2.
25

1.
00

7.
23

3.
28

3.
28

1.
00

31
.5

8
10

.5
2

10
.5

2

1.
00

31
.8

9
10

.5
8

10
.5

8

1.
00

16
.1

2
7.

58
7.

58

1.
00

21
.1

4
9.

45
8.

54

djpeg A

djpeg B

 mcf A

 mcf B

 vpr A

 vpr B

cjpeg A

cjpeg B

bzip2 A−F Avg.

EDP
Improvement

 S

W
 u

np
at

ch
ab

le
 p

at
ch

ab
le

 p
at

ch
ed

SW

un

pa
tc

ha
bl

e

pa
tc

ha
bl

e

pa
tc

he
d

 S

W

 u
np

at
ch

ab
le

 p

at
ch

ab
le

 p

at
ch

ed

 S

W

 u
np

at
ch

ab
le

 p

at
ch

ab
le

 p

at
ch

ed

SW

un

pa
tc

ha
bl

e

pa

tc
ha

bl
e

pa
tc

he
d

 S
W

 u
np

at
ch

ab
le

 p
at

ch
ab

le

 p

at
ch

ed

 S
W

 u
np

at
ch

ab
le

 p
at

ch
ab

le

 p

at
ch

ed

SW

un

pa
tc

ha
bl

e

pa
tc

ha
bl

e

pa
tc

he
d

 S
W

 u

np
at

ch
ab

le

 p
at

ch
ab

le

 p
at

ch
ed

 S

W

 u
np

at
ch

ab
le

 p

at
ch

ab
le

 p

at
ch

ed

Pe
r−

fu
nc

tio
n

sp
ee

du
p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1.
00

1.
15

1.
00

1.
00

1.
00 1.

10
0.

93
0.

93 1.
00 1.
02

1.
01

0.
95 1.

00 1.
02

1.
00

1.
00

1.
00

0.
82

0.
67

0.
67

1.
00

0.
97

0.
80

0.
80

1.
00

1.
49

1.
03

1.
03

1.
00

1.
50

1.
04

1.
04

1.
00

1.
27

1.
18

1.
18

1.
00

1.
15

0.
96

0.
95

djpeg A

djpeg B

 mcf A

 mcf B

 vpr A

 vpr B

cjpeg A

cjpeg B

bzip2 A−F Avg.

Speedup

Figure 3.7: Conservation core energy e�ciency Our patchable C-Cores
provide up to 16⇥ improvement in energy e�ciency compared to a general-purpose
MIPS core for the portions of the programs that they implement. The gains are
up to 2⇥ larger for non-patchable C-Cores, but their lack of flexibility limits
their useful lifetime. Each subgroup of bars represents a specific version of an
application (see Table 3.1). Results are normalized to running completely in
software on an in-order, power-e�cient MIPS core (“SW”). “unpatchable” denotes
a C-Core built for that version of the application but without patching support,
while “patchable” includes patching facilities. Finally, “patched” bars represent
alternate versions of an application running on a patched C-Core. For all six
versions of bzip2 (A-F), the C-Cores performance is identical.

38

 S

W
 p

at
ch

ab
le

 +
co

ve
ra

ge
 +

lo
w

le
ak

SW

pa

tc
ha

bl
e

+c

ov
er

ag
e

+l

ow
le

ak

 S

W

 p
at

ch
ab

le

 +
co

ve
ra

ge

 +
lo

w
le

ak

 S

W

 p
at

ch
ab

le

 +
co

ve
ra

ge

 +
lo

w
le

ak

SW

pa

tc
ha

bl
e

+c
ov

er
ag

e

+l

ow
le

ak

 S

W

 p

at
ch

ab
le

 +
co

ve
ra

ge

 +

lo
w

le
ak

 S

W

 p

at
ch

ab
le

 +
co

ve
ra

ge

 +

lo
w

le
ak

SW

pa
tc

ha
bl

e

+c
ov

er
ag

e

+l
ow

le
ak

 S
W

 p

at
ch

ab
le

 +

co
ve

ra
ge

 +

lo
w

le
ak

 S

W

 p
at

ch
ab

le

 +
co

ve
ra

ge

 +
lo

w
le

ak

N
or

m
al

iz
ed

 a
pp

lic
at

io
n

en
er

gy

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.
00

0.
66

0.
40

0.
30

1.
00

0.
68

0.
42

0.
31

1.
00

0.
71

0.
38

0.
27

1.
00

0.
64

0.
38

0.
27

1.
00

0.
81

0.
60

0.
46

1.
00

0.
90

0.
56

0.
45

1.
00

0.
54

0.
40

0.
29

1.
00

0.
54

0.
40

0.
29

1.
00

0.
53

0.
43

0.
34

1.
00

0.
67

0.
44

0.
33

djpeg A

djpeg B

mcf A

mcf B

vpr A

vpr B

cjpeg A

cjpeg B

bzip2 A−F Avg.

Conservation Core
Leakage
Core Leakage
D−Cache Leakage
Core Clock
Conservation Core
Dynamic
Core Dynamic
D−Cache Dynamic

 S

W
 p

at
ch

ab
le

 +
co

ve
ra

ge
 +

lo
w

le
ak

SW

pa

tc
ha

bl
e

+c

ov
er

ag
e

+l

ow
le

ak

 S

W

 p
at

ch
ab

le

 +
co

ve
ra

ge

 +
lo

w
le

ak

 S

W

 p
at

ch
ab

le

 +
co

ve
ra

ge

 +
lo

w
le

ak

SW

pa

tc
ha

bl
e

+c
ov

er
ag

e

+l

ow
le

ak

 S

W

 p

at
ch

ab
le

 +
co

ve
ra

ge

 +

lo
w

le
ak

 S

W

 p

at
ch

ab
le

 +
co

ve
ra

ge

 +

lo
w

le
ak

SW

pa
tc

ha
bl

e

+c
ov

er
ag

e

+l
ow

le
ak

 S
W

 p

at
ch

ab
le

 +

co
ve

ra
ge

 +

lo
w

le
ak

 S

W

 p
at

ch
ab

le

 +
co

ve
ra

ge

 +
lo

w
le

ak

N
or

m
al

iz
ed

 a
pp

lic
at

io
n

ED
P

0

0.2

0.4

0.6

0.8

1

1.2

1.
00

0.
63

0.
39

0.
32

1.
00

0.
68

0.
43

0.
35

1.
00

0.
70

0.
37

0.
29

1.
00

0.
63

0.
38

0.
30

1.
00

0.
99

0.
82

0.
68

1.
00

0.
94

0.
66

0.
57

1.
00

0.
51

0.
39

0.
31

1.
00

0.
51

0.
39

0.
31

1.
00

0.
45

0.
37

0.
32

1.
00

0.
67

0.
47

0.
39

djpeg A

djpeg B

mcf A

mcf B

vpr A

vpr B

cjpeg A

cjpeg B

bzip2 A−F Avg.

Energy−Delay
Product

 S

W
 p

at
ch

ab
le

 +
co

ve
ra

ge
 +

lo
w

le
ak

SW

pa

tc
ha

bl
e

+c

ov
er

ag
e

+l

ow
le

ak

 S

W

 p
at

ch
ab

le

 +
co

ve
ra

ge

 +
lo

w
le

ak

 S

W

 p
at

ch
ab

le

 +
co

ve
ra

ge

 +
lo

w
le

ak

SW

pa

tc
ha

bl
e

+c
ov

er
ag

e

+l

ow
le

ak

 S

W

 p

at
ch

ab
le

 +
co

ve
ra

ge

 +

lo
w

le
ak

 S

W

 p

at
ch

ab
le

 +
co

ve
ra

ge

 +

lo
w

le
ak

SW

pa
tc

ha
bl

e

+c
ov

er
ag

e

+l
ow

le
ak

 S
W

 p

at
ch

ab
le

 +

co
ve

ra
ge

 +

lo
w

le
ak

 S

W

 p
at

ch
ab

le

 +
co

ve
ra

ge

 +
lo

w
le

akN
or

m
al

iz
ed

 a
pp

lic
at

io
n

ex
ec

ut
io

n
tim

e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1.
00

0.
97

0.
97 1.

07

1.
00 1.
02 1.
04 1.

14

1.
00

1.
00

0.
99 1.

09

1.
00

1.
00

1.
00 1.

10

1.
00

1.
22

1.
37 1.

47

1.
00 1.
04

1.
19 1.

29

1.
00

0.
98

0.
97 1.

07

1.
00

0.
98

0.
97 1.

07

1.
00

0.
88

0.
86 0.

96 1.
00

1.
01 1.
04 1.

14

djpeg A

djpeg B

mcf A

mcf B

vpr A

vpr B

cjpeg A

cjpeg B

bzip2 A−F Avg.

Exception
Argument Transfer
Dispatch Overhead
Initialization
Conservation Core
MIPS

Figure 3.8: Full application system energy, EDP, and execution time
for C-Cores, and projections for potential improvements These graphs
show full application system energy, EDP, and execution time for C-Cores (lower
is better). “SW” and “patchable” are as described in Figure 3.7. “+coverage”
displays achievable improvements to energy reduction if 90% of the application
can run in a C-Core. If a slower, lower-leakage process is used for the MIPS core
in addition to improved coverage (“+lowleak”), even further improvements are
possible. As in Figure 3.7, each subgroup of bars represents a specific version
of an application, and for all six versions of bzip2 the C-Cores performance is
identical.

39

3.7.3 System E�ciency

Figure 3.7 demonstrates that the C-Cores produced by our toolchain, even

at a prototype stage of development, can provide large e�ciency gains for individ-

ual functions. However, there are other components than C-Cores in the system,

and portions of each application not executed by C-Cores. These other components

have not been optimized by the introduction of C-Cores. As Amdahl’s law indi-

cates, collective improvements are limited by the degree to which an optimization

is applicable.

In this section, we evaluate full-application, full-chip C-Core energy e�-

ciency. Figure 3.8 shows the energy (top), energy-delay product (middle), and

delay (bottom) for each of the applications. In each group, the first bar measures

the performance of the program without using any C-Cores. The second measures

performance with the patchable C-Cores described in the previous section. The

data show that, at the application level, C-Cores save between 10% and 47% of

energy compared to running on a MIPS core, and they reduce EDP by between

1% and 55%. Runtime varies, decreasing by up to 12% and increasing by up to

22%, but only increasing 1% on average.

The benefits for these C-Core-enabled systems are sizable. However, the

e�ciency improvements from the prototype C-Cores are moderated by two key

factors. The first of these is coverage, the fraction of execution spent on C-Cores

rather than on the processor. The second is the fact that the remaining parts of

the system are largely untuned for use in this context. We examine both below.

Coverage Coverage in our prototype system is largely a function of toolchain

maturity, and the results in subsequent chapters will see it improve with additional

engineering e↵ort. However, it also reflects certain more fundamental limitations:

The amount of coverage that C-Cores can deliver is a function of the applications

the system targets, the maturity of the C-Core toolchain in selecting and support-

ing hot code regions, and the overheads that C-Cores introduce. Absent overheads,

Figure 3.2 from Chapter 2 indicated that it should be possible to achieve 90%

coverage with a hardware budget covering less than 5000 static instructions per

40

application for the applications in question. In practice, we have not yet achieved

this level of coverage for all applications.

Several limitations of our prototype toolchain prevent us from achieving

optimal coverage. One is the cost of transitioning between CPU and C-Core ex-

ecution. A combined call and return overhead of 317 cycles, as mentioned in

section 3.5, is su�cient for most important code regions, but does limit the utility

of C-Cores for regions with frequently executed short functions or frequent ex-

ceptions. We continue to work on this through improvements to our automated

code selection pass, and the associated inlining and outlining subpasses. Another

limitation is our lack of support for floating point functions such as exp and sqrt.

For instance, adding better floating point support would allow us to increase the

coverage for vpr 4.30 from 27% to 54% improving energy savings.

Improving coverage is a continued e↵ort, and a worthwhile goal. Project-

ing out to 90% coverage using the e�ciencies for the currently covered regions for

each benchmark, the “+coverage” bars in Figure 3.8 show our C-Core prototypes

would provide energy savings ranging from 40% to 62%, and EDP savings from

18% to 63%. In Chapter 4, we will see improvements in C-Core selection and

isolation increase average coverage from 59% to 75%. The same chapter also intro-

duces benchmarks for which more than 90% coverage is achieved. Full application

e�ciency for these benchmarks is in line with projections.

Fixed costs As coverage improves, reducing the energy consumption of the other

components in the system becomes more important. For instance, the contribu-

tion of the processor to leakage could be greatly reduced by switching to high-V
t

transistors. With higher C-Core coverage, this would be quite sensible, as the

performance penalties to the processor would only a↵ect small portions of execu-

tion (i.e., 10%). This same approach can be applied to the instruction cache and

other peripheral components. Shared components still heavily used by C-Cores,

however, such as the data cache, could not be as aggressively modified without

compromising performance.

The final bar in each group in Figure 3.8 shows projections for the impact

of making these changes to the other system components. Rebalancing reduces

41

the fixed cost overheads of instruction cache and processor leakage at the cost of

approximately halving the performance of the software component of execution.

Reducing these fixed costs would provide an additional 11% savings in energy

and increases the total energy savings to 67% and total EDP savings to 61% on

average. While the prerequisite coverage has not yet been achieved, even with the

additional contributions described in subsequent chapters, these results indicate

that a system rebalancing will eventually be fruitful.

3.8 Summary

As we run up against the utilization wall, reducing energy per operation

becomes increasingly important. Conservation cores are a new class of circuits

that aim to increase the energy e�ciency of mature applications. C-Cores are

automatically synthesized from C code and have built in support that allows them

to evolve when new versions of the software appear. Data for 18 fully placed-

and-routed C-Core prototypes show that they can reduce energy consumption by

10-47% and energy-delay by up to 55%.

In this chapter we have presented our vision for the C-Core life cycle and

seen how conservation cores are selected, constructed, and evaluated by our au-

tomated toolchain. We have seen how this toolchain makes use of the patching

mechanisms from [VSG+10] to extend the lifetime of C-Cores. We have also seen

how the decisions made in support of memory ordering and future-proofing a↵ect

the performance and energy e�ciency of conservation cores. While our prototype

C-Cores are significant energy savers, conservative design choices limit opportuni-

ties for performance optimization.

In the next chapter, we will look at extending and transforming our proto-

type C-Cores, which save energy, into C-Cores that both save energy and improve

performance. In designing these new, accelerating C-Cores, we will retain all of the

automation of the toolchain described in this chapter. We will, however, revisit

those areas that presented performance and e�ciency stumbling blocks for our pro-

totype C-Cores. In particular, we will focus on how to preserve memory ordering

42

in a datagraph execution engine and how to select which datapath elements are

worth future-proofing.

Acknowledgments

Portions of this research were funded by the US National Science Founda-

tion under NSF CAREER Awards 06483880 and 0846152, and under NSF CCF

Award 0811794.

This chapter contains material from “Conservation cores: reducing the

energy of mature computations”, by Ganesh Venkatesh, Jack Sampson, Nathan

Goulding, Saturnino Garcia, Vladyslav Bryksin, Jose Lugo-Martinez, Steven Swan-

son and Michael Bedford Taylor, which appears in ASPLOS ’10: Proceedings of the

fifteenth edition of ASPLOS on Architectural support for programming languages

and operating systems. The dissertation author was the secondary investigator

and author of this paper. The material in this chapter is copyright c�2010 by the

Association for Computing Machinery, Inc. (ACM). Permission to make digital

or hard copies of part or all of this work for personal or classroom use is granted

without fee provided that the copies are not made or distributed for profit or

commercial advantage and that copies bear this notice and the full citation on

the first page in print or the first screen in digital media. Copyrights for com-

ponents of this work owned by others than ACM must be honored. Abstracting

with credit is permitted. To copy otherwise, to republish, to post on servers, or

to redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or email

permissions@acm.org.

