
CortexSuite: A Synthetic Brain Benchmark Suite*
Shelby Thomas, Chetan Gokhale, Enrico Tanuwidjaja, Tony Chong,

David Lau, Saturnino Garcia, and Michael Bedford Taylor
Department of Computer Science and Engineering

University of California, San Diego
Extended Version

Abstract— These days, many traditional end-user applications
are said to ”run fast enough” on existing machines, so the
search continues for novel applications that can leverage the
new capabilities of our evolving hardware. Foremost of these
potential applications are those that are clustered around infor-
mation processing capabilities that humans have today but that
computers do not yet have. The fact that brains can perform these
computations serves as an existence proof that these applications
are realizable. At the same time, we often discover that the human
nervous system, with its 80 billion neurons, on some metrics, is
more powerful and energy-efficient than today’s machines. Both
of these aspects make this class of applications a desirable target
for an architectural benchmark suite, because there is evidence
that these applications are both useful and computationally
challenging.

This paper details CortexSuite, a Synthetic Brain Benchmark
Suite, which seeks to capture this workload. We classify and
identify benchmarks within CortexSuite by analogy to the human
neural processing function. We use the major lobes of the cerebral
cortex as a model for the organization and classification of data
processing algorithms. To be clear, our goal is not to emulate the
brain at that level of the neuron, but rather to collect together
synthetic, man-made algorithms that have similar function and
have met with success in the real world.

To collect these benchmarks, we consulted six world-class ma-
chine learning and computer vision researchers, who collectively
hold 83,091 citations across their distinct subareas, asking them
to identify newly emerging computationally-intensive algorithms
or applications that are going to have a large impact over the
next ten years. We further found interesting real-world data sets
that are representative of their use, and coded the benchmarks
in ”clean C” so as to make them accessible, analyzable, and
usable for parallel and approximate compiler and architecture
researchers alike. In this paper, we describe the benchmark
suite–which extends the SD-VBS vision benchmark suite with
eight more brain-centered applications–and provide an analysis
of basic properties including the quantity of innate parallelism
in each benchmark.

I. INTRODUCTION

With the increased availability of information, data science
continues to focus on modeling complex relationships and ex-
trapolating patterns. This has motivated research into a class of
algorithms resembling the way our brain executes workloads in
learning, pattern recognition, and sensory awareness. Although
these tasks are trivial for the human brain to execute they
traditionally result in prohibitively long execution times on
modern processors. As multi-core and many core processors
continue to improve, data-driven applications have come to
the forefront of large-scale computing. There is a growing
need for a comprehensive benchmark suite to help architecture

researchers profile the behavior of these algorithms, realize
how parallelization or energy-efficiency can be attained, and
determine the scalability of these applications. 1

In this paper, we present the Synthetic Brain Benchmark
Suite (CortexSuite), which captures an emerging workload
that is clustered around providing information processing
capabilities that human brains have today but that computers
are only just now beginning to become good at. We classify
and identify benchmarks within CortexSuite by analogy to the
human neural processing function, as shown in Fig 1. We
use the major lobes of the cerebral cortex as a model for the
organization and classification of data processing algorithms.
Our goal is not to emulate the brain at that level of the
neuron, but rather to collect together man-made (i.e. synthetic)
algorithms that have similar capabilities and have met with
success in the real world.

Benchmark Organization. In the organization of this
benchmark suite we draw parallels between three major data
processing classes and the four majors lobes of the sensory
cortex: the temporal, occipital, parietal, and frontal. With this
abstraction, we classify the occipital and temporal lobe, which
work together to provide the visual processing centers of the
brain, similar to a computer vision core. The parietal lobe,
which is responsible for language comprehension, is parallel
to a natural language core. Finally, we link the frontal lobe
with learning and preprocessing benchmarks.

The benchmark suite contains eight unique applications
from natural language processing, computer vision, and ma-
chine learning domains, and is intended to extend SD-VBS [1],
which provides a core of relatively recent vision algorithm.
The benchmarks are shown in Table I.

To account for the varied nature of data processing tasks,
our proposed taxonomy helps to maintain consistency when
extending this benchmark suite. For example, vision bench-
mark suites such as MEVBench [2] can be integrated into the
occipital node of the suite and machine learning benchmark
suites such as the ones in MineBench [3] and Sophia-ml [4]
can be integrated into the frontal node.

Clean C coding. The applications have been coded to
eliminate the use of unnecessary complex pointer operations

1*This paper extended from: Thomas, Shelby; Gohkale, Chetan; Tanuwid-
jaja, Enrico; Chong, Tony; Lau, David; Garcia, Saturnino; Bedford Taylor,
Michael, ”CortexSuite: A synthetic brain benchmark suite,” Workload Charac-
terization (IISWC), 2014 IEEE International Symposium on, pp.76,79, 26-28
Oct. 2014.

2

Fig. 1. The Synthetic Brain Benchmark Suite. CortexSuite captures an emerging workload that is clustered around providing information processing
capabilities that human brains have today but that computers are only just now beginning to become good at. We classify and identify benchmarks within
CortexSuite by analogy to the human neural processing function. We use the major lobes of the cerebral cortex as a model for the organization and classification
of data processing algorithms. Our goal is not to emulate the brain at that level of the neuron, but rather to collect together man-made algorithms that have
similar function and have met with success in real world use. To collect these benchmarks, we consulted six world-class vision and machine learning researchers,
asking them to identify newly emerging computationally-intensive algorithms or applications that are going to have a large impact over the next ten years.
This benchmark suite extends the SD-VBS vision benchmark suite [1] with eight more brain-centered applications–and provide an analysis of basic properties
including the quantity of innate parallelism in each benchmark. In this diagram, we have mapped applications to the associated parts of the brain’s cerebral
cortex. Vision is processed primary by the occipital and temporal lobes, language processing by the parietal lobe, and learning/feature selection by the frontal
lobe.

and machine-dependent optimization to expedite the use of
the suite for parallel/approximate compiler and architecture
researchers. Oftentimes, existing code bases have been tuned
for a particular architecture, which obfuscates the underlying
algorithm, making it difficult to retarget to a new execution
model, and also preventing code transformations that can
unlock parallelism.

Representative Inputs. Real-world datasets were identified
to represent actual commercial and academic scenarios in an
effort to mirror real-world use-cases. Moreover, we provided
a spectrum of input sizes with varying run times and in some
cases, different properties, for each benchmark, when it affects
execution properties significantly.

• We develop a benchmarking framework for compute-
intensive and useful emerging computations focused on
brain-centric algorithms

• We create a benchmark suite that includes algorithms that
are the current state-of-the-art

• We provide detailed explanations of each benchmark, its
implantation and dataset

• We perform hotspot, parallelization and scalability anal-
yses for each application

II. BENCHMARK DESCRIPTIONS

The goal of the benchmark suite is to provide a set of algo-
rithms that have the flexibility to cover a spectrum of domains
with representative data in academic and commercial uses.
In choosing the algorithms for the suite we consulted with
researchers in the computer vision and machine learning fields
from academia and industry. The benchmarks were coded
to reduce the unnecessary use of pointer calculations, I/O
and machine-specific optimizations that inhibit parallelization
and/or their use in prototype compilers and/or architectural
simulators. We omit the descriptions for the benchmarks that
derive from SD-VBS [1] for the purposes of space.

CortexSuite contains eight different applications in addition
to those in SD-VBS with three dataset sizes: small, medium,

3

TABLE I
Benchmarks in the Synthetic Brain Benchmark Suite. CORTEXSUITE CONTAINS NINETEEN BENCHMARKS THAT SEEK TO ENCOMPASS IMPORTANT
NEW APPLICATIONS; IT INCLUDES EIGHT NEW BENCHMARKS (TOP) AND A NUMBER OF VISION-BASED BENCHMARKS FROM SD-VBS (BOTTOM).