Chapter 4

From Conservation to

Acceleration

In Chapter 3 we introduced conservation cores and the toolchain that se-

lects and produces them. Although our prototype C-Cores increased application

energy-e�ciency for arbitrary C programs by up to 2.1⇥, there were no substan-

tial gains in performance. Many computing domains demand performance as well

as energy e�ciency. For instance, cell phones, e-book readers, media players,

and other emerging computing platforms have driven demand for mobile appli-

cation processors that deliver both energy e�ciency and high performance for a

core set of applications. These applications have increasingly larger sections of

performance-critical, irregular code. While conventional accelerator techniques of-

fer large returns on both power and performance, they only apply to computations

with ample parallelism and predictable memory access patterns. C-Cores already

improve energy e�ciency for irregular code. Our goal, therefore, is to improve C-

Core performance for irregular code regions without sacrificing energy e�ciency.

This chapter describes a set of improvements to the C-Core architecture that

improve both performance and energy e�ciency. While the focus of this chapter

is on performance, the goal of conservation cores remains reduction of energy and

energy-delay product. Thus, we focus only on performance improving techniques

that are neutral or beneficial to EDP. For clarity of exposition, we will refer to

these improved C-Cores as Improved Conservation Cores, or ICCs, to di↵erentiate

43

44

between our prototype and optimized C-Cores. ICCs provide the same system

interface as our prototype C-Cores, but di↵er in internal pipeline organization,

memory ordering implementation, and reconfigurability mechanisms.

These new C-Cores improve significantly on prototype C-Core energy e�-

ciency and performance by leveraging two architectural techniques. The first is a

new pipelining technique called pipeline splitting, or pipesplitting, that allows the

memory system clock to run much faster than the datapath clock. This split saves

power in the datapath and improves memory performance. We also reduce the

power and area costs, relative to our prototype C-Cores, of the reconfigurability

that allows C-Cores to adapt to changes in the software they target. Below, we

describe each of these features and highlight the unique challenges of accelerating

irregular code.

The remainder of this chapter is organized as follows: Section 4.1 develops

and explains the pipesplitting technique at the heart of ICC performance and ef-

ficiency. Section 4.2 presents our evaluation of pipesplitting. Finally, Section 4.3

summarizes the benefits of our C-Core redesign over both a baseline MIPS proces-

sor and our C-Core prototypes.

The remainder of this dissertation builds on the new C-Core design pre-

sented in this chapter. Further improvements to C-Cores, in the form of cus-

tomized, distributed L0 caches embedded in the datapath called cachelets are

explored in Chapter 5. Chapter 6 examines the challenges of operation scheduling

in the face of pipesplitting and cachelets.

4.1 Pipeline splitting

Our redesigned C-Cores bridge the gap between the disparate requirements

of memory and datapath using a novel pipelining scheme called pipeline split-

ting, or pipesplitting. Pipesplitting allows memory to run at a much higher clock

frequency than the datapath. The fast clock e↵ectively replicates the memory in-

terface in time by exploiting pipeline parallelism. Meanwhile, the datapath runs

at a slower clock rate, saving power and leveraging ILP by replicating computation

45

resources in space. With pipesplitting, we execute faster and consume less energy

than a general-purpose processor or our prototype C-Cores. Pipesplitting improves

performance by enabling memory pipelining and exploiting ILP in the datapath.

Pipesplitting reduces static and dynamic power because smaller, slower gates can

be used in the datapath, and fewer pipeline registers are required. Whenever a

C-Core is stalled waiting for memory, the datapath values will settle, reducing

transistor switching energy.

Under pipesplitting, datapath operators are organized according to the ba-

sic blocks in a program’s CFG, and one basic block executes for each pulse of the

slow clock. The execution of a basic block begins with a slow clock pulse from

the control unit. The pulse latches live-out data values from the previous basic

block and applies them as live-ins to the current block. The next pulse of the slow

clock, which will trigger the execution of the next basic block, will not occur until

the entire basic block is complete. Di↵erent basic blocks operate at di↵erent slow

clocks.

For each basic block, there is one control state, and each state contains

multiple substates called fast states. A fast state corresponds to one cycle of the

faster memory/system clock. The number of fast states in a given control state is

based on the number of memory operations in the block and an estimate of the

latency of the datapath operators. During the execution of the basic block, the

control unit passes through fast states in order. Some fast states are associated

with memory operations. These occur in pairs, one fast state for the request

and another associated with the response. For the former, the ICC sends out a

load or store request to the memory hierarchy. The ICC also includes a register

to receive the result of loads. Unlike the registers between basic blocks, these

registers latch values on fast clock edges. These are the only registers within a

basic block. The ICC remains in a fast state associated with a memory response

until the corresponding memory operation completes.

Figure 4.1 illustrates pipesplitting over one basic block. C source code for

the original program is shown at top, and underneath that a timing diagram, con-

trol flow graph (CFG) and datapath for the implementation of that code. The

46

BB 2 BB 1

+

ld ld

X

+

+

ld

+

+

+

ld

+

ld ld

-1

-1

+1

st

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.1

+

+

B

A

D

C

i

slow clock

fast clock

memory

datapath (settling)

<N?

fast states

CFG
basic blocks

datapath

for (i=0; i<N; i++) {
 x = A[i];
 y = B[i];
 C[x] = D[y] + x + y + (x-1)*(y-1);
}

C code:

Figure 4.1: Example datapath and timing diagram demonstrating pipes-
plitting We show C source above a timing diagram, control flow graph, and datap-
ath implementing that code. Under pipesplitting, non-memory datapath operators
chain freely within a basic block, while memory operators and associated receive
registers align to fast clock boundaries. The datapath contains arithmetic opera-
tors and load/store units for individual operations from the original program. The
timing diagram shows how the datapath logic can take multiple fast cycles to settle
while an ICC makes multiple memory requests.

47

datapath contains arithmetic operators and load/store units for individual oper-

ations from the original program. The timing diagram shows how the datapath

logic can take multiple fast cycles to settle while an ICC makes multiple memory

requests. The figure demonstrates how pipesplitting saves energy and improves

performance. In a traditional pipeline, the registers at fast clock boundaries would

latch all the live values in the basic block. Pipesplitting eliminates most of those

registers, saving area and reducing clock energy. Eliminating registers also allows

for more flexible scheduling of operations and removes the set-up, hold-time, and

propagation delays that registers introduce. For the applications we examined,

datapath register count was reduced, on average, by 20% relative to the prototype

C-Cores.

4.1.1 Fast clock aligned operations

While most operations are only constrained by the slow clock, memory

accesses and other long-latency operations must be scheduled with respect to the

fast clock.

Pipelined memory operations ICCs enforce the memory ordering semantics

that imperative programming languages require. ICCs require in-order completion

of memory requests to reduce complexity and save power, but they also pipeline

the interface to support memory parallelism and improve performance.

Every load and store occurs in two steps: request and response. A request

consists of an address and, for stores, the value to be stored. When the datapath

generates a new request, the ICC sends it to the memory hierarchy and continues

performing other operations in parallel. In the response step, the control unit will

wait if necessary for the load value or store confirmation. Load values are saved

in fast-clock registers for use by the dependent operators in the datapath. By

splitting memory accesses into two phases, an ICC can initiate up to one memory

request (load or store) and receive up to one memory response (load value or store

confirmation) on every cycle. Memory operations complete in order, but multiple

outstanding requests can be in flight at any time.

48

Splitting memory operations and pipelining them gives ICCs advantages

over our prototype C-Cores. Our prototype C-Cores had no smaller control subdi-

vision than a basic-block control state. This precluded having multiple potentially

blocking operations within the same basic block. As a result, our prototype C-

Cores completely serialized memory accesses, whereas ICCs can issue memory op-

erations in back to back cycles. This reduces the fragility of ICC performance with

respect to changes in memory latency. Similarly, by splitting memory operations

into two phases, ICCs move the stall points further back in the datagraph. This

allows more independent operations to be scheduled alongside a memory access.

Long-latency operations Some non-memory operations, such as integer divi-

sion and floating point operations, also have a long and/or variable latency. ICCs

handle these long-latency operations just like memory requests: They wait in a

specific fast state for a valid signal from the corresponding functional unit.

4.1.2 Pipesplitting implementation

Pipesplitting relies on a fast clock for memory and a di↵erent slow clock for

the datapath of each basic block. The fast clock operates at the system frequency of

1.5 GHz. Due to variable-latency operations, such as cache accesses, the slow clocks

are aperiodic. The slow clock edges correspond to progress through particular sets

of fast states rather than fixed durations in time. The slow clock signals come from

the ICC’s control unit, which tracks the flow of execution through the ICC.

To determine how many fast states a control state will contain, an operation

scheduler calculates a minimum execution time for the block, in number of fast

clock cycles. This number is the maximum of the number of memory operations in

the block and the critical path through the block divided by the fast clock period.

For this calculation, the tool chain assumes that all memory operations will hit in

the L1 cache.

Many signals in the basic block can safely take the entire minimum ex-

ecution time to propagate through the block. However, the inputs to memory

operations need to propagate more quickly because they must be ready on fast

49

clock boundaries. For instance, in Figure 4.1, the path from input i through the

increment and compare can take up to eight fast clock cycles. Meanwhile, the path

from B to the first load must complete in a single cycle. Similarly, the result of the

third load has just 2 cycles to propagate to the store in the last fast state. Our

toolchain enumerates all of these multi-cycle constraints and passes them to the

synthesis toolchain which enforces them.

As the benefits of pipesplitting are sensitive to the accuracy of these multi-

cycle constraints, proper operation scheduling is important. To achieve maximum

performance, the ICC scheduler must accurately estimate the number of fast states

required for the critical path through each basic block. For simplicity, we schedule

assuming cache hits. The scheduler must also assign memory operations, especially

loads, to the earliest fast states in which their inputs will be ready. If the scheduler

is too conservative, the ICC will waste time in unnecessary fast cycles, resulting

in slower performance. On the other hand, if the scheduler is too aggressive, the

back-end CAD tools will not be able to meet timing requirements. This will cause

the ICC to run at a slower clock frequency than the system clock. Chapter 6

discusses ICC scheduling in more detail.

4.1.3 Reducing patching overheads

In order to remain useful across software versions, application-specific hard-

ware must be able to adapt to changes in the code it supports. ICCs adapt to

software changes by using improved versions of the patching mechanisms intro-

duced in [VSG+10]. Analysis of the programs in Table 4.1 showed opportunities

to reduce patching overheads, especially in terms of the size of registers used to

hold constant values: In our workloads, 87% of all compile-time constants can be

represented by 8 or fewer bits. Thus, we can use smaller configurable registers to

represent most constants with little risk of reducing generality. Bitwidth analysis

of constants and improved heuristics for when to deploy configurable ALUs in lieu

of fixed-function logic allow us to reduce patching area and energy overheads in

ICCs by 43% and 70%, respectively, without significantly impacting the ability of

ICCs to adapt to software changes. Size reducuctions for configurable constant

50

registers account for 77% of the savings.

4.2 Evaluating pipesplitting

In this section we describe the workloads to which we apply ICCs and

evaluate the impact of pipesplitting on ICC e�ciency, performance, and energy-

delay product. We show how redesigning C-Cores around pipesplitting gives ICCs

performance and e�ciency advantages over our initial C-Core design.

4.2.1 Methodology

We constructed and evaluated ICCs by extending the toolchain described

in section 3.6. The basic toolchain is augmented with multi-cycle constraints and

a pipesplitting-aware scheduler. We also further refine our model for interconnect

delay to and from the shared L1 cache. These refinements lead us to model a

three-cycle load-use latency for MIPS, our prototype C-Cores, and ICCs in this

and following chapters.

We derive processor and clock power values for other system components

from specifications for a MIPS 24KE processor in a TSMC 45 nm process [MIP10]

and component ratios for Raw reported in [KTMW03]. We assume a MIPS

core frequency of 1.5 GHz with 0.10 mW/MHz for CPU operation. We use

CACTI 5.3 [TMAJ08] for I- and D-cache power.

Table 4.1 describes the 9 applications for which we have created ICCs.

The applications are a superset of those examined in Chapter 3. However, our

C-Core selection toolchain has matured and we examine only one version of each

application. Thus, the number and selection of code regions transformed into C-

Cores is not identical to that in Chapter 3. For comparison, we produce both

prototype C-Cores and improved C-Cores for each selected code region.

51

Table 4.1: ICC Workloads We built 19 ICCs running at 1.5GHz for 9 irregular
applications, covering the majority of execution. Patching optimizations signifi-
cantly reduce area.

Workload Description

bzip2 [SPE00] Data compression algorithm
cjpeg [Gro] JPEG image compression
djpeg [Gro] JPEG image decompression
mcf [SPE00] Single-depot vehicle scheduling
radix [WOT+95] Sorting algorithm
sat solver [TH04] Stochastic local search SAT solver
twolf [SPE00] Placement & connection of transistors
viterbi [Emb] Convolutional code decoder
vpr [SPE00] Place and route algorithm

Workload ICC Coverage Average Area Area
count % Slow-clock (ICC) (+Patch Opt.)

MHz mm2 mm2

bzip2 [SPE00] 1 76 366.74 0.27 0.18
cjpeg [Gro] 3 75 116.73 0.31 0.18
djpeg [Gro] 3 77 85.32 0.33 0.21
mcf [SPE00] 3 82 302.41 0.28 0.17
radix [WOT+95] 1 94 120.38 0.17 0.10
sat solver [TH04] 2 66 215.20 0.30 0.20
twolf [SPE00] 4 49 252.20 0.20 0.13
viterbi [Emb] 1 98 259.07 0.22 0.12
vpr [SPE00] 1 61 684.93 0.37 0.23

52

 C
−C

or
e−

P

 I
C

C

 +
Pa

tc
h

O
pt

.

C
−C

or
e−

P

IC

C

+P

at
ch

 O
pt

.

 C
−C

or
e−

P

 IC

C

 +

Pa
tc

h
O

pt
.

 C

−C
or

e−
P

 I

C
C

 +

Pa
tc

h
O

pt
.

C
−C

or
e−

P

IC
C

+P
at

ch
 O

pt
.

 C
−C

or
e−

P

 IC
C

 +
Pa

tc
h

O
pt

.

 C
−C

or
e−

P

 I
C

C

 +
Pa

tc
h

O
pt

.

C
−C

or
e−

P

IC

C

+P

at
ch

 O
pt

.

 C
−C

or
e−

P

 IC

C

 +

Pa
tc

h
O

pt
.

 C
−C

or
e−

P

 IC

C

 +

Pa
tc

h
O

pt
.

Fu
nc

tio
n

ED
P

N
or

m
al

iz
ed

 to
 M

IP
S

Ba
se

lin
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.
32

0.
18

0.
15

0.
30

0.
11

0.
09

0.
34

0.
12

0.
10

0.
27

0.
24

0.
20

0.
47

0.
21

0.
18

0.
25

0.
19

0.
17

0.
39

0.
22

0.
19

0.
51

0.
13

0.
10

0.
63

0.
23

0.
19

0.
39

0.
18

0.
15

bzip2 1.0

cjpeg

djpeg

mcf 2006

radix

twolf

SATsolve

viterbi

vpr 4.22

Average

Energy−Delay Product

 C
−C

or
e−

P

 I
C

C

 +
Pa

tc
h

O
pt

.