Benchmark Category Dataset Application Domain

Restricted Boltzmann Machines Deep Learning Netflix Machine Learning
LibLinear Classification/Regression FBI Crime Statistics Machine Learning
Principal Component Analysis Feature Selection NASA Machine Learning
Singular Value Decomposition Feature Selection KOS Press Machine Learning
Sphinx Speech Recognition Speech Recognition CMU Natural Language Processing
Latent Dirichlet Allocation Topic Modeling Associated Press Natural Language Processing
Super Resolution Reconstruction Image Reconstruction MDSP Research Computer Vision
Motion Estimation Motion, Tracking MDSP Research Computer Vision

Disparity Map Motion, Tracking and Stereo Vision Computer Vision
Feature Tracking Motion, Tracking and Stereo Vision Computer Vision
Image Segmentation Image Analysis Computer Vision
SIFT Image Analysis Computer Vision
Robot Localization Image Understanding Computer Vision
SVM Image Understanding Computer Vision
Face Detection Image Understanding Computer Vision
Image Sitch Image Processing and Formation Computer Vision
Texture Synthesis Image Processing and Formation Computer Vision

and large, corresponding roughly to 1, 10, and 100 seconds
of execution time on a modern machine. We include multiple
algorithms for applications in natural language processing,
computer vision, and machine learning. In addition, a
spectrum of unique and useful computer vision applications
have also been provided through SD-VBS, summarized in
Table I.

Restricted Boltzmann Machines (RBM) has seen
exponentially growing use over the last couple of years
in the context of deep learning networks. It is a stochastic
neural network algorithm with applications in collaborative
filtering [5], feature learning and topic modeling. The RBM
algorithm was used in the Netflix prize’s winning solution in
2009 [6], where Netflix provided their database of films, with
user rankings, and offered $1 million for the best algorithm
that would predict ratings of films that the user had not yet
rate. RBM featured prominently in many of the top solutions
that emerged over time.

CortexSuite utilizes RBM to implement movie suggestions
(collaborative filtering) on variants of the Netflix database and
provides the benchmark for the training process of RBM, the
most computationally intensive aspect. To scale the run-time,
we provide several scaled versions of the database; discarding
minimally-connected films that have little impact on training.
To train the RBM, we initialize the model with random
parameters and repeat the training iteration until convergence.
In every iteration, the current RBM tries to reconstruct the
input data and then its parameters are adjusted based on the
error of the data reconstruction. With more iterations, the
reconstruction error diminishes, and we stop the training

when the error converges or until a predetermined number of
iterations is reached.

Sphinx Speech Recognition is used for the translation
of spoken words to text [7]. This is achieved by taking
the raw waveform, splitting it on utterances by silences,
and attempting to recognize the word in each utterance [8].
We group all possible combinations of words and the best
matching combination is chosen.

Super-resolution Reconstruction (SRR) is based on
the idea that slight sub-pixel variations in the information
encoded in a series of low resolution (LR) images can be
used to recover one high resolution (HR) image [9], [10].
Computational resolution enhancement has many applications
in the fields of photography, healthcare, security, astronomy,
and military. Figure 4 shows an example of SRR in action.

Latent Dirichlet Allocation (LDA) is a topic modeling
algorithm that is commonly found in natural language
processing to discover topics from unordered documents. The
underlying algorithm uses the assumption that each document
was generated using a Dirichlet Distribution, which serves as
a prior distribution to the Multinomial Distribution[12]. The
goal of the algorithm is to find values for the multinomial
parameter vectors and topics for each document.

Singular Value Decomposition (SVD) is a rank reduction
algorithm used in many artificial intelligence, signal
processing, and computer vision applications [13]. SVD is
a factorization of a matrix into three matrices, as shown in
Figure 2. The resulting three matrices have useful information

4

Fig. 2. RBM Hidden and Visible Nodes: Visible nodes represent movies
while hidden nodes represent genres for each movie. Each movie will
have an edge to each genre where the edges represents the weight of the
connection between movie and genre. The value for each weight determines
how correlated a movie is to a specific genre. Note: The output unit and other
hidden units have been omitted from this picture.

about the original matrix and can be multiplied together to
obtain the original matrix back. We utilize SVD for Latent
Semantic Analysis (LSA) [14]. LSA is a technique used in
natural language processing to analyze relationships between
a set of documents and the terms they contain.