C
−C

or
e−

P

IC

C

+P

at
ch

 O
pt

.

 C
−C

or
e−

P

 IC

C

 +

Pa
tc

h
O

pt
.

 C

−C
or

e−
P

 I

C
C

 +

Pa
tc

h
O

pt
.

C
−C

or
e−

P

IC
C

+P
at

ch
 O

pt
.

 C
−C

or
e−

P

 IC
C

 +
Pa

tc
h

O
pt

.

 C
−C

or
e−

P

 I
C

C

 +
Pa

tc
h

O
pt

.

C
−C

or
e−

P

IC

C

+P

at
ch

 O
pt

.

 C
−C

or
e−

P

 IC

C

 +

Pa
tc

h
O

pt
.

 C
−C

or
e−

P

 IC

C

 +

Pa
tc

h
O

pt
.

Fu
nc

tio
n

Ex
ec

ut
io

n
Ti

m
e

N
or

m
al

iz
ed

 to
 M

IP
S

Ba
se

lin
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.
96

0.
80

0.
79

1.
10

0.
65

0.
65

1.
18

0.
66

0.
66

1.
04

0.
98

0.
98

1.
38

0.
86

0.
86

1.
06

0.
90

0.
90

1.
16

0.
89

0.
89

1.
33

0.
66

0.
65

1.
33

0.
83

0.
83

1.
17

0.
80

0.
80

bzip2 1.0

cjpeg

djpeg

mcf 2006

radix

twolf

SATsolve

viterbi

vpr 4.22

Average

Function Execution Time

 C
−C

or
e−

P

 I
C

C

 +
Pa

tc
h

O
pt

.

C
−C

or
e−

P

IC

C

+P

at
ch

 O
pt

.

 C
−C

or
e−

P

 IC

C

 +

Pa
tc

h
O

pt
.

 C

−C
or

e−
P

 I

C
C

 +

Pa
tc

h
O

pt
.

C
−C

or
e−

P

IC
C

+P
at

ch
 O

pt
.

 C
−C

or
e−

P

 IC
C

 +
Pa

tc
h

O
pt

.

 C
−C

or
e−

P

 I
C

C

 +
Pa

tc
h

O
pt

.

C
−C

or
e−

P

IC

C

+P

at
ch

 O
pt

.

 C
−C

or
e−

P

 IC

C

 +

Pa
tc

h
O

pt
.

 C
−C

or
e−

P

 IC

C

 +

Pa
tc

h
O

pt
.

Fu
nc

tio
n

En
er

gy
N

or
m

al
iz

ed
 to

 M
IP

S
Ba

se
lin

e

0

0.1

0.2

0.3

0.4

0.5

0.
33

0.
23

0.
19

0.
27

0.
17

0.
15

0.
29

0.
17

0.
15

0.
26

0.
24

0.
20

0.
34

0.
24

0.
21 0.

24
0.

21
0.

19

0.
33

0.
25

0.
21

0.
38

0.
20

0.
16

0.
47

0.
28

0.
23

0.
32

0.
22

0.
19

bzip2 1.0

cjpeg

djpeg

mcf 2006

radix

twolf

SATsolve

viterbi

vpr 4.22

Average

Cache Leakage
Dynamic Cache Energy
ICC leakage
Dynamic ICC Energy

Figure 4.2: ICC performance and e�ciency Pipesplitting allows the baseline
ICC design to achieve lower latency (middle), and energy usage (bottom) com-
pared to prototype C-Cores, resulting in significantly better energy-delay (top).
Optimizing patching support decreases energy while maintaining performance and
longevity.

53

 i

n
SW

 C
−C

or
e−

P
 I

C
C

 +
Pa

tc
h

O
pt

.

in

 S
W

C
−C

or
e−

P

IC
C

+P

at
ch

 O
pt

.

 in

 S
W

 C
−C

or
e−

P

 IC
C

 +

Pa
tc

h
O

pt
.

 i

n
SW

 C

−C
or

e−
P

 I

C
C

 +

Pa
tc

h
O

pt
.

in
 S

W

C
−C

or
e−

P

IC

C

+P

at
ch

 O
pt

.

 in
 S

W

 C
−C

or
e−

P

 IC

C

 +

Pa
tc

h
O

pt
.

 i
n

SW

 C

−C
or

e−
P

 I
C

C

 +

Pa
tc

h
O

pt
.

in

 S
W

C
−C

or
e−

P

IC
C

+P

at
ch

 O
pt

.

 in

 S
W

 C
−C

or
e−

P

 IC
C

 +

Pa
tc

h
O

pt
.

 in

 S
W

 C
−C

or
e−

P

 IC
C

 +

Pa
tc

h
O

pt
.

Ap
pl

ic
at

io
n

ED
P

N
or

m
al

iz
ed

 to
 M

IP
S

Ba
se

lin
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.
00

0.
64

0.
47

0.
44

1.
00

0.
69

0.
37

0.
35

1.
00

0.
75

0.
35

0.
34

1.
00

0.
61

0.
55

0.
52

1.
00

0.
90

0.
39

0.
36

1.
00

1.
19

0.
71

0.
70

1.
00

0.
94

0.
70

0.
68

1.
00

0.
94

0.
26

0.
21

1.
00 1.

10
0.

64
0.

62

1.
00

0.
86

0.
49

0.
47

bzip2 1.0

cjpeg

djpeg

mcf 2006

radix

twolf

SATsolve

viterbi

vpr 4.22

Average

Energy−Delay Product

 i

n
SW

 C
−C

or
e−

P
 I

C
C

 +
Pa

tc
h

O
pt

.

in

 S
W

C
−C

or
e−

P

IC
C

+P

at
ch

 O
pt

.

 in

 S
W

 C
−C

or
e−

P

 IC
C

 +

Pa
tc

h
O

pt
.

 i

n
SW

 C

−C
or

e−
P

 I

C
C

 +

Pa
tc

h
O

pt
.

in
 S

W

C
−C

or
e−

P

IC

C

+P

at
ch

 O
pt

.

 in
 S

W

 C
−C

or
e−

P

 IC

C

 +

Pa
tc

h
O

pt
.

 i
n

SW

 C

−C
or

e−
P

 I
C

C

 +

Pa
tc

h
O

pt
.

in

 S
W

C
−C

or
e−

P

IC
C

+P

at
ch

 O
pt

.

 in

 S
W

 C
−C

or
e−

P

 IC
C

 +

Pa
tc

h
O

pt
.

 in

 S
W

 C
−C

or
e−

P

 IC
C

 +

Pa
tc

h
O

pt
.

Ap
pl

ic
at

io
n

Ex
ec

ut
io

n
Ti

m
e

N
or

m
al

iz
ed

 to
 M

IP
S

Ba
se

lin
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.
00

0.
97

0.
84

0.
84

1.
00 1.

08
0.

74
0.

74

1.
00

1.
13

0.
73

0.
73

1.
00 1.
04

0.
98

0.
98 1.
00

1.
37

0.
87

0.
86

1.
00

1.
22

0.
95

0.
95 1.

00
1.

16
0.

98
0.

98 1.
00

1.
33

0.
67

0.
65

1.
00

1.
22

0.
91

0.
91 1.

00
1.

17
0.

85
0.

85

bzip2 1.0

cjpeg

djpeg

mcf 2006

radix

twolf

SATsolve

viterbi

vpr 4.22

Average

Initialization
and Dispatch

ICC MIPS

 i

n
SW

 C
−C

or
e−

P
 I

C
C

 +
Pa

tc
h

O
pt

.

in

 S
W

C
−C

or
e−

P

IC
C

+P

at
ch

 O
pt

.

 in

 S
W

 C
−C

or
e−

P

 IC
C

 +

Pa
tc

h
O

pt
.

 i

n
SW

 C

−C
or

e−
P

 I

C
C

 +

Pa
tc

h
O

pt
.

in
 S

W

C
−C

or
e−

P

IC

C

+P

at
ch

 O
pt

.

 in
 S

W

 C
−C

or
e−

P

 IC

C

 +

Pa
tc

h
O

pt
.

 i
n

SW

 C

−C
or

e−
P

 I
C

C

 +

Pa
tc

h
O

pt
.

in

 S
W

C
−C

or
e−

P

IC
C

+P

at
ch

 O
pt

.

 in

 S
W

 C
−C

or
e−

P

 IC
C

 +

Pa
tc

h
O

pt
.

 in

 S
W

 C
−C

or
e−

P

 IC
C

 +

Pa
tc

h
O

pt
.

Ap
pl

ic
at

io
n

En
er

gy
N

or
m

al
iz

ed
 to

 M
IP

S
Ba

se
lin

e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.
00

0.
66

0.
56

0.
53

1.
00

0.
64

0.
50

0.
48

1.
00

0.
66

0.
48

0.
47

1.
00

0.
59

0.
56

0.
53

1.
00

0.
66

0.
45

0.
42

1.
00

0.
97

0.
74

0.
73

1.
00

0.
81

0.
71

0.
69

1.
00

0.
71

0.
38

0.
32

1.
00

0.
90

0.
71

0.
68

1.
00

0.
73

0.
57

0.
54

bzip2 1.0

cjpeg

djpeg

mcf 2006

radix

twolf

SATsolve

viterbi

vpr 4.22

Average

D−Cache Leakage D−Cache Dynamic Core Leakage

Core Dynamic ICC Leakage ICC Dynamic

Figure 4.3: Application performance and e�ciency with ICCs Application
latency (middle), energy (bottom), and energy-delay (top) improvements from
using ICCs can be large, with latency reductions of up to 35% and average EDP
reductions of nearly 2x. The benefits of ICCs increase with application coverage.

54

4.2.2 ICC performance and EDP

We first evaluate pipesplitting and its associated scheduling and logic opti-

mizations. Figure 4.2 shows energy-delay product (EDP), and its two components

(execution time and energy), for the portions of the applications executed on ICCs.

Results are presented normalized to the baseline single-issue low-power MIPS pro-

cessor executing the same function. In addition to the baseline ICC design, we also

present numbers for our prototype C-Cores and an ICC with reduced patchability

overheads(+Patch Opt.).

While the C-Core prototypes have substantially lower EDP than the MIPS

core, this remains a consequence of energy reduction, not performance. On average,

the C-Core prototypes are actually slower than the MIPS core. The performance

results di↵er from those in the previous chapter due to refinements in modeling

interconnect delay to and from the shared L1 and changes to our C-Core selection

stage.

The ICCs not only outperform both the MIPS baseline and prototype C-

Cores, but they are substantially more energy-e�cient than prototype C-Cores. On

average, the ICC baseline has a speedup of 1.27 relative to MIPS and 1.47 relative

to prototype C-Cores. The baseline ICCs reduce energy for covered execution by

78% over MIPS and by 33% over prototype C-Cores. ICCs with improved patching

reduce energy by an additional 3%. We will use +Patch Opt. as the baseline ICC

design for examining cachelets and scheduling in Chapters 5 and 6. The benefits

of ICCs for non-memory energy are even larger: Total energy expended in the

memory system is very similar among MIPS, prototype C-Cores and ICCs. Energy

expended in the memory system accounts for more than half of total ICC energy.

Figure 4.3 shows how ICC performance and e�ciency gains are translated

to the application level, where ICCs o↵er an average EDP improvement of 51%.

ICC calling overhead is shown to be a small fraction of total execution time, except

in twolf, SATsolve, and vpr. Coverage is incomplete for several benchmarks, and

thus application level speedups are notably lower than isolated speedups. For the

two kernels, radix and viterbi, coverage is nearly complete, and energy savings

are substantial. Even for benchmarks with more than 90% coverage, energy spent

55

running on the CPU is greater than that spent on running on the C-Core. While

coverage is similar for both viterbi and radix, EDP savings are much greater for

viterbi than for radix because of lower speedup. Further exploration of the ICC

memory system in Chapter 5 will show how this, and other di↵erences in speedup,

are heavily influenced by application memory characteristics.

4.3 Summary

In redesigning the C-Core pipeline around the disparate needs of the mem-

ory interface and datapath logic, we have moved from just reducing energy to

reducing execution time as well. Through pipeline splitting, ICCs improve on

prototype C-Cores in both performance and e�ciency. Likewise, more targeted

flexibility in patching reduces overheads for little loss in utility. With these com-

bined facilities, ICCs reduce average EDP by 6.6⇥ for covered code, and by 54% at

the application level. ICCs, unlike prototype C-Cores, provide an average speedup

for covered code of 1.27⇥ over a baseline MIPS processor.

However, for C-Cores to achieve their full potential, we must pay special at-

tention to further optimizing memory operations, which are common, high-latency

operations and frequently on the critical path. While the pipelined nature of the

ICC memory interface improves throughput over that of prototype C-Cores, load-

use latency remains the same. In the next chapter, we explore augmenting ICCs

with cachelets, a mechanism for reducing common case memory access time that

can improve performance even further.

Acknowledgments

Portions of this research were funded by the US National Science Founda-

tion under NSF CAREER Awards 06483880 and 0846152, and under NSF CCF

Award 0811794.

This chapter contains material from “Energy-Delay Optimized Accelera-

tors for Irregular Code”, by Jack Sampson, Ganesh Venkatesh, Nathan Goulding,

56

Saturnino Garcia, Steven Swanson, and Michael Bedford Taylor, which has been

submitted for possible publication by IEEE in Proceedings of the 17th IEEE Inter-

national Symposium on High Performance Computer Architecture (HPCA). The

dissertation author was the primary investigator and author of this paper.

Chapter 5

Cachelets

Pipesplitting improves e�ciency for non-memory operations and increases

memory throughput via pipelined memory access. However, pipesplitting alone

does not reduce load-use latency. Excluding L1 misses, load-use latency is the

largest single component of the critical path for a baseline ICC. We will show

how ICCs can reduce this cost by providing select groups of communicating static

memory operations very fast (sub-cycle load-use), tiny, specialized caches called

cachelets. Cachelets reduce average memory delay by eliding accesses to the L1.

They are especially useful for increasing the performance of dependent sequences

of memory operations.

Memory latency is a critical component of execution time for irregular codes.

The data for the baseline ICCs show that load-use latency, and equivalently, L1

hit time, in an ICC is a limiting factor for its performance. On average, L1 cache

hits account for 30.8% of total time on the dynamic critical execution path for a

baseline ICC.

In conventional processors, all loads and stores go to a single cache since as

all load and store instructions execute on a small set of load/store functional units.

In contrast, ICCs can optimize individual load and store operations independently,

as each static memory operation has its own associated hardware. A cachelet serves

a fixed subset of these operations, all of whose accesses go through the cachelet,

and an ICC may have several cachelets.

In this chapter, we explore augmenting ICCs with cachelets to reduce mem-

57

58

ory latency. Cachelets contain one to four cache lines and are tightly integrated

into the ICC data path. Lines in a cachelet are backed by an inclusive L1 and

are fully coherent. Operations that have not been statically mapped to a cachelet

communicate directly with the L1.

In the remainder of this chapter, we describe the cachelet architecture and

evaluate ICCs augmented with cachelets. We will show that adding cachelets to

ICCs significantly improves performance and also improves EDP. Section 5.1 pro-

vides an overview of the cachelet architecture and di↵erentiates cachelets from an

L0. Then, sections 5.2 and 5.3 present a simple solution for cachelet coherence and

discuss mechanisms for cachelet selection. In section 5.4, we evaluate two cachelet

selection strategies relative to unaugmented ICCs. We also compare against the

limit case of an ICC whose L1 has the same access latency as a cachelet. Finally,

section 5.5 summarizes the benefits of adding cachelets to ICCs.

59

L1const.

const.

LD

LD

ST

tag data

=?

Cachelet

wordaddress

hit

store value from L1

to L1

Ca
c
h
e
l
e
t

Figure 5.1: Cachelet architecture Cachelets have similar fundamental compo-
nents to larger caches, but we implement them with latches rather than SRAM
due to their small size and datapath integration. With cachelets, memory opera-
tions with good locality will be mapped to local, low-latency memories while other
operations continue to interface directly to the L1. In this example, a one line
cachelet serves one load and one store in a basic block, while the L1 services the
third memory operation.

5.1 Cachelet architecture overview

The ICCs presented in Chapter 4 have a 3-cycle load-use latency to the L1,

as does the MIPS processor used as a baseline throughout this dissertation. Our

synthesis results show cachlet hit time to be half a memory clock cycle, reduc-

ing common case memory latency by 83%. This low latency is due to datapath

integration and the small size of cachelets.

Cachelts o↵er physical locality, as they are closer to the datapath and sep-

arated by fewer layers of logic than the shared L1 interface. Cachelets also provide

specialization for access streams. Each cachelet is associated with a particular

disjoint subset of the static memory operators, allowing indpendent optimization

of each operator or group of operators. The cachelet approach also allows memory

instructions that do not benefit from cachelets to communicate directly with the

L1. Operators whose access streams have poor spatial and temporal locality would

quickly pollute a 1-4 line cachelet. The partitioning of cachelets by operator helps

protect more cache-friendly regions of code from poor performers.

Figure 5.1 shows how an ICC with cachelets communicates with the L1

cache and shows the internal structure of a cachelet. In the figure, two communi-

60

cating memory operations share a single, one-line cachelet, while a third accesses

the L1. Internally, cachelets share many similarities with small full-scale caches,

such as tags, comparators, and word select muxes, but they use latches rather than

SRAMs to store data.

5.1.1 Cachelets vs. L0

In an ICC-enabled system, the L1 is shared, and the addition of an ad-

ditional private level to the cache hierarchy may not seem immediately novel.

However, the cachelet approach is quite di↵erent from simply adding a private L0

to each ICC. The two key di↵erences are the tight integration of cachelets into the

datapath and the use of multiple cachelets for each ICC.

In the C-Core architecture there is a path from every memory operation

to a single external memory interface, which is time multiplexed. These paths

to memory often lie on the critical timing paths in an ICC circuit. Accessing

an L0 cache placed after the multiplexing of paths to memory is negligibly closer

than accessing an L0 cache external to the ICC. Thus, in an ICC with dozens or

even hundreds of memory operations, the L0 is still somewhat distant from source

and dependent datapath operators. For small L0s, this means that the latency

in getting to and from the L0 will be on par with accessing the L0 itself. As the

primary motivation for adding this additional level of the memory hierarchy is

reducing latency, this is not an optimal solution.

Cachelets, on the other hand, are associated with small, disjoint subsets

of the static memory operators. They are built as part of the datapath, rather

than as external entities. This allows ICCs to exploit the low access time cachelets

provide without having to pay the transit costs of generalized access. Just as the

operators in the datapath provide specialization for computation, cachelets provide

specialization for locality of access not provided by a single L0.

Mapping disjoint sets of operators to di↵erent cachelets comes with its own

challenges. Traditional coherence strategies presume a single cache at the closest

level of the memory hierarchy, and are thus not directly applicable. Moreover, the

choice of which operators map to a cachelet can have profound e↵ects on its utility.

61

In the following sections, we present a simple coherence protocol for cachelets and

explore alternatives for deciding what types of cachelets to instantiate.

5.2 Coherence

The ICC execution model requires a coherent memory system, so the coher-

ence protocol must extend to cachelets. Making each cachelet a full-fledged cache

from the protocol’s perspective is not practical: The coherence controller and state

machines for the cachelet would be much larger than the cachelet itself.

To provide cachelet coherence at minimal cost, we allow cachelets to “check

out” cache lines from the shared L1 cache. To check out a cache line, the cachelet

issues a fill request to the L1 cache. The L1 acquires exclusive access to the line

and returns its contents to the cachelet. The cachelet now has exclusive access to

the line. If another cachelet, the general-purpose core, or another processor in the

system attempts to access that line, the L1 detects this and forcibly reclaims the

line from the cachelet.

To perform a reclamation, the L1 freezes the ICC to prevent concurrent

updates to the cachelet. It then copies the cachelet’s contents back into the L1,

invalidates the line in the cachelet, and completes the coherence request. The ICC

can then continue execution, potentially re-acquiring the line if it needs it again.

The eviction process is a heavy-weight operation requiring halting ICC exe-

cution. We minimize this cost through profiling and careful assignment of cachelets

to memory operations. Additionally, when an ICC finishes executing, the ICC im-

plements a cachelet flush mechanism that writes back the contents of all dirty

cachelets in the ICC and invalidates all lines in cachelets.

5.3 Cachelet selection

Judicious selection of which static memory operations to provide cachelets

for is essential for good performance. Including too many cachelets negatively im-

pacts ICC area requirements without significantly improving performance, whereas

62

including too few limits performance gains. Likewise, we must avoid operation-

to-cachelet mappings that would result in poor hit rates or frequent coherence

tra�c.

We have developed two strategies for selecting which cachelets to instan-

tiate. The first strategy, called “private,” performs an LRU-stack-based [BK75]

cache simulation in which every memory operation has a dedicated cache. The

simulation reveals how many lines the cachelet needs in order to significantly re-

duce the miss rate for that operation. The simulation includes coherence misses, so

operations that share data with other memory operations are unlikely to receive a

cachelet. The “private” strategy includes a cachelet if it would require fewer than

4 lines, and would have a hit rate of at least 66%.

The second strategy, called “shared,” analyzes the communication patterns

and assigns a shared cachelet to communicating sets of memory operations. It

forms transitive closures of communication operations within an ICC: It partitions

operations into sets such that, during an invocation of an ICC, no operation in

one set accesses any line of memory accessed by any operation in another set. It

uses the same LRU-stack analysis as in “private” to determine whether to include

a cachelet and how big it should be.

5.4 Results

In this section, we discuss our infrastructure for selecting and modeling

cachelets and evaluate the impact of cachelets on performance and EDP.

5.4.1 Methodology

Our evaluation of cachelets builds on the infrastructure used to produce the

ICCs presented in Chapter 4. Several modifications are made to the C-to-Verilog

stage of the toolchain which contains the operation scheduler. The pipesplitting-

aware scheduler is extended to also be a cachlet-aware scheduler. We introduce

new post-simulation profiling tools to perform cachelet selection and a feedback

loop from profiling to rescheduling. We also employ a trace driven performance

63

estimator for cachelets.

We derive processor and clock power values for other system components

from specifications for a MIPS 24KE processor in a TSMC 45 nm process [MIP10]

and component ratios for Raw reported in [KTMW03]. We assume a MIPS

core frequency of 1.5 GHz with 0.10 mW/MHz for CPU operation. We use

CACTI 5.3 [TMAJ08] for I- and D-cache power. We use the “+Patch Opt.” ICC

variant with optimized constant widths and degeneralized datapath operators as

our baseline ICC. We use the same workloads examined in Chapter 4.

We model cachelets as arrays of latches and use values from measurements

of arrays synthesized in our ASIC tool flow for cachelet area and energy. We extend

existing ICC generation tools to output fine-grained scheduling information and

address tracing to feed to our cachelet selection and evaluation tools.

Our tools perform cachelet selection based on annotated address traces from

ICC simulation. The traces carry annotations indicating source operations and

intra-block operation ordering. Cachelet selection information is then sent back

to earlier stages of the ICC toolchain to generate new, cachelet-aware schedules.

Our cachelet performance estimator reorders and then replays traces according to

these new schedules to model cachelet-augmented ICC performance and energy.

5.4.2 Evaluating Cachelets

Using the two strategies described in section 5.3, we modeled the e↵ects of

adding cachelets to each of the ICCs. On average, each ICC included 8.4 cachelets

for the “private” selection strategy, and 6.2 for “shared”. In the “shared” case,

each cachelet served an average of 10.3 memory operations. No single ICC utilized

more than 28 total lines of cache across its cachelets, and on average used fewer

than 16 total lines. Area overheads over the baseline ICC for the “private” and

“shared” selection strategies are 13.4% and 16.8%, respectively.

Figure 5.2 shows the impact of cachelets on ICC performance (top), ap-

plication performance (middle), and application EDP (bottom). The first bar in

each series depicts a baseline ICC without cachelets (the “+Patch Opt.” bar from

Figures 4.2 and 4.3), and the second and third bars present the “private” and

64

 B

as
e

 P
 C

ac
he

le
t

 S
 C

ac
he

le
t

 C
ac

he
le

t L
im

it

 B
as

e
 P

 C
ac

he
le

t
 S

 C
ac

he
le

t
 C

ac
he

le
t L

im
it

Ba

se

P
C

ac
he

le
t

S

C
ac

he
le

t

C
ac

he
le

t L
im

it

 B
as

e

 P
 C

ac
he

le
t

 S

 C
ac

he
le

t

 C
ac

he
le

t L
im

it

 B
as

e

 P
 C

ac
he

le
t

 S

 C
ac

he
le

t

 C
ac

he
le

t L
im

it

Ba
se

P
C

ac
he

le
t

S
C

ac
he

le
t

C
ac

he
le

t L
im

it

 B
as

e

 P

 C
ac

he
le

t

 S

 C
ac

he
le

t

 C

ac
he

le
t L

im
it

 B

as
e

 P
 C

ac
he

le
t

 S
 C

ac
he

le
t

 C
ac

he
le

t L
im

it

Ba
se

P

C
ac

he
le

t

S
C

ac
he

le
t

C

ac
he

le
t L

im
it

 B
as

e
 P

 C
ac

he
le

t
 S

 C
ac

he
le

t
 C

ac
he

le
t L

im
it

C
rit

ic
al

 P
at

h
Ti

m
e

C
om

po
ne

nt
s

fo
r I

C
C

N
or

m
al

iz
ed

 to
 M

IP
S

Ba
se

lin
e

0

0.2

0.4

0.6

0.8

1

0.
79

0.
76

0.
69

0.
62 0.
65

0.
57

0.
55

0.
53

0.
67

0.
55

0.
44

0.
40

0.
99

0.
99

0.
97

0.
92

0.
86

0.
80

0.
60

0.
58

0.
90 0.
91

0.
77

0.
63

0.
90 0.
92

0.
85

0.
74

0.
64

0.
62

0.
40

0.
34

0.
81 0.
84

0.
78

0.
66

0.
80

0.
77

0.
67

0.
60

bzip2 1.0

cjpeg

djpeg

mcf 2006

radix

SATsolve

twolf

viterbi

vpr 4.22

Average

L0 Flush Memory (L1 Miss) Memory (L0 Miss) Cycle Alignment

Memory (Hit) Non−Memory Calling Overhead

 B

as
e

 P
 C

ac
he

le
t

 S
 C

ac
he

le
t

 C
ac

he
le

t L
im

it

 B
as

e
 P

 C
ac

he
le

t
 S

 C
ac

he
le

t
 C

ac
he

le
t L

im
it

Ba

se

P
C

ac
he

le
t

S

C
ac

he
le

t

C
ac

he
le

t L
im

it

 B
as

e

 P
 C

ac
he

le
t

 S

 C
ac

he
le

t

 C
ac

he
le

t L
im

it

 B
as

e

 P
 C

ac
he

le
t

 S

 C
ac

he
le

t

 C
ac

he
le

t L
im

it

Ba
se

P
C

ac
he

le
t

S
C

ac
he

le
t

C
ac

he
le

t L
im

it

 B
as

e

 P

 C
ac

he
le

t

 S

 C
ac

he
le

t

 C

ac
he

le
t L

im
it

 B

as
e

 P
 C

ac
he

le
t

 S
 C

ac
he

le
t

 C
ac

he
le

t L
im

it

Ba
se

P

C
ac

he
le

t

S
C

ac
he

le
t

C

ac
he

le
t L

im
it

 B
as

e
 P

 C
ac

he
le

t
 S

 C
ac

he
le

t
 C

ac
he

le
t L

im
it

Ti
m

e
C

om
po

ne
nt

s
fo

r A
pp

lic
at

io
n

N
or

m
al

iz
ed

 to
 M

IP
S

Ba
se

lin
e

0

0.2

0.4

0.6

0.8

1

0.
85

0.
82

0.
77

0.
72 0.
74

0.
68

0.
66

0.
65

0.
73

0.
64

0.
56

0.
52

0.
99

0.
99

0.
98

0.
93

0.
87

0.
81

0.
62

0.
60

0.
98 1.
00

0.
90

0.
80

0.
95 0.
96

0.
93

0.
87

0.
67

0.
65

0.
43

0.
38

0.
90 0.
92

0.
88

0.
81 0.

85
0.

83
0.

75
0.

70

bzip2 1.0

cjpeg

djpeg

mcf 2006

radix

SATsolve

twolf

viterbi

vpr 4.22

Average

ICC L1 Miss Cachelet Miss/Flush ICC Non−Memory ICC Init/Call Overhead

MIPS L1 Miss MIPS Non−Memory

 B

as
e

 P
 C

ac
he

le
t

 S
 C

ac
he

le
t

 C
ac

he
le

t L
im

it

 B
as

e
 P

 C
ac

he
le

t
 S

 C
ac

he
le

t
 C

ac
he

le
t L

im
it

Ba

se

P
C

ac
he

le
t

S

C
ac

he
le

t

C
ac

he
le

t L
im

it

 B
as

e

 P
 C

ac
he

le
t

 S

 C
ac

he
le

t

 C
ac

he
le

t L
im

it

 B
as

e

 P
 C

ac
he

le
t

 S

 C
ac

he
le

t

 C
ac

he
le

t L
im

it

Ba
se

P
C

ac
he

le
t

S
C

ac
he

le
t

C
ac

he
le

t L
im

it

 B
as

e

 P

 C
ac

he
le

t

 S

 C
ac

he
le

t

 C

ac
he

le
t L

im
it

 B

as
e

 P
 C

ac
he

le
t

 S
 C

ac
he

le
t

 C
ac

he
le

t L
im

it

Ba
se

P

C
ac

he
le

t

S
C

ac
he

le
t

C

ac
he

le
t L

im
it

 B
as

e
 P

 C
ac

he
le

t
 S

 C
ac

he
le

t
 C

ac
he

le
t L

im
it

Ap
pl

ic
at

io
n

ED
P

N
or

m
al

iz
ed

 to
 M

IP
S

Ba
se

lin
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.
47

0.
46

0.
42

0.
38

0.
37

0.
33

0.
32

0.
31 0.

35
0.

30
0.

24
0.

23

0.
56

0.
56

0.
56

0.
52

0.
39

0.
37

0.
25

0.
24

0.
70 0.
72

0.
64

0.
55

0.
71 0.
72

0.
69

0.
64

0.
26

0.
25

0.
14

0.
12

0.
64 0.
66

0.
63

0.
56

0.
49

0.
48

0.
43

0.
39

bzip2 1.0

cjpeg

djpeg

mcf 2006

radix

SATsolve

twolf

viterbi

vpr 4.22

Average

Energy−Delay Product

Figure 5.2: Cachelet performance and e�ciency. The addition of cachelets
greatly reduces latency and further improves EDP.

65

“shared” strategies, respectively. The fourth bar shows results for a limit study

for cachelet benefits assuming a 0.5-cycle, 32-KB L1. This models the potential of

having our entire L1 cache accessible with cachelet latency. This is unattainable,

as access time for a cache of this size is larger than 0.5 cycles even in the absence

of interconnect delay. Both the “private” and “shared” cachelet approaches o↵er

performance benefits, but the “private” strategy covers fewer critical memory oper-

ations, due to frequent communication between memory operations. The “shared”

strategy realizes much more of the potential that the limit study demonstrates.