Principle Component Analysis (PCA) is one of the most
versatile and widely used statistical techniques for feature
extraction in multivariate datasets. When dealing with high-
dimensional data, one needs to consider the weight and
importance of variables for accuracy and run-time consid-
erations. PCA allows high-dimensional data to be reduced
to an orthogonal lower-dimensional data-set by leveraging
the dependencies between variables and identifying the most
important ones, as shown in Figure ??. As a prepossessing
technique, PCA has found applications ranging from computer
vision to machine learning and its tendency to use several
matrix operations cause bottlenecks but in turn make it easy
to parallelize.
Motion Estimation is the process of finding motion vectors
that describe the transformation of one 2D image to another.
It is an inverse, ill-posed problem as the motion is in 3D
but the images are the projection of the 3D scene onto a 2D

Fig. 3. Sphinx Speech Recognition:Sphinx first extracts features from speech
waveform into feature vectors. The search algorithm will use the features to
determine possible words using the acoustic model (HMM), and then combine
the possible words into sentences using the language model (n-gram) and
dictionary.

plane. Motion Estimation is an essential element in image and
video processing. It is a key part of the video coding and
applications such as frame rate up conversion, image super
resolution etc. Performance of motion estimation can directly
affect the performance of these applications.

Liblinear is a versatile library for large-scale linear clas-
sification and regression with applications in computer vision,
natural language processing, neuroimaging, and bioinformat-
ics. The library has been used in a variety of applications from
real-time object recognition to predicting protein solubility
and supports linear SVM, linear SVR and logistic regression.
Liblinear is especially powerful for large scale data, i.e. with
a large number of instances and features, as it is much faster
(100× faster than libSVM) than other state-of-art linear or
nonlinear SVM libraries [15] while keeping high accuracy.

In our variation of Liblinear we employ datasets to run
binary and multi-class classification as well as regression.
Binary linear classification is a supervised learning model in
which elements are classified into two groups of data based on
some predetermined metric. The goal of binary classification

5

Fig. 4. Super-Resolution: 16 distinct LR images of size (128x96) are
used to generate one HR image of size (512x384). Dataset courtesy: Multi-
Dimensional Signal Processing (MDSP) research lab at the University of
California, Santa Cruz [11]

Fig. 5. Latent Dirichlet Allocation[12, pg. 1002]: Topic simplex for
three topics inside of a word simplex for three words. Each corner in the
topic simplex represents a specific topic and each point represents a single
document. Each point inside of the topic simplex denotes a probability towards
each topic, where each corner represents a probability of one for a certain
topic.

Fig. 6. Motion Estimation: Two images [ref, target] are input and output
is a set of motion vectors. Full-pixel motion is estimated using block search
algorithm. Sub-pixel motion is estimated using optical flow.

is to take a set of n-features and create a binary response
which can then be used to reason about future sets of related
data. Liblinear also supports multiclass classification through
the one-vs-all which is a subset of binary classification. In a
one-vs-all algorithm, each class is separated from others in
training step. In the prediction step a simple binary classifier
is run over each class and the one with the highest probability
is chosen. Figure ?? shows an example of LibLinear in action.

III. SCALABILITY ANALYSIS

A primary goal of the Synthetic Brain Benchmark Suite is
to provide researchers with a platform for evaluating the scala-
bility of various human-inspired data processing tasks. Toward
that end we analyzed all applications in the benchmark suite to
identify these regions of the program that act as performance
bottlenecks as the dataset size increases. To gather this data,
we used Intel’s VTune to profile the execution of the small,
medium, and large datasets on a computer with an Intel Core
i7-2620M CPU and 8GB RAM running Linux 3.13 and gcc
4.8.2 with O3. With these results we identified which regions
of the program dominate runtime as data scales exponentially,
the so called kernels of the applications. Figures 8 and 7
illustrate the relative and total execution times obtained from
VTune profiling.