Adding cachelets to the baseline ICC design reduces latency by 13%, appli-

cation latency by 10%, and application EDP by 6% in addition to the gains from

the baseline ICC over the MIPS core.

5.5 Summary

Cachelets provide significant latency reductions for several benchmarks.

While they do not, in general, provide su�cient temporal re-use that they im-

prove per-access energy, they still improve EDP. The ICCs in Chapter 4 provided

average speedups of 1.27⇥ and 1.17⇥ over our baseline MIPS processor for cov-

ered code and applications, respectively. ICCs augmented with cachelets provide

an average speedup of 1.5⇥ for covered code and 1.33⇥ for applications. They also

provide improvements for covered code of 6.9⇥ in EDP. At the application level,

this translates to an average application EDP reduction of 57%.

As we will see in the next chapter, the introduction of cachelets changes

scheduling as well as performance. This, and other scheduling artifacts, approaches

and decisions are much more important for ICCs than for C-Core prototypes due

simply to the greater size of scheduling windows provided through pipesplitting.

In the following chapter, we examine the properties of automatically generated

hardware and explore scheduling in detail.

66

Acknowledgments

Portions of this research were funded by the US National Science Founda-

tion under NSF CAREER Awards 06483880 and 0846152, and under NSF CCF

Award 0811794.

This chapter contains material from “Energy-Delay Optimized Accelera-

tors for Irregular Code”, by Jack Sampson, Ganesh Venkatesh, Nathan Goulding,

Saturnino Garcia, Steven Swanson, and Michael Bedford Taylor, which has been

submitted for possible publication by IEEE in Proceedings of the 17th IEEE Inter-

national Symposium on High Performance Computer Architecture (HPCA). The

dissertation author was the primary investigator and author of this paper.

Chapter 6

Conservation Core Structure and

Scheduling

In the previous chapter, we added cachelets, an entirely new hardware ele-

ment, to our C-Cores. Cachelets and our modifications to patching support directly

altered the hardware we use to build C-Cores. However, the introduction of new

mechanisms is not the only source of hardware changes in C-Cores. Both pipesplit-

ting and cachelets also produced more subtle e↵ects, changing the amount of par-

allelism exposed to the scheduler. In this chapter, we discuss operation scheduling

for conservation cores and analyze the hardware our automated synthesis toolchain

produces.

Our toolchain produces hardware that varies in makeup both within and be-

tween applications. However, our use of basic blocks as the fundamental scheduling

unit remains constant across all C-Cores. This choice, along with the stylized na-

ture of automated synthesis, produces some common trends within these scheduling

blocks. Understanding these trends and how they a↵ect operation scheduling is

important for understanding C-Core performance.

6.1 Scheduling for C-Cores

Our initial C-Core prototypes partitioned basic blocks to isolate memory

operations. Therefore, there were few operations per state and the first generation

67

68

of C-Cores were not particularly sensitive to scheduling decisions. For these initial

C-Core prototypes, we used a single mean operation latency to schedule all low-

latency operations. Operations were scheduled in the order they appeared in the

intermediate SSA representation. For ICCs, we require a more considered approach

to scheduling.

ICCs have larger datagraphs to schedule than our prototype C-Cores, and

are also sensitive to the accuracy of latency estimations. This sensitivity stems

from the implementation of the aperiodic slow clocks via multi-cycle constraints.

The ICC scheduler must accurately estimate the number of fast states required for

the critical path through each basic block and assign memory operations to fast

states in which their inputs will be ready. Inaccurate latency estimations will not

a↵ect functional correctness, but can cause an ICC’s fast clock paths to not meet

timing. As we designed ICCs around the memory interface, an ICC that fails to

meet timing requirements fails to uphold the interface contract.

Many approaches to generating specialized hardware, such as [CHM08,

FKDM09, YGBT09] rely on modulo scheduling of loops. Many techniques for

performing modulo scheduling exist([CLG02] surveys several of them), but they

all share certain similarities. Modulo scheduling aims to produce a schedule such

that when the operations in the schedule are repeated at fixed interval, there are no

resource conflicts. Modulo scheduling is di�cult to apply to code outside of loops,

or to loops with control and data dependent resource usage. Modulo scheduling is

not an ideal match for a cached memory interface and the irregular codes targeted

by conservation cores. Such codes run counter to its preferences for regular con-

trol flow and memory timing. Similarly, pipesplitting does not allow concurrent

executions of the same basic block. As a consequence of the utilization wall, the

relative cost of area is lower, and hardware re-use is less important than the energy

savings of hardware specialization. For conservation cores, we therefore focus on

scheduling within the context of a single basic block.

Our approach to scheduling for ICCs takes into account both widely varying

operator latencies and the impact of bit level parallelism. Individual operations

can range in latency from 10 ps for a NAND to over 1000 ps for a multiply. Bit-

69

level parallelism in back-to-back operations can result in a shorter latency than

the sum of the individual latencies.

As an example of this, consider a multiply followed by an add. This is a

common composite operation, known as multiply-accumulate, or MAC. At 45 nm,

a single 32-bit add takes approximately 0.31 ns, and a single 32-bit multiply takes

1.12 ns, resulting in a näıve estimate of 1.43 ns for the combined operation. How-

ever, after CAD tool optimizations the chained multiply-plus-add operation takes

only 1.14 ns, a savings of 20%. We approximate the e↵ects of bit-level parallelism

for scheduling via a lookup table of all sequences of two chained operators.

ICC scheduling operates on one basic block at a time, and performs two

scheduling passes. The first pass schedules operations on an idealized hardware

target with an arbitrarily wide memory interface and an unbounded number of

functional units. In both the first and second pass, the scheduler may reorder

loads with respect to other loads, but does not speculatively move loads before

stores. We use the first pass to assign priorities to operations for the next pass.

The scheduler computes priorities based upon the estimated aggregate operator

latency between an operation and its latest finishing descendant operation. The

second pass schedules operations given C-Core resource constraints. The scheduler

imposes a limit of at most one memory request or other fast-cycle aligned operation

per fast-cycle, and enforces alignment restrictions on operator inputs and outputs.

This pass uses a priority list scheduler. Among mutually schedulable operations,

the priority value from the previous pass determines which operation is scheduled

first.

Figure 6.1 depicts a representation of the schedule for a single basic block

in bzip2. Markers along the left hand side indicate fast-state boundaries, and

each operation is annotated with an estimated latency. We show a subset of

definite and possible dependencies with arcs connecting the critical scheduling

path for each operation. A color code denotes operations categories: Loads are

blue, stores are green, control operations are orange, and all others are beige.

Memory operations are split-phase, and the request and receive phases are shown

as distinct operations. In the pre-cachelet schedule, a fast-cycle aligned “Wait

70

Fast-cycle 0: 0 ps
add
$623
$27
-4

311 ps

lsl
$624
$623
2

151 ps

add
$1400
$624
$1563

261 ps

st_i_SEND
$1401
$1400
$28

355 ps

add
$26
$26
-1

311 ps

br

$26
$21

@CB_111
187 ps

add
$1207
$1207
-4

311 ps

WAIT_CYCLE
$1402
$1401

666 ps

Fast-cycle 2: 1332 ps

st_i_CONF

$1400
$28

$1402
666 ps

Fast-cycle 3: 1998 ps

Fast-cycle 1: 666 ps

2664 ps

Figure 6.1: Schedule for a basic block Operations are shown annotated with
estimated latency. Arcs are depicted showing the critical scheduling path for each
operation.

71

State” dummy operation separates these operations to account for cache delay.

We schedule address computations separately from the associated load or store,

and thus we mark them as general operations, rather than memory operations.

Figure 6.1 is representative of many of the block schedules produced by

our tool. Common trends include memory operations dominating the critical path

through the basic block, operations spanning fast cycles, and operator chaining

influencing estimated latency. As an example of the latter two, the scheduler

estimates the add operation following the lsl(left-shift-logical) operation to have a

lower marginal latency than similar operations dependent on values from previous

blocks. This same operation also spans the first two fast-cycles. Another item of

interest is that the control operation resolves more quickly than the critical path.

While C-Cores cannot currently exploit inter-block parallelism, the presence of

such cases indicates a potential for further optimizations.

6.1.1 Alignment

One source of additional overhead in C-Core schedules is fast-cycle align-

ment. Each slow-cycle must be an integer number of fast-cycles. ICCs therefore

lose some potential performance due to the granularity of scheduling. A larger

portion of alignment overhead is due to memory operations. Memory operations

not mapped to cachelets have alignment restrictions on their address generation

and, for stores, value stability. These signals must be ready a fixed time before

the end of the cycle so that as to registers external to the C-Core can latch them.

Failure to meet alignment restrictions delays a memory operation until the next

fast-cycle in the schedule.

6.1.2 Rescheduling for cachelets

With the introduction of cachelets, scheduling for an ICC becomes an it-

erative process. Cachelet selection requires a profiling run, which in turn requires

an initial schedule. Once the profiling run completes, the cachelet selection data

feeds back into the scheduler. The scheduler assumes a cachelet hit time for those

72

Fast-cycle 0: 0 ps
add
$623
$27
-4

311 ps

lsl
$624
$623
2

151 ps

add
$1349
$624
$1459

261 ps

st_i_SEND
$1350
$1349
$28

333 ps

add
$26
$26
-1

311 ps

br

$26
$21

@CB_111
187 ps

add
$1207
$1207
-4

311 ps

st_i_CONF

$1349
$28

$1350

Fast-cycle 1: 666 ps

1332 ps

Figure 6.2: Schedule for a basic block with cachelets The addition of cachelets
requires rescheduling under the assumption that cachelet accesses will be hits.

73

operations mapped to cachelets, and schedules unmapped operations assuming

L1 hit times. This asymmetry between memory operation hit times can change

which path through a basic block the scheduler estimates as the longest path in

an idealized schedule. Thus, the introduction of cachelets can cause the reordering

of independent loads relative to the pre-cachelet schedule. Figure 6.2 shows the

schedule for the same basic block as Figure 6.1 after rescheduling for the addition

of cachelets.

Intriguingly, the main benefit of cachelets, their low access latency, poses

an interesting tension for the scheduler. Cachelet accesses, being sub-cycle, can-

not overlap with other memory accesses in the default ICC architecture. Over-

all, cachelets benefit the schedule by reducing critical path latency. As seen in

Chapter 5, this increases performance. However, the sub-cycle nature of cachelet

access does not fit easily into the pipelined memory access scheme. The stall point

of a cachelet receive is necessarily very close to the request point. In order to

preserve the property of in-order memory completion, cachelet schedules cannot

contain overlapping cachelet and direct L1 accesses. This limits the application

of cachelets to operations with very high hit rates, as the scheduler can find very

little work to overlap with cachelet access.

6.2 Analysis

In this section we examine the outcomes and limitations of current C-Core

scheduling. The schedules for C-Cores reflect the irregular nature of their source

code regions. To preserve hardware longevity, we also preserve software form.

Irregular codes are characterized by frequent control decisions. These frequent

control decisions produce a small average block size. The execution model for C-

Cores is basic block oriented. Therefore, the average block size is a limitation on the

ability of our scheduler, or any other intra-block scheduler, to expose parallelism.

Table 6.1 highlights key execution and scheduling characteristics of our

conservation cores. It shows the number of states, and the dynamic averages of

operation count, memory operations, and critical path length across scheduling

74

Table 6.1: Properties of ICC schedules For each application, we show the
average properties of its C-Cores over execution. The “States” column shows the
number of static scheduling states across all C-Cores for that application, and
the next three columns show dynamic averages of memory operations per state,
estimated critical path latency per state, and operations per state.

App States
Dyn. Ops/

State
Dyn. Memory

Ops/State

Dyn. Fast-cyles/
State (non-miss)
Base Cachelet

bzip2 118 4.47 0.98 4.10 2.82
cjpeg 48 17.20 3.00 12.85 9.97
djpeg 36 24.29 7.69 17.58 9.20
mcf 95 3.71 1.76 4.96 3.81
radix 55 12.46 3.99 12.46 5.48

SATsolver 85 5.93 2.80 8.10 4.60
twolf 186 4.60 1.61 5.94 4.68
viterbi 36 7.64 2.46 5.79 3.07

vpr 367 2.12 0.52 2.20 2.17

states states. The third column, operations per state, indicates the average size

of the instruction window available to the scheduler. For most applications, this

window is of limited size.

Small block size limits the ability of the scheduler to expose more distant

parallelism. Small block size is also detrimental to the pipelining of memory op-

erations. The pipesplitting model requires all operations within a basic block to

complete before the next block begins execution. This has the e↵ect of flushing the

memory pipeline after every basic block. While this greatly simplifies flow control,

it restricts performance. In particular, allowing memory operations to span basic

blocks would allow cross-iteration parallelism in inner loops.

In C-Cores, memory operations and their associated address computations

often dominate the critical path through a basic block’s schedule. Blocks with

many memory operations are characterized by chains of memory operations on

their critical path. These operations are not necessarily data dependent. As our

compiler currently provides no static disambiguation support, and our memory

interface is single issue and blocking, even independent memory operations produce

distinctive schedules. As memory operations are the longest-latency operations we

schedule, dependent memory operations produce the longest chains. The block

75

in Figures 6.1 and 6.2 is an example of a schedule dominated by memory latency.

Even with the latency reduction from cachelets, more than half of the raw operator

latency on the critical path is through memory and address computation.

Figure 6.3 shows a more extreme example of a memory-constrained path

through a block from the application djpeg. The level of detail has been reduced

in order to fit in the space provided. This block highlights the distinct natures

of the compute and memory resources C-Cores provide. Spatial computation pro-

vides plentiful datapath operators and abundant parallel computation in early

fast-cycles. However, ICCs replicate memory resources in time, rather than space,

and produce schedules with long chains of memory operations with generally de-

creasing datapath parallelism.

6.2.1 Memory and parallelism

From an energy standpoint, memory-constrained blocks are acceptable, as

the values produced by operators early in the block will settle. From a performance

standpoint, this is less optimal, as it indicates that the memory resource constraints

dominate others, hinting at an imbalance in resource allocation. Näıvely increasing

the width of the memory interface would likely improve performance, but at the

cost of energy-e�ciency and complexity. To understand the appropriate memory

optimizations to apply, we must view the problem through the lens of automation.

Hand-crafted designs, such as [HQW+10], often benefit from knowledge

of detailed program semantics. For an automated approach, it is often di�cult

to discern the precise semantics of applications and source code constructs from

lower level representations. However, constructing conservation cores by hand for

arbitrary and changing workloads is not scalable. The automation of this process

is key to the success of the C-Core approach. Therefore, any knowledge we rely on

regarding memory independence must stem from our toolchain.

Parallel memory access will only be energy e�cient when co-scheduled mem-

ory operations are very rarely dependent or completely independent. Sometimes

this is provable, through pointer analysis. In other cases, profiling can lend strong

indications that given operations are independent. Energy e�ciency does not pre-

76

16650ps

Figure 6.3: Schedule for a memory-constrained block This schedule for a
block from djpeg shows the key features of memory-constrained blocks. Inde-
pendent datapath operations cluster in early cycles, while both dependent and
independent memory operations sequence their accesses to the memory interface
over time.

77

clude speculative mechanisms, provided they are tuned to speculate only at very

high confidence values. In both cases, the compiler infrastructure needed to fully

estimate available parallelism is part of ongoing work. The degree of parallelism

exposed will determine the aggressiveness of the hardware we will deploy to harness

it.

Another key direction of ongoing work is reconsidering our choice of the

basic block as our fundamental execution and scheduling unit. Working at the

basic block level has allowed us to quickly develop energy-e�cient hardware that

is readily stylized and easy to reason about. With our current execution model

and scheduling infrastructure, we achieve both performance and e�ciency, but

the above analysis shows that there remains untapped potential. As we have

shifted our e↵orts to improving performance, the basic block has proved a limiting

factor. For most C-Cores, the number of states is much greater than the number

of loop bodies. This indicates that the basic block may not be the optimal unit

for scheduling. Expanding the ability of our scheduler to expose parallelism is a

key aspect of our ongoing e↵orts with conservation cores.

6.3 Future work

Conservation cores o↵er significant energy e�ciency and, with targeted op-

timizations, improve performance. However, the internal organization of C-Cores

can benefit from clever renovation. We have seen this once already with the in-

troduction of pipesplitting. Likewise, the tuning and maturation of the C-Core

toolchain is an ongoing process. At the time of the writing of this dissertation,

there are several continuing e↵orts to improve our compilation and scheduling in-

frastructure to provide even greater performance and e�ciency. Below, we briefly

discuss near-term goals.

6.3.1 Unrolling

Our datapath uses a form of spatial computation, introducing hardware

for every static operator. Loop unrolling will therefore increase the area require-

78

ments of conservation cores. However, it will also allow cross-iteration optimization

within the scope of a single block. While we cannot apply unrolling indefinitely,

there is room in our area budget for some degree of unrolling, especially for hot

inner loops. Under the utilization wall, trading area for performance is usually a

beneficial trade.

Support for unrolling requires changes in only one stage of our toolchain,

the OpenImpact compiler. The version of the OpenImpact [Ope] compiler we

build our toolchain on does not support loop unrolling in the optimization stages

that produce the intermediate representation from which we derive C-Cores. As

many previous e↵orts have studied loop unrolling, implementation is an engineering

e↵ort, rather than a research undertaking. Work to implement loop unrolling in

our OpenImpact framework is ongoing as of the writing of this dissertation. Should

this prove di�cult, we are also considering source-level unrolling as part of C-Core

selection transformations in LLVM [LA04].

6.3.2 Waves

Another way to use bigger blocks to expose more parallelism is to move

from basic blocks to waves [SSM+07]. Waves, single entry, multiple exit CFG

subgraphs, are a natural fit for our static-dataflow spatial execution model. The

entire body of an inner loop will often be a single wave. Transitioning from basic

blocks to waves is compatible with unrolling. Between the two techniques, our

scheduler will have access to a greater portion of the inherent ILP in a benchmark.

Supporting waves in C-Cores requires C-Cores to implement some form of

predication. The most straightforward support for C-Core predication is actually a

non-speculative approach. We can transform comparator signals controlling state

transitions into predicate lines that gate the control signals governing external

interactions. Both the transformation and selecting the signals from the single

valid case are straightforward. Similarly, merge points merely require multiplexed

inputs. The chief challenge in moving from basic blocks to waves will be one

of energy e�ciency. Gating control signals prevents wrong-path execution from

a↵ecting the outside world. However, in a C-Core, we must also prevent wrong-

79

path execution from unnecessarily toggling transistors in order to maintain energy

e�ciency.

6.3.3 Speculation

Moving to waves, or even hyperblocks, requires support for predication.

However, we can apply even more optimizations if C-Cores add support for spec-

ulative execution. Given that saving energy is a C-Core design goal, any such

speculation should be of a high-confidence variety. One can view cachelets as a

form of high-confidence speculative optimization as their selection process is pro-

file driven: Performance and energy e�ciency, rather than correctness of execution

path, are speculative. Another profile-driven speculative optimization is the inte-

gration of profile-derived disambiguation information into scheduling.

We ran an initial study using oracular disambiguation within basic blocks

to speculatively hoist loads above stores in pre-cachelet ICC schedules. A few

benchmarks, such as djpeg, benefited greatly from this, improving performance by

up to 15%. However, most other benchmarks were insensitive, mostly due to the

small size of blocks and lack of cross-iteration through-memory dependencies to be

elided. Moreover, when we combined disambiguation with cachelets, the marginal

benefit was small. The reordering of independent loads via uneven application

of cachelets provided much of the benefit of within-block disambiguation. How-

ever, once we have implemented unrolling and moved from basic blocks to waves

as our basic scheduling unit, we plan on reexamining disambiguation. As seen in

Table 6.1, frequently executed blocks in djpeg, which improved with disambigua-

tion, had several memory operations in each block. With waves and unrolling, we

expect scheduling blocks to look more like those of djpeg. If the potential per-

formance benefits are high, they may warrant the energy costs associated with an

infrequently exercised rollback mechanism.

80

6.4 Summary

Over the course of this dissertation, we have seen how C-Cores save energy

and, properly optimized, improve performance. In this chapter, we have analyzed

key limiting factors in current C-Core performance and highlighted avenues for

future optimizations. In the following chapter, we compare conservation cores to

other approaches for generating specialized hardware. We also discuss how the

techniques and mechanisms used to optimize conservation cores relate to other

previously proposed techniques and mechanisms.

Acknowledgments

Portions of this research were funded by the US National Science Founda-

tion under NSF CAREER Awards 06483880 and 0846152, and under NSF CCF

Award 0811794.

This chapter contains material from “Energy-Delay Optimized Accelera-

tors for Irregular Code”, by Jack Sampson, Ganesh Venkatesh, Nathan Goulding,

Saturnino Garcia, Steven Swanson, and Michael Bedford Taylor, which has been

submitted for possible publication by IEEE in Proceedings of the 17th IEEE Inter-

national Symposium on High Performance Computer Architecture (HPCA). The

dissertation author was the primary investigator and author of this paper.

Chapter 7

Related Work

In this chapter we place C-Cores and systems containing them within the

landscape of other hardware specialization e↵orts. We compare our goals, meth-

ods, and achievements with prior work. We examine these previous e↵orts from

three perspectives: hardware specialization, heterogeneous system design, and the

automation of hardware generation. We address each category in turn, and discuss

work related to subsidiary techniques and methods.

7.1 Hardware specialization

Customizing hardware for a particular application can provide significant

gains to energy or performance. In [HQW+10], the authors develop an ASIC that

uses 500⇥ less energy for the HD H.264 encoder than an aggressive out-of-order

core. Both ELM [BDBS+08] and the work in [HQW+10] break down the relative

energy contributions of I-cache, fetch, decode, register-file access, functional units,

D-cache and control for average processor instructions, showing sources of ine�-

ciency in general purpose processor computation. These areas are all targets for

removal or reduction via hardware specialization. The energy benefits of C-Cores’

removal of fetch and decode, replacement of register-files with distributed registers

and merging basic blocks into complex meta-operations are consistent with their

analysis.

Many other specialized hardware systems exist either to improve perfor-

81

82

mance, or to reduce energy. Many of these, like Cell [Kah05], IRAM [PAC+97],

and EXOCHI [WCC+07], have been designed as domain-specific accelerators. Spe-

cialized accelerators are a subject of increasing interest in recent computer archi-

tecture research. Recent work has targeted accelerators for computations such

as cryptography [WWA01], signal processing [ECF96, GSM+99], vector process-

ing [ADK+04, DLD+03], physical simulation [Age], and computer graphics [nVi,

ATI, OLG+05]. Other vendors, such as Phillips [Phi97] and Equator [map01],

provide non-configurable but specialized designs for media applications.

Stream processors, such as [ADK+04, DLD+03], focus on localizing commu-

nication, and therefore on reducing energy. These processors also provide signif-

icant speedups to target applications. However, stream processors require source

programs to be formulated as a set of communicating kernels. C-Cores provide

energy and performance benefits without stringent limitations on the structure of

the source program. C-Cores thus support legacy applications as well as code that

is not readily transformed into streaming, vector, or other of the highly parallel

forms targeted by traditional accelerator architectures.

The unifying concept in the above designs is the parallelism inherent in

their problem domains. In the case of programmable approaches, such as GPUs

and physics accelerators, this parallelism is su�cient to hide the limitations of slow

individual processing units and loose coupling between the accelerator and the host

system. However, while such programmable platforms o↵er very high performance

in their domain, they rely on SIMD parallelism and perform poorly in the face of

irregular control flow. Thus, they are a poor match for the irregular codes that

C-Cores target.

Many ASIC-like accelerators [CHM08, FKDM09, YGBT09] have focused

on using modulo scheduling to exploit regular loop bodies that have ample loop

parallelism and easy-to-analyze memory access patterns. VEAL [CHM08] presents

a general approach for accelerating highly structured, non-speculative loops by us-

ing a combination of static and dynamic techniques to map modulo schedulable

loops in native binary code onto a generic loop accelerator. The loop accelerator

uses address generators to decouple the fetching of inputs and storing of results

83

from loop body computation on a configurable array of functional units. For the

limited class of loops covered, VEAL achieves much of the potential speedup of

an infinitely wide accelerator while maintaining a small area footprint. The work

in [FKDM09] and [YGBT09] design circuits with limited flexibility by incorporat-

ing limited programmability, or by merging multiple circuits into one, respectively.

In contrast to many of the above examples, our approach is general, rather

than domain-specific. C-Cores di↵er in that they target the more general class

of irregular, hard-to-parallelize computations that are not well-suited to modulo

scheduling. We can target any C codebase once it reaches a minimal level of

code stability, and our patching mechanisms allow continued utility from C-Core

hardware even as codebases change. Additionally, unlike many accelerators, we

prioritize energy reduction over performance improvement.

7.2 Heterogeneous systems

In order to run entire workloads, specialized hardware is frequently a com-

ponent of a larger, heterogeneous system. There are many types of heterogeneous

systems, ranging from general purpose processors with loosely coupled slave accel-

erators to single chip solutions directly targeting a specific domain. The C-Core

approach designs heterogeneous multi-core processors with an aim of maximizing

energy e�ciency.

Recent work on single-ISA heterogeneous multi-core processors [KTR+04,

KFJ+03, KTJ06, BRUL05, GRSW04, LM05] investigates the power and perfor-

mance trade-o↵s for CMPs with non-uniform cores. In [KFJ+03], the authors use

phase-transition-driven partitioning to trade 10% of performance for a nearly 50%

reduction in power consumption by moving execution between aggressive out-of-

order cores and simpler, in-order cores. The work in [KTJ06] performs a design

space search over many possible core types and combinations in a four core hetero-

geneous chip, optimizing for area and power. The authors find that, for optimal

designs, no core in such a heterogeneous processor monotonically improves over the

other cores included, and that for several power envelopes, most of the potential

84

benefits are achievable with limited diversity.

The single-ISA approach uses heterogeneity to improve energy e�ciency,

but it does not leverage hardware specialization. It does not benefit from operator,

communication, or control flow optimizations specific to a domain or application.

While the presence of out-of-order cores allows for higher peak performance than

C-Cores, the single-ISA approach is limited in peak energy savings by the e�ciency

of the core most closely matching the current computation. The conservation core

architecture can deliver larger energy savings, as it reduces system energy by an

average of 47% over even a simple, in-order core.

A range of commercial heterogeneous processors and research prototypes are

available or have been proposed, including Sony’s Cell [Kah05], IRAM [PAC+97],

Merrimac [DLD+03] and Intel’s EXOCHI [WCC+07]. These machines augment a

general purpose processor with tightly coupled vector or stream co-processors to

accelerate multimedia and other SIMD-rich applications. Approaches for coupling

the general and more specialized cores vary. Cell [Kah05] couples a single, simple

general purpose core with 8 identical SPE units, each with a private memory, and

communicates via DMA transfers over a set of high bandwidth ring buses. EX-

OCHI [WCC+07], on the other hand, dispatches from an aggressive, out-of-order

multi-core processor to an 8-threaded media processor and communicates through

shared virtual memory. Meanwhile, loosely coupled heterogeneous systems com-

prising a general purpose multi-core processor and one or more GPUs have become

ubiquitous on the desktop and other markets. Similarly attached specialized accel-

erators for physics [Age] or signal processing [CSX07] have also appeared in recent

years.

These designs have features common to many heterogeneous platforms.

They target a specific domain, retain general purpose host cores to run code outside

their targeted domain, and require programmer intervention to take advantage of

specialized resources. While EXOCHI provides a uniform abstraction for sequenc-

ing execution across heterogeneous execution engines, their framework still requires

distinct source code for each target piece of hardware. Similarly, programs written

for traditional microprocessors require rewriting to take full advantage of Cell’s

85

SPEs or to run as stream kernels on Merrimac. While language extensions such

as CUDA [NBGS08] and streaming frameworks such as Brook [BFH+04] attempt

to ease the use of GPUs and other loosely coupled accelerators for “general pur-

pose” computation (GPGPU), such approaches still require source code rewrites

and focus on parallel computation.

C-Core-enabled systems also have a host processor, but otherwise di↵er

from the above systems. A fundamental goal of the C-Core approach is that the

presence of specialized hardware should be transparent to the programmer. C-

Cores, unlike the above systems, require no manual source modifications in order

to take advantage of specialized hardware.

Cell, EXOCHI, and IRAM all target vector parallelism in highly structured

computations. Each C-Core similarly targets a very specific functionality, but the

automated nature of the C-Core toolchain allows us to rapidly design as many

C-Cores for as many domains as a given target system requires. While a C-Core

enabled system is generated with a particular workload in mind, that workload can

span multiple domains. The code regions that become C-Cores within the same

system do not have to have internally uniform structure, and need not be similar

to each other. C-Cores support both regular and irregular code regions, and are

parallelism agnostic.

Previous work has also proposed generalist heterogeneous systems and com-

bining cores that exhibit microarchitectural heterogeneity to improve performance

or reduce power consumption on general purpose workloads. Designs such as Chi-

maera [YMHB00], Tartan [MCC+06], GARP [HW97], PRISC [RS94], and the work

in [CBC+05] augment a general-purpose processor with reconfigurable logic. These

approaches provide widely varying degrees of code coverage. Chimeara [YMHB00]

provides a tightly integrated 9-input 1-output reconfigurable functional unit to

accelerate common instruction sequences, and GARP [HW97] uses VLIW soft-

ware pipelining techniques to implement pipelined versions of loops in an FPGA

fabric, while Tartan [MCC+06] aims to map entire programs onto a hierarchical

coarse-grained asynchronous fabric.

A reconfigurable ASIP-like approach is presented in [CBC+05], executing

86

datagraphs on reconfigurable feed-forward hardware. The reconfigurable logic

does not, however, support memory access or internal control, limiting the scope

of new operators. Other operator customization approaches, such as Tensilica’s

Stenos [WKMR01] and OptimoDE [CZF+04], provide configure-once, rather than

reconfigurable, specialized datapath operators.

While the C-Core patching mechanism does provide a degree of reconfig-

urability and associated overheads, the application-specific nature of a C-Core still

yields an energy e�ciency much closer to an ASIC than to a reconfigurable fabric

or co-processor. Depending on the workload, fine-grained reconfigurable fabrics do

not always save power compared to e�cient in-order cores. Reconfigurable logic

does allow for greater potential functionality to be mapped into a smaller sili-

con area. However, estimates in [MCC+06] showed that mapping entire programs

into reconfigurable fabric was not practical without fabric virtualization, adding

runtime overheads to reconfiguration. Moreover, under the utilization wall, area

restrictions are not as constraining and energy e�ciency is more pressing. C-Cores

can also target larger regions of code than operator customization approaches,

customizing control and communication between basic blocks as well as within

them.