After obtaining kernel execution times, we used Krem-
lin [16] to perform critical path analysis [17] with the goal
of quantifying the total amount of parallelism inside of the
kernels. A critical path analysis approximates the potential
amount of intrinsic parallelism in an application using a
dynamic data flow analysis and a shadow memory to attach
”earliest computation times” to each dynamic operation in the
program. This parallelism figure corresponds roughly to the
speedup possible on a dataflow machine with infinite hardware
resources and free communication. This total parallelism–
summarized in Table II–provides an approximate upper-bound
on how well the program might scale on multi- and many
core processors, or custom hardware accelerators. We use the
”small” input sets.

6

Of note is that the vision benchmarks tend to have signif-
icantly more parallelism than the non-vision apps (exception:
PCA), even though the input side runs larger, which aligns
with our intuition.

In the following sections we will discuss the profiling results
for individual benchmarks.

TABLE II
Parallelism Analysis. A CRITICAL PATH ANALYSIS ON EACH PROGRAM

KERNEL DETERMINES THE TOTAL AMOUNT OF PARALLELISM AVAILABLE
IN THAT REGION. THE “TOTAL PARALLELISM” IS THE IDEAL SPEEDUP

FROM PARALLELIZING THAT REGION.

Algorithm Functions Total Parallelism

RBM Gradient Descent 81
Activate Hidden Node 128
Activate Visible Node 39

SVD QR Transform 327

PCA Matrix Reduce 203
Triangular decomposition 16,217
Correlation Matrix 478,904

LDA Inference 182
Likelihood 303

LibLinear SVC Solve 132

ME FullSearch 344
TaylorApp 27

SRR Gauss-Siedel 15
MatMul 919
Read LR Pixels 38

Sphinx Prune Channel 63
Viterbi 5
HMM 6

Disparity Correlation 520
Integral Image 160
Sort 1,700
SSD 1,800

Tracking Gradient 71
Gaussian Filter 637
Integral Image 1,050
Area Sum 425
Matrix Inversion 171,000

SIFT SIFT 180
Interpolation 502
Integral Image 16,000

Stitch LS Solve 20,900
SVD 12,300
Convolution 4,500

SVM Matrix Ops 1000
Learning 815
Conjugate Matrix 502

A. Sphinx

Sphinx speech recognition has a number hidden markov
model computations that cause slowdown in the application.

The majority of the program is located in two main operations,
the evaluation of finding the optimal HMM sequence using the
Viterbi algorithm, a dynamic programming algorithm [18] and
the search of most likely sentence using n-gram model [19].

As the sentence length increases the bi-graph search and
channel pruning go up considerably as both of these are
functions of the data size. As the sentence length increases, the
time it takes to perform the n-gram searches understandably
starts to rise and the size of the hidden markov model
grows. In Sphinx we find that the only real opportunity for
parallelization lies in the channel pruning algorithm.

B. Restricted Boltzmann Machines (RBM)

Due to the nature of the RBM algorithm (generative stochas-
tic neural network) most of the execution time is spent in
various activation functions for hidden and visible units, taking
up 40% of the total execution time. In a neural network,
each processing unit is a neuron which fires a binary signal
when it has reached certain parameters. Based on the type
of activation function in the network, a function is specified
which cause the neuron to fire a ’1’ or a ’0’ dependent on the
function threshold. When this happens these signals propagate
through the network and can cause other neurons to fire as
well. These activation functions are integral in the training
of neural networks. The gradient descent algorithm (SGD) is
employed in the training of RBM and takes about as much
time as the activation nodes and scale up the same way.

Parallelism analysis results (Table II indicate there is sig-
nificant parallelism throughout the RBM kernels. For this
analysis we split the activation functions into activate hidden
and activate visible and found total parallelism values of 128
and 39, respectively. SGD’s total parallelism was 81.

C. Latent Dirichlet Allocation (LDA)

LDA [20] suffers from being relatively floating point divide
active with 14% of the execution time going into these long
latency mathematical operations. The digamma function–the
logarithmic derivative of the gamma function–also accounts
for 30% of the execution time, as shown in Figure 8.