7.3 Automatically generated hardware

Specialized hardware delivers the greatest benefits when form, as commu-

nication paths, operator selection, or control specialization, most closely follows

function. Software tends to contain many distinct patterns of computation, even

within a single application [SPC01]. Thus, to maximize benefits, systems target-

ing diverse computations with specialized hardware must have a high degree of

heterogeneity in the specialized hardware they employ. In order to scalably supply

specialized hardware for many di↵erent software structures within a single design

or even across designs requires some degree of design automation.

Previous e↵orts have attempted to automatically generate optimal archi-

tectures for constrained design spaces. Strozek and Brooks [SB06] improve the

87

energy e�ciency for a set of applications in the embedded space by automatically

selecting a heterogeneous set of specialized cores from a well-defined design space.

The cores are Pareto-optimal for the target workloads. PICO [ARK99] employs

a similar approach to VLIW design space exploration, but limits heterogeneity to

functional unit number and construction.

Our automated approach admits a much larger range of core designs, but

sacrifices formal guarantees of optimality. Both approaches retain many features of

general purpose processors, such as instruction fetch and instruction decode. Data

from [BDBS+08] show that, even if ISAs improve the encoding of instructions and

specialize datapath operators, the process of fetching an instruction and decoding

and retrieving its operands from a register file remains a significant energy over-

head. Compared to [SB06] and [ARK99], C-Cores benefit from optimizations not

available to programmable architectures. C-Cores eliminate instruction fetch for

the most frequently executed code regions and employ distributed registers rather

than a centralized register-file.

Work by Budiu on spatial computation (ASH) [BVCG04, BG03] and the

associated CASH compiler [BG02] has similar goals in transforming C directly into

hardware. However, the circuits produced are very di↵erent from C-Cores. ASH

circuits are asynchronous designs, whereas C-Cores are synchronous. ASH pro-

duces heavily pipelined circuits with output latches for every operation, whereas

C-Cores employ pipesplitting to transform each basic block into a composite oper-

ation, removing intermediate storage and transfer and allowing bit-level optimiza-

tions.

7.4 Techniques

In this section, we discuss techniques and mechanisms related to some of

those used in developing conservation cores.

88

7.4.1 Bit-level parallelism

Our approach, pipeline splitting, uses operator chaining to execute the dat-

apath operators unaligned to the cycle boundaries. Pipeline splitting schedules

the operations of the sequential code to increase the potential for operation chain-

ing, and then allows the operator chains to execute across many fast clock cycles.

While estimating operation latency, the scheduler takes into account the speed-ups

provided by bit-level parallelism across dependent operations, allowing for tighter

packing of operations.

Several designs have leveraged the bit-level parallelism that pipesplitting ex-

poses between datapath operations. The approach presented in [SA02] schedules

multiple dependent operators back-to-back in the same cycle to help physical syn-

thesis meet frequency targets. The approach in [PPM09] uses the technique to re-

duce register file accesses for sequential code regions. Finally, the work in [DDF+08]

moves datapath operators across pipeline registers to prevent short path-related

false positive timing errors. These techniques reschedule operators across just one

or two cycles. Pipesplitting applies this technique more aggressively, eliminating

most pipeline registers between datapath components. Furthermore, pipesplitting

applies the technique only to arithmetic operators, leaving memory to run fully

pipelined.

7.4.2 Cache specialization

C-Cores provide a higher-performing and more-e�cient memory system,

with pipelined access and integrated cachelets. The CHiMPS multi-cache archi-

tecture [PEB+09] uses several application-specific caches and enforces coherence

via flushing, but the purpose, sizing, and implementation of CHiMPS multi-cache

di↵ers greatly from the cachelet approach. CHiMPS aggregates 4-KB block RAMs

on an FPGA into caches backing di↵erent regions of memory in order to provide

memory parallelism and to simplify the memory interface for a C-like programming

model. In contrast, cachelets utilize small caches with between one and four lines

that reduce the average hit time and access energy by eliding accesses to the L1.

89

7.4.3 Clock gating

C-Cores with pipesplitting o↵er interesting opportunities for clock gating,

especially RTL and symbolic clock gating approaches [DIBM03, BDMM+99]. In a

C-Core, only one basic block is active at a time, and the output registers associated

with that block are only clocked once per basic block execution. Thus, the activity

factor for any slow-clock net is very low. Moreover, the pipesplitting model provides

guarantees about the minimum number of fast-clock cycles before a register could

possibly need to be clocked again given the currently executing block and fast-

state. This may allow C-Cores to benefit from deterministic dynamic clock gating

policies such as those in [LBC+03]. We currently model fine-grained clock gating.

However, we are investigating methods for providing su�cient information to our

CAD tools to generate pruning logic closer to the root of the clock tree. Since the

vast majority of registers in a C-Core should be clock gated in any given fast-clock

cycle, substantial pruning near the root of the tree should be possible.

7.4.4 Dynamic voltage and frequency scaling

C-Cores aim to reduce energy, and many past proposals used dynamic volt-

age and frequency scaling (DVFS) either at chip-level [GCW95, PBB98], or finer

granularity [IM02, SMB+02], to achieve the same end. However, we do not con-

sider DVFS as a particularly valuable addition or viable alternative to C-Cores.

We came to this conclusion for two reasons: First, the same leakage concerns

that spelled the end of classical CMOS scaling reduce the e↵ectiveness of DVFS

at advanced process nodes. Reducing the threshold voltage would produce large

leakage currents. With a fixed threshold voltage, reductions in supply voltage will

deeply reduce switching speed. In a leakage limited domain, running slower re-

duces power, but weakens the translation from lower power to lower energy. With

each generation of voltage stagnation, C-Cores become more a more attractive

solution and DVFS less so. Second, DVFS trades performance for power. While

C-Cores are energy-oriented, they trade for power with idle transistors rather than

performance, a property still in demand.

90

7.5 Summary

Conservation cores are specifically designed to address the challenges of

the utilization wall, turning dark silicon into specialized hardware for irregular

applications. This goal serves to di↵erentiate C-Cores from other heterogeneous

systems and domain specific e↵orts. Even where conservation cores use existing

techniques, such as exploiting bit-level parallelism, their benefits derive from appli-

cation at a di↵erent scale and for a di↵erent purpose. In the next and final chapter,

we will summarize the benefits of conservation cores, and the contributions of this

dissertation.

Acknowledgments

Portions of this research were funded by the US National Science Founda-

tion under NSF CAREER Awards 06483880 and 0846152, and under NSF CCF

Award 0811794.

This chapter contains material from “Conservation cores: reducing the

energy of mature computations”, by Ganesh Venkatesh, Jack Sampson, Nathan

Goulding, Saturnino Garcia, Vladyslav Bryksin, Jose Lugo-Martinez, Steven Swan-

son and Michael Bedford Taylor, which appears in ASPLOS ’10: Proceedings of the

fifteenth edition of ASPLOS on Architectural support for programming languages

and operating systems. The dissertation author was the secondary investigator

and author of this paper. The material in this chapter is copyright c�2010 by the

Association for Computing Machinery, Inc. (ACM). Permission to make digital

or hard copies of part or all of this work for personal or classroom use is granted

without fee provided that the copies are not made or distributed for profit or

commercial advantage and that copies bear this notice and the full citation on

the first page in print or the first screen in digital media. Copyrights for com-

ponents of this work owned by others than ACM must be honored. Abstracting

with credit is permitted. To copy otherwise, to republish, to post on servers, or

to redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or email

91

permissions@acm.org.

This chapter contains material from “Energy-Delay Optimized Accelera-

tors for Irregular Code”, by Jack Sampson, Ganesh Venkatesh, Nathan Goulding,

Saturnino Garcia, Steven Swanson, and Michael Bedford Taylor, which has been

submitted for possible publication by IEEE in Proceedings of the 17th IEEE Inter-

national Symposium on High Performance Computer Architecture (HPCA). The

dissertation author was the primary investigator and author of this paper.

Chapter 8

Summary

The utilization wall is upon us, and it will fundamentally change the way

that we design future processors. We began this dissertation by characterizing the

utilization wall, describing how it will lead to an exponentially expanding area of

dark silicon. We have shown how the e↵ects of the utilization wall are already

apparent in modern processors and how homogeneous processors are ill-suited to

addressing the challenges of the utilization wall. While traditional designs are

limited, we have shown that heterogeneous designs with specialized hardware can

make use of the burgeoning dark silicon area. Over the course of this disserta-

tion, we have presented an approach for the design of such heterogeneous systems,

a toolchain that embodies that approach, and evaluated the product of that ap-

proach, conservation cores.

As we run up against the utilization wall, we enter a regime in which re-

ducing energy per operation becomes increasingly important. In Chapter 3 we

introduced conservation cores, a new class of circuits that aim to increase the en-

ergy e�ciency of key applications in a workload. Conservation cores provide an

automated approach to having the most important pieces of the most important

applications in a workload run on the hardware most specialized for them.

Conservation cores are the product of an automated C-to-silicon toolchain.

Our toolchain synthesizes C-Cores from C code and builds in support that al-

lows them to evolve when new versions of the software appear. This automation

is a fundamental aspect of the conservation core approach. Automatic extrac-

92

93

tion of key code regions from source and drop-in semantics allow our toolchain to

transparently improve applications with specialized hardware. Tansparency and

automation provide scalability to the conservation core approach. Our toolchain

already produces energy e�cient and performant hardware, and the quality of that

hardware continues to improve as the toolchain matures.

In Chapters 4 and 5 we showed the evolution of C-Cores from our initial

energy-saving prototypes to their more performance optimized successors. Our

improved C-Cores use three key techniques to reduce energy consumption and im-

prove performance compared to both a general purpose processor and our C-Core

prototypes. First, C-Cores use pipesplitting, a pipelining technique that allows

them to use a high-speed memory system while running non-memory operations

at a much lower frequency. Second, refined support for changes to the software

that C-Cores implement improves energy e�ciency and significantly decreases area.

Finally, cachelets reduce L1 hit times while maintaining a coherent memory inter-

face. Together, these techniques speed up the code they target by 1.5⇥, improve

EDP by 6.9times and accelerate the whole application by 1.33⇥ on average, while

reducing application energy-delay by 57%. In Chapter 6, we showed how the cur-

rent operation scheduling approach intertwines with hardware design decisions and

highlighted avenues for further toolchain improvement.

Overall, we have shown that conservation cores are a viable means of ad-

dressing the most pressing challenges presented by the utilization wall. C-Cores

provide an architectural means to trade area, now inexpensive with the advent of

dark silicon, for power. C-Cores improve energy e�ciency for nearly arbitrary code

regions. Thus, the approach can be applied to any computing domain. Further-

more, C-Cores o↵er su�cient performance on irregular applications to be deployed

as part of a general-purpose heterogeneous system. This makes C-Cores an attrac-

tive design alternative, especially for power-constrained and energy-constrained

platforms.

94

Acknowledgments

Portions of this research were funded by the US National Science Founda-

tion under NSF CAREER Awards 06483880 and 0846152, and under NSF CCF

Award 0811794.

This chapter contains material from “Conservation cores: reducing the

energy of mature computations”, by Ganesh Venkatesh, Jack Sampson, Nathan

Goulding, Saturnino Garcia, Vladyslav Bryksin, Jose Lugo-Martinez, Steven Swan-

son and Michael Bedford Taylor, which appears in ASPLOS ’10: Proceedings of the

fifteenth edition of ASPLOS on Architectural support for programming languages

and operating systems. The dissertation author was the secondary investigator

and author of this paper. The material in this chapter is copyright c�2010 by the

Association for Computing Machinery, Inc. (ACM). Permission to make digital

or hard copies of part or all of this work for personal or classroom use is granted

without fee provided that the copies are not made or distributed for profit or

commercial advantage and that copies bear this notice and the full citation on

the first page in print or the first screen in digital media. Copyrights for com-

ponents of this work owned by others than ACM must be honored. Abstracting

with credit is permitted. To copy otherwise, to republish, to post on servers, or

to redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or email

permissions@acm.org.

This chapter contains material from “Energy-Delay Optimized Accelera-

tors for Irregular Code”, by Jack Sampson, Ganesh Venkatesh, Nathan Goulding,

Saturnino Garcia, Steven Swanson, and Michael Bedford Taylor, which has been

submitted for possible publication by IEEE in Proceedings of the 17th IEEE Inter-

national Symposium on High Performance Computer Architecture (HPCA). The

dissertation author was the primary investigator and author of this paper.

Bibliography

[ADK+04] Jung Ho Ahn, William J. Dally, Brucek Khailany, Ujval J. Kapasi,
and Abhishek Das. Evaluating the Imagine Stream Architecture. In
ISCA ’04: Proceedings of the 31st Annual International Symposium
on Computer Architecture, pages 14–25. IEEE Computer Society,
2004.

[Age] Ageia Technologies. PhysX by Ageia. http://www.ageia.com/pdf/
ds product overview.pdf.

[ARK99] Shail Aditya, B. Ramakrishna Rau, and Vinod Kathail. Automatic
architectural synthesis of VLIW and EPIC processors. In ISSS ’99:
Proceedings of the 12th international symposium on System synthesis,
page 107. IEEE Computer Society, 1999.

[ATI] ATI website. http://www.ati.com.

[BDBS+08] James Balfour, William Dally, David Black-Scha↵er, Vishal Parikh,
and JongSoo Park. An energy-e�cient processor architecture for
embedded systems. IEEE Comput. Archit. Lett., 7(1):29–32, 2008.

[BDMM+99] L. Benini, G. De Micheli, E. Macii, M. Poncino, and R. Scarsi.
Symbolic synthesis of clock-gating logic for power optimization of
synchronous controllers. ACM Trans. Des. Autom. Electron. Syst.,
4(4):351–375, 1999.

[BFH+04] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fata-
halian, Mike Houston, and Pat Hanrahan. Brook for gpus: stream
computing on graphics hardware. ACM Trans. Graph., 23(3):777–
786, 2004.

[BG02] Mihai Budiu and Seth Copen Goldstein. Compiling application-
specific hardware. In International Conference on Field Pro-
grammable Logic and Applications (FPL), pages 853–863, Montpel-
lier (La Grande-Motte), France, September 2–4 2002.

95

96

[BG03] Mihai Budiu and Seth Copen Goldstein. Optimizing memory accesses
for spatial computation. In International ACM/IEEE Symposium
on Code Generation and Optimization (CGO), pages 216–227, San
Francisco, CA, March 23–26 2003.

[BK75] B. T. Bennett and V. J. Kruskal. Lru stack processing. IBM Journal
of Research and Development, pages 353–357, July 1975.

[BRUL05] Saisanthosh Balakrishnan, Ravi Rajwar, Mike Upton, and Konrad
Lai. The impact of performance asymmetry in emerging multicore
architectures. In ISCA ’05: Proceedings of the 32nd annual interna-
tional symposium on Computer Architecture, pages 506–517, Wash-
ington, DC, USA, 2005. IEEE Computer Society.

[BVCG04] Mihai Budiu, Girish Venkataramani, Tiberiu Chelcea, and
Seth Copen Goldstein. Spatial computation. In International Con-
ference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 14–26, Boston, MA, October
2004.

[CBC+05] Nathan Clark, Jason Blome, Michael Chu, Scott Mahlke, Stuart
Biles, and Krisztian Flautner. An architecture framework for trans-
parent instruction set customization in embedded processors. In
ISCA ’05: Proceedings of the 32nd Annual International Symposium
on Computer Architecture, pages 272–283. IEEE Computer Society,
2005.

[CFR+89] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.
Zadeck. An e�cient method of computing static single assignment
form. In POPL ’89: Proceedings of the 16th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages
25–35. ACM Press, 1989.