One unique aspect of LDA is that its non-kernel functions
dominate execution time. This may be due to the fact that
LDA has a large memory footprint and as the dataset size
increases, the amount of memory being consumed increases as
well, causing this memory function to increase significantly.
We can conclude that the version of LDA that we have
implemented may not provide the best scalability, as it is not
practical to parallelize non-kernel functions.

D. Motion Estimation (ME)

We identify two primary kernels in ME: FullSearch and Tay-
lorSeries. FullSearch is a block-matching kernel for full-pixel
motion estimation while TaylorSeries is the core of optical
flow to find out sub-pixel motion. Both of these kernels can
be parallelized, with the latter exhibiting an order of magnitude

7

Fig. 7. Total Execution Times. To ensure kernel functions are sufficiently saturated, the large dataset for each algorithm was crafted to take a significant
amount of time. This enabled us to see a trend in relative kernel execution time with increasing data. The total number of cycles is measured on an Intel Core
i7-2620M CPU running at 2.70GHz.

more total parallelism. Examining this benchmark we found
both coarse-grained (multiple blocks searched in parallel) and
fine-grained parallelism (e.g. the matching operation of each
block can be parallelized).

E. Sphinx

Sphinx speech recognition has a number hidden markov
model computations that cause slowdown in the application.
The HMM in this program take close to 30% of the total
runtime, the majority of which is located in two main opera-
tions. This includes the evaluation of finding the optimal HMM
sequence using the Viterbi algorithm, a dynamic programming
algorithm [18] and the search of most likely sentence using
n-gram model [19].

As the sentence length increases the bi-graph search and
channel pruning go up considerably as both of these are
functions of the data size. In addition, the time it takes to
perform the n-gram searches understandably starts to rise and
the size of the hidden markov model grows. In Sphinx we
find that the only real opportunity for parallelization lies in
the channel pruning algorithm. Virterbi is well known to lack
parallelism.

F. Principle Component Analysis (PCA)

PCA’s bottleneck comes from the fact that it must perform
a myriad of matrix operations to obtain the principle
components before finding the eigenvectors. Both of these
steps, have very poor scalability as the number of operations
that need to execute is exponential relative to data.

Due to the nested for loops in the matrix operations, we find
that PCA is highly parallel. The creation of just the correlation
matrix has total parallelism of ∼478,900.

G. Single Value Decomposition (SVD)

SVD combines various linear algebra operations to perform
rank reduction. SVD’s runtime is heavily data dependent.
In particular, most of the execution time is spent in QR
decomposition used to solve the least squares problem [21].

Parallelism analysis indicates that parallelization of SVD
provides significant opportunity. The large amount of par-
allelism (327) is a result of the iterative nature of QR
factorization. As the dataset size increases, the portion of
the application related to the QR decomposition goes up
proportionally.

H. Super-Resolution Reconstruction (SRR)

About 30% of SRR’s time is spent performing the Gauss-
Seidel and 45% of the time is spent on matrix operations.
Figure 8 indicates that as the dataset size increases in SRR,
the number amount of time spent in each kernel stay fairly
consistent. To evaluate parallelism, Table II shows that
the matrix multiply kernel exhibits significant amounts of
parallelism (919). It is also possible to solve all the odd and
even low resolution pixels in parallel (total parallelism: 38)
but the Gauss-Siedel solver is largely serial in nature.

I. LibLinear

We ran Liblinear with a support vector machine workload
and found that nearly 90% of its execution time is in a solver
function (SVC Solve) that is responsible for regularization
and running a support vector clustering algorithm. The SVC
algorithm is responsible for mapping data from a lower to a
higher dimension in order to find a suitable hyperplane that can
provide a linear classifier between datasets. L2 regularization

8

Fig. 8. Relative Execution Times. The graphs show the percentage of execution time spent in each of the major program kernels across the small (s),
medium (m), and large (l) datasets. Time spent in the kernels dominates, especially in the large dataset where the average is 76.45%.

is an optimization technique used to prevent overfitting and
reduce the complexity of the predictor.

As the inputs starts scaling up, it takes a fairly large
amount of data for the solver function to saturate completely
and when it does it dominates the program. Some of this
slowdown can be resolved by exploiting the total parallelism
of 132 in the solver function.

IV. RELATED WORK

Many benchmark suites have been assembled in order to
display the capabilities of machine learning algorithms which
are tailored to specific tasks, such as computer vision. The
San Diego Vision Benchmark Suite compiles a variety of
computer vision algorithms, from SVM to Face Detection.
The San Diego Vision Benchmark Suite gains an architectural
understanding of a diverse set of computer vision algorithms
and characterizes the computational properties of each algo-
rithm. Reflecting its important a number of other computer
vision related benchmarks including MEVBench [2] and Me-
diaBench [22] have emerged. All of the aforementioned bench-
mark suites focus primarily on aspects of computer vision.
Specifically, MEVBench focuses on mobile computer vision
algorithms geared toward embedded systems and MediaBench
focuses on video and multimedia processing.

Several other benchmark suites have focused on the ar-
chitectural characterization of various machine learning algo-
rithms. Most notably, the MineBench [3] benchmark suite has
studied Data Mining and Bioinformatic workloads in order
to characterize the branch and cache performance of each

algorithm. Splash-2 [23] characterized parallel applications in
terms of the cache performance on multiprocessors.

CortexSuite differs from existing suites in that it strives to
complete the picture of a synthetic brain while also providing
architectural analysis and an analysis of scalability of each
algorithm. The datasets used in this benchmark suite provide
real-world applications of each algorithm within the suite.

V. CONCLUSION AND FUTURE WORK

CortexSuite captures an fascinating workload that is clus-
tered around emerging algorithms that perform information
process capabilities that traditionally have been relegated to
human brains. We classify and identify benchmarks within
CortexSuite by analogy to the human neural processing func-
tion. We use the major lobes of the cerebral cortex as a
model for the organization and classification of data processing
algorithms. Our goal is not to emulate the brain at the level of
the neuron, but rather to collect together man-made algorithms
that have similar function and have met with success in the
real world. To collect these benchmarks, we consulted six
world-class vision and machine learning researchers, asking
them to identify newly emerging computationally-intensive
algorithms or applications that are going to have a large
impact over the next ten years. This benchmark suite extends
the SD-VBS vision benchmark suite [1] with eight more
brain-centered applications and provides an analysis of basic
properties including the quantity of innate parallelism in each
benchmark.

As the benchmark suite evolves we hope to help researchers
get one step closer to realizing computers that outpace even

9

human capabilities in this new domain. Our open-source
benchmark suite and the datasets will be released upon pub-
lication of this paper.

VI. ACKNOWLEDGMENTS

This work was partially supported by NSF Awards 0846152,
1018850, and 1228992, and by C-FAR, part of STARnet, a
Semiconductor Research Corporation program.

REFERENCES

[1] S. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia, S. Belongie,
and M. Taylor, “SD-VBS: The San Diego Vision Benchmark Suite,” in
IISWC, Oct 2009.

[2] J. Clemons, H. Zhu, S. Savarese, and T. Austin, “Mevbench: A mobile
computer vision benchmarking suite,” in IISWC, Nov 2011, pp. 91–102.

[3] B. Ozisikyilmaz, R. Narayanan, J. Zambreno, G. Memik, and A. Choud-
hary, “An architectural characterization study of data mining and bioin-
formatics workloads,” in ISSWC, Oct 2006, pp. 61–70.

[4] D. Sculley and G. Inc, “Large scale learning to rank,” in In NIPS 2009
Workshop on Advances in Ranking, 2009.

[5] R. Salakhutdinov, A. Mnih, and G. Hinton, “Restricted boltzmann
machines for collaborative filtering,” in Proceedings of the 24th Inter-
national Conference on Machine Learning, ser. ICML ’07. New York,
NY, USA: ACM, 2007, pp. 791–798.