[CHM08] Nathan Clark, Amir Hormati, and Scott Mahlke. Veal: Virtualized
execution accelerator for loops. In ISCA ’08: Proceedings of the 35th
Annual International Symposium on Computer Architecture, pages
389–400, Washington, DC, USA, 2008. IEEE Computer Society.

[CLG02] Josep M. Codina, Josep Llosa, and Antonio González. A comparative
study of modulo scheduling techniques. In ICS ’02: Proceedings of
the 16th international conference on Supercomputing, pages 97–106,
New York, NY, USA, 2002. ACM.

[Cod] CodeSurfer by GrammaTech, Inc. http://www.grammatech.com/
products/codesurfer/.

97

[CSX07] February 2007. http://www.clearspeed.com/docs/resources/

ClearSpeed Architecture Whitepaper Feb07v2.pdf.

[CZF+04] Nathan Clark, Hongtao Zhong, Kevin Fan, Scott Mahlke, Krisztian
Flautner, , and Koen Van Nieuwenhove. OptimoDE: Programmable
accelerator engines through retargetable customization. In HotChips,
2004.

[DDF+08] Ganesh Dasika, Shidhartha Das, Kevin Fan, Scott Mahlke, and
David Bull. Dvfs in loop accelerators using blades. In DAC ’08:
Proceedings of the 45th annual Design Automation Conference, pages
894–897, New York, NY, USA, 2008. ACM.

[DGR+74] R.H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R.
LeBlanc. Design of Ion-Implanted MOSFET’s with Very Small Phys-
ical Dimensions. In IEEE Journal of Solid-State Circuits, October
1974.

[DIBM03] Monica Donno, Alessandro Ivaldi, Luca Benini, and Enrico Macii.
Clock-tree power optimization based on rtl clock-gating. In DAC
’03: Proceedings of the 40th annual Design Automation Conference,
pages 622–627, New York, NY, USA, 2003. ACM.

[DLD+03] William J. Dally, Francois Labonte, Abhishek Das, Patrick Han-
rahan, Jung-Ho Ahn, Jayanth Gummaraju, Mattan Erez, Nuwan
Jayasena, Ian Buck, Timothy J. Knight, and Ujval J. Kapasi. Mer-
rimac: Supercomputing with streams. In SC ’03: Proceedings of
the 2003 ACM/IEEE conference on Supercomputing, page 35. IEEE
Computer Society, 2003.

[ECF96] Carl Ebeling, Darren C. Cronquist, and Paul Franklin. RaPiD - re-
configurable pipelined datapath. In FPL ’96: Proceedings of the 6th
International Workshop on Field-Programmable Logic, Smart Appli-
cations, New Paradigms and Compilers, pages 126–135. Springer-
Verlag, 1996.

[Emb] Embedded Microprocessor Benchmark Consortium. Eembc bench-
mark suite. http://www.eembc.org.

[FKDM09] K. Fan, M. Kudlur, G. Dasika, and S. Mahlke. Bridging the compu-
tation gap between programmable processors and hardwired acceler-
ators. In HPCA: High Performance Computer Architecture., pages
313–322, Feb. 2009.

[GCW95] Kinshuk Govil, Edwin Chan, and Hal Wasserman. Comparing algo-
rithm for dynamic speed-setting of a low-power cpu. In MobiCom

98

’95: Proceedings of the 1st annual international conference on Mobile
computing and networking, pages 13–25, New York, NY, USA, 1995.
ACM.

[Gro] Independent JPEG Group. Library for jpeg image compression.
http://www.ijg.org/.

[GRSW04] Ed Grochowski, Ronny Ronen, John Shen, and Hong Wang. Best of
both latency and throughput. In ICCD ’04: Proceedings of the IEEE
International Conference on Computer Design (ICCD’04), pages
236–243, Washington, DC, USA, 2004. IEEE Computer Society.

[GSM+99] Seth Copen Goldstein, Herman Schmit, Matthew Moe, Mihai Budiu,
Srihari Cadambi, R. Reed Taylor, and Ronald Laufer. PipeRench:
A Coprocessor for Streaming Multimedia Acceleration. In ISCA ’99:
Proceedings of the 26th Annual International Symposium on Com-
puter Architecture, pages 28–39. IEEE Computer Society, 1999.

[HQW+10] Rehan Hameed, Wajahat Qadeer, Megan Wachs, Omid Azizi, Alex
Solomatnikov, Benjamin C. Lee, Stephen Richardson, Christos
Kozyrakis, and Mark Horowitz. Understanding sources of ine�ciency
in general-purpose chips. In ISCA ’10: Proceedings of the 37th an-
nual international symposium on Computer architecture, pages 37–
47, New York, NY, USA, 2010. ACM.

[HW97] John R. Hauser and John Wawrzynek. Garp: A MIPS Processor
with a Reconfigurable Coprocessor. In Kenneth L. Pocek and Jef-
frey Arnold, editors, FCCM ’97: IEEE Symposium on FPGAs for
Custom Computing Machines, pages 12–21. IEEE Computer Society
Press, 1997.

[IM02] Anoop Iyer and Diana Marculescu. Power and performance eval-
uation of globally asynchronous locally synchronous processors. In
ISCA ’02: Proceedings of the 29th annual international symposium
on Computer architecture, pages 158–168, Washington, DC, USA,
2002. IEEE Computer Society.

[Kah05] Jim Kahle. The CELL processor architecture. In MICRO 38: Pro-
ceedings of the 38th annual IEEE/ACM International Symposium on
Microarchitecture, page 3. IEEE Computer Society, 2005.

[KFJ+03] Rakesh Kumar, Keith I. Farkas, Norman P. Jouppi, Parthasarathy
Ranganathan, and Dean M. Tullsen. Single-ISA Heterogeneous
Multi-Core Architectures: The Potential for Processor Power Re-
duction. In MICRO 36: Proceedings of the 36th Annual IEEE/ACM

99

International Symposium on Microarchitecture, page 81. IEEE Com-
puter Society, 2003.

[KTJ06] Rakesh Kumar, Dean M. Tullsen, and Norman P. Jouppi. Core ar-
chitecture optimization for heterogeneous chip multiprocessors. In
PACT ’06: Proceedings of the 15th international conference on Paral-
lel architectures and compilation techniques, pages 23–32, New York,
NY, USA, 2006. ACM Press.

[KTMW03] Jason Sungtae Kim, Michael B Taylor, Jason Miller, and David
Wentzla↵. Energy characterization of a tiled architecture processor
with on-chip networks. In International Symposium on Low Power
Electronics and Design, San Diego, CA, USA, August 2003.

[KTR+04] Rakesh Kumar, Dean M. Tullsen, Parthasarathy Ranganathan, Nor-
man P. Jouppi, and Keith I. Farkas. Single-ISA Heterogeneous Multi-
Core Architectures for Multithreaded Workload Performance. In
ISCA ’04: Proceedings of the 31st Annual International Symposium
on Computer Architecture, page 64. IEEE Computer Society, 2004.

[LA04] Chris Lattner and Vikram Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. In CGO ’04: Pro-
ceedings of the international symposium on Code generation and op-
timization, page 75. IEEE Computer Society, 2004.

[LBC+03] Hai Li, Swarup Bhunia, Yiran Chen, T. N. Vijaykumar, and Kaushik
Roy. Deterministic clock gating for microprocessor power reduction.
High-Performance Computer Architecture, International Symposium
on, 0:113, 2003.

[LM05] Jian Li and José F. Mart́ınez. Power-performance considerations
of parallel computing on chip multiprocessors. ACM Trans. Archit.
Code Optim., 2(4):397–422, 2005.

[map01] MAP-CA datasheet, June 2001. Equator Technologies.

[MCC+06] Mahim Mishra, Timothy J. Callahan, Tiberiu Chelcea, Girish
Venkataramani, Seth C. Goldstein, and Mihai Budiu. Tartan: eval-
uating spatial computation for whole program execution. SIGOPS
Oper. Syst. Rev., 40(5):163–174, 2006.

[MIP09] MIPS Technologies. MIPS Technologies product page, 2008-2009.
http://www.mips.com/products/processors/32-64-bit-cores/

mips32-24ke , 2008-2009.

100

[MIP10] MIPS Technologies. MIPS Technologies product page, 2010. http://
www.mips.com/products/cores/32-64-bit-cores/mips32-24ke,
2010.

[NBGS08] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scal-
able parallel programming with cuda. In SIGGRAPH ’08: ACM
SIGGRAPH 2008 classes, pages 1–14, New York, NY, USA, 2008.
ACM.

[nVi] nVidia website. http://www.nvidia.com.

[OLG+05] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris,
Jens Krger, Aaron E. Lefohn, , and Timothy J. Purcell. A survey of
general-purpose computation on graphics hardware. In Eurographics
2005, State of the Art Reports, pages 21–51, August 2005.

[Ope] OpenImpact Website. http://gelato.uiuc.edu/.

[PAC+97] David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm,
Kimberly Keeton, Christoforos Kozyrakis, Randi Thomas, and
Katherine Yelick. A case for intelligent RAM. IEEE Micro, 17(2):34–
44, April 1997.

[PBB98] Trevor Pering, Tom Burd, and Robert Brodersen. The simulation and
evaluation of dynamic voltage scaling algorithms. In ISLPED ’98:
Proceedings of the 1998 international symposium on Low power elec-
tronics and design, pages 76–81, New York, NY, USA, 1998. ACM.

[PEB+09] Andrew Putnam, Susan Eggers, Dave Bennett, Eric Dellinger, Je↵
Mason, Henry Styles, Prasanna Sundararajan, and Ralph Wittig.
Performance and power of cache-based reconfigurable computing. In
ISCA ’09: Proceedings of the 36th annual international symposium
on Computer architecture, pages 395–405, New York, NY, USA, 2009.
ACM.

[Phi97] TM1000 preliminary data book, 1997. http://www.

semiconductors.philips.com/acrobat/other/tm1000.pdf.

[PPM09] Yongjun Park, Hyunchul Park, and Scott Mahlke. Cgra express: ac-
celerating execution using dynamic operation fusion. In CASES ’09:
Proceedings of the 2009 international conference on Compilers, ar-
chitecture, and synthesis for embedded systems, pages 271–280, New
York, NY, USA, 2009. ACM.

[RS94] Rahul Razdan and Michael D. Smith. A high-performance microar-
chitecture with hardware-programmable functional units. In MICRO

101

27: Proceedings of the 27th annual international symposium on Mi-
croarchitecture, pages 172–180. ACM Press, 1994.

[SA02] Mukund Sivaraman and Shail Aditya. Cycle-time aware architecture
synthesis of custom hardware accelerators. In CASES ’02: Proceed-
ings of the 2002 international conference on Compilers, architecture,
and synthesis for embedded systems, pages 35–42, New York, NY,
USA, 2002. ACM.

[SB06] Lukasz Strozek and David Brooks. E�cient architectures through
application clustering and architectural heterogeneity. In CASES
’06: Proceedings of the 2006 international conference on Compilers,
architecture and synthesis for embedded systems, pages 190–200, New
York, NY, USA, 2006. ACM Press.

[SMB+02] Greg Semeraro, Grigorios Magklis, Rajeev Balasubramonian,
David H. Albonesi, Sandhya Dwarkadas, and Michael L. Scott.
Energy-e�cient processor design using multiple clock domains with
dynamic voltage and frequency scaling. In HPCA ’02: Proceedings
of the 8th International Symposium on High-Performance Computer
Architecture, page 29, Washington, DC, USA, 2002. IEEE Computer
Society.

[SPC01] Timothy Sherwood, Erez Perelman, and Brad Calder. Basic block
distribution analysis to find periodic behavior and simulation points
in applications. In PACT ’01: Proceedings of the 2001 International
Conference on Parallel Architectures and Compilation Techniques,
pages 3–14, Washington, DC, USA, 2001. IEEE Computer Society.

[SPE00] SPEC. SPEC CPU 2000 benchmark specifications, 2000. SPEC2000
Benchmark Release.

[SSM+07] Steven Swanson, Andrew Schwerin, Martha Mercaldi, Andrew Pe-
tersen, Andrew Putnam, Ken Michelson, Mark Oskin, and Susan J.
Eggers. The wavescalar architecture. ACM Trans. Comput. Syst.,
25(2):4, 2007.

[TH04] Dave A. D. Tompkins and Holger H. Hoos. Ubcsat: An implementa-
tion and experimentation environment for sls algorithms for sat and
max-sat. In In SAT, pages 37–46, 2004.

[TLM+04] Michael Bedford Taylor, Walter Lee, Jason Miller, David Went-
zla↵, Ian Bratt, Ben Greenwald, Henry Ho↵mann, Paul Johnson,
Jason Kim, James Psota, Arvind Saraf, Nathan Shnidman, Volker
Strumpen, Matt Frank, Saman Amarasinghe, and Anant Agarwal.

102

Evaluation of the Raw Microprocessor: An Exposed-Wire-Delay Ar-
chitecture for ILP and Streams. In ISCA ’04: Proceedings of the 31st
annual International Symposium on Computer Architecture, page 2.
IEEE Computer Society, 2004.

[TMAJ08] Shyamkumar Thoziyoor, Naveen Muralimanohar, Jung Ho Ahn, and
Norman P. Jouppi. Cacti 5.1. Technical Report HPL-2008-20, HP
Labs, Palo Alto, 2008.

[VSG+10] Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Gar-
cia, Vladyslav Bryksin, Jose Lugo-Martinez, Steven Swanson, and
Michael Bedford Taylor. Conservation cores: reducing the energy of
mature computations. In ASPLOS ’10: Proceedings of the fifteenth
edition of ASPLOS on Architectural support for programming lan-
guages and operating systems, pages 205–218, New York, NY, USA,
2010. ACM.

[WCC+07] Perry H. Wang, Jamison D. Collins, Gautham N. Chinya, Hong
Jiang, Xinmin Tian, Milind Girkar, Nick Y. Yang, Guei-Yuan Lueh,
and Hong Wang. Exochi: architecture and programming environ-
ment for a heterogeneous multi-core multithreaded system. In PLDI
’07: Proceedings of the 2007 ACM SIGPLAN conference on Pro-
gramming language design and implementation, pages 156–166, New
York, NY, USA, 2007. ACM.

[WKMR01] Albert Wang, Earl Killian, Dror Maydan, and Chris Rowen. Hard-
ware/software instruction set configurability for system-on-chip pro-
cessors. In DAC ’01: Proceedings of the 38th conference on Design
automation, pages 184–188. ACM Press, 2001.

[WOT+95] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal
Singh, and Anoop Gupta. The splash-2 programs: characteriza-
tion and methodological considerations. In ISCA ’95: Proceedings of
the 22nd annual international symposium on Computer architecture,
pages 24–36, New York, NY, USA, 1995. ACM.

[WWA01] Lisa Wu, Chris Weaver, and Todd Austin. Cryptomaniac: A fast
flexible architecture for secure communication. In ISCA ’01: Pro-
ceedings of the 28th Annual International Symposium on Computer
Architecture, pages 110–119. ACM Press, 2001.

[YGBT09] S. Yehia, S. Girbal, H. Berry, and O. Temam. Reconciling specializa-
tion and flexibility through compound circuits. In HPCA 15: High
Performance Computer Architecture, pages 277–288, Feb. 2009.

103

[YMHB00] Zhi Alex Ye, Andreas Moshovos, Scott Hauck, and Prithviraj Baner-
jee. CHIMAERA: A High-Performance Architecture with a Tightly-
Coupled Reconfigurable Functional Unit. In ISCA ’00: Proceedings
of the 27th Annual International Symposium on Computer Architec-
ture, pages 225–235. ACM Press, 2000.