[6] A. Tscher, M. Jahrer, and R. M. Bell, “The BigChaos Solution to the
Netflix Grand Prize,” 2009.

[7] X. Huang, F. Alleva, H.-W. Hon, M.-Y. Hwang, K.-F. Lee, and R. Rosen-
feld, “The SPHINX-II speech recognition system: an overview,” Com-
puter Speech & Language, vol. 7, no. 2, pp. 137–148, 1993.

[8] Carnegie Mellon University, “Cmusphinx.” [Online]. Available: http:
//cmusphinx.sourceforge.net/wiki/tutorialconcepts

[9] S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image
reconstruction: a technical overview,” Signal Processing Magazine,
IEEE, vol. 20, no. 3, pp. 21–36, May 2003.

[10] Q. Zhang, R. Guy, and R. Plemmons, “Matrix structures and parallel
algorithms for image superresolution reconstruction,” SIAM Journal on
Matrix Analysis and Applications, vol. 31, no. 4, pp. 1873–1893, 2010.

[11] P. Milanfar, “Mdsp super-resolution and demosaicing datasets.” [Online].
Available: http://www.soe.ucsc.edu/∼milanfar/software/sr-datasets.html

[12] D. Blei, A. Ng, and M. Jordan, “Latent dirichlet allocation,” Journal of
Machine Learning Research, vol. 3, pp. 993–1022, January 2003.

[13] Strang, Introduction to Linear Algebra. Wellesley-Cambridge Pr., 2003.
[14] S. T. Dumais, “Latent semantic analysis,” Annual Review of Information

Science and Technology, vol. 38, no. 1, pp. 188–230, 2004.
[15] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,

“LIBLINEAR: A Library for Large Linear Classification,” J. Mach.
Learn. Res., vol. 9, pp. 1871–1874, Jun. 2008.

[16] S. Garcia, D. Jeon, C. Louie, and M. Taylor, “The Kremlin Oracle for
Sequential Code Parallelization,” Micro, IEEE, July 2012.

[17] M. Lam and R. Wilson, “Limits of Control Flow On Parallelism,” in
ISCA. ACM Press, 1992, pp. 46–57.

[18] D. Jurafsky and J. H. Martin, Speech & Language Processing. Pearson
Education India, 2000.

[19] P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. D. Pietra, and
J. C. Lai, “Class-based n-gram models of natural language,” Comput.
Linguist., vol. 18, no. 4, pp. 467–479, Dec. 1992. [Online]. Available:
http://dl.acm.org/citation.cfm?id=176313.176316

[20] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet Allocation,”
J. Mach. Learn. Res., vol. 3, pp. 993–1022, Mar. 2003. [Online].
Available: http://dl.acm.org/citation.cfm?id=944919.944937

[21] G. Golub and C. Reinsch, “Singular value decomposition and least
squares solutions,” Numerische Mathematik, vol. 14, no. 5, 1970.

[22] C. Lee, M. Potkonjak, and W. Mangione-Smith, “Mediabench: a tool for
evaluating and synthesizing multimedia and communications systems,”
in Microarchitecture, 1997. Proceedings., Thirtieth Annual IEEE/ACM
International Symposium on, Dec 1997, pp. 330–335.

[23] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The splash-2
programs,” in ISCA, June 1995.

http://cmusphinx.sourceforge.net/wiki/tutorialconcepts
http://cmusphinx.sourceforge.net/wiki/tutorialconcepts
http://www.soe.ucsc.edu/~milanfar/software/sr-datasets.html
http://dl.acm.org/citation.cfm?id=176313.176316
http://dl.acm.org/citation.cfm?id=944919.944937

	Introduction
	Benchmark Descriptions
	Scalability Analysis
	Sphinx
	Restricted Boltzmann Machines (RBM)
	Latent Dirichlet Allocation (LDA)
	Motion Estimation (ME)
	Sphinx
	Principle Component Analysis (PCA)
	Single Value Decomposition (SVD)
	Super-Resolution Reconstruction (SRR)
	LibLinear

	Related Work
	Conclusion and Future Work
	Acknowledgments
	References

