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Early Signs of Specialization in the

Datacenter
Xeon Processors
— Xeon-D [Facebook]
— Customer specialized SKUs [Oracle]

GPU-based clouds

— Deep Neural Networks [Baidu Minwal]

FPGA-based clouds
— Catapult [Microsoft]
— High Frequency Trading [Most Wall Street firms]

What about ASIC-based clouds?



ASIC Clouds: Key Motivation

* The Cloud model leads to growing classes of
planet-scale computations
— Facebook runs face recognition on 2B pics/day
— Siri recognizes speech for ~1 Billion iOS user

— YouTube Video Transcodes to Google VP9 for the
500 hours uploads per minute

 These computations incur high Total Cost of
Ownership (TCO) for the provider



ASIC Clouds: Key Motivation

 These cloud computations are scale-out:

we are doing the same computation across millions or
billions of users

e As these computations become sufficiently large, we
can specialize the hardware for that particular
computation to reduce TCO.

* Lowering Non-Recurring Engineering cost (NRE) is a key
factor for ASIC cloud feasibility.

— Our paper makes a key contribution by showing how to
calculate NRE for an ASIC Clouds.



ASIC Cloud Architecture

Accelerator

It all starts with an accelerator for a planet-scale computation.
Maybe it’s a commercial IP core, or custom designed widget in
Verilog.



ASIC Cloud Architecture

Accelerator RCA

RCA RCA

Replicate this accelerator multiple times inside an ASIC die. We'll
now call it a “replicate compute accelerator”, or “RCA”.



ASIC Cloud Architecture
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Control
Processor

RCA RCA

Then we add a control processor to distribute work and schedule
computation onto the RCAs.



ASIC Cloud Architecture
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Control
Processor
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Work is distributed over a very simple on-chip network, the
On-ASIC Network, which is provisioned according to the needs
of the RCAs. RCA’s usually do not talk to each other.



ASIC Cloud Architecture

RCA

RCA
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— Off-chip
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RCA

Control
Processor

The control processor receives work from off-chip via the

On-PCB router.



ASIC Cloud Architecture

RCA

RCA

On-PCB
Router

—» Off-chip

RCA

RCA

Control
Processor

DRAM
Controller

«——» Off-chip

For those accelerators that need off-chip DRAM, we add shared
DRAM controllers. Finally bake it into an ASIC: PLL, Clock Tree,

Power Grid, Flip Chip BGA Packaging...



ASIC Cloud Architecture

ASIC| | ASIC

ASIC| | ASIC

Then build the PCB by replicating ASICs across the PCB



ASIC Cloud Architecture

Connect their on-PCB routers via PCB traces



ASIC Cloud Architecture

1/10/40 GigE
PCI-E

FPGA

<P Off PCB

Connect the on-PCB network to an FPGA that routes data from

off-PCB interface (e.g. GigE, PCI-E)



ASIC Cloud Architecture

PSU FAN FAN

1/10/40 GIigE
<P Off PCB
‘ DC/DC ‘ PCI-E
‘ DC/DC ‘ FPGA

Then we add the plumbing: DC/DC, Fans, Heatsinks and PSU. The
PCB goes inside the chassis and we have an ASIC cloud server.



ASIC Cloud Architecture
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* 1U servers are packed into standard 42U racks.
* Racks are integrated into machine room.

Machine room




Our Four ASIC Cloud Designs

We design ASIC Clouds for 4 application domains:

* Bitcoin Mining
* Litecoin Mining
— These ASIC Clouds already exist “in the wild”!

* Video Transcoding (e.g. YouTube)
— We do H.265 transcoding.

* Deep Neural Networks (face/voice recognition)
— Scaling up DaDianNao into an ASIC cloud.



ASIC Cloud Design: Key Metrics

e Accelerator Metrics:

— Energy efficiency (W per op/s) (=energy/op)
— Performance (S per op/s)

* Conventional trivial weighing:
— Energy-Delay product or Energy-Delay squared

* Datacenter Total Cost of Ownership as the new
metric

— Barroso et al Datacenter analysis
— Conservative assumption: 1.5 year lifetime of ASIC



Complete Design Methodology from
Verilog to TCO-Optimized Datacenter

* We can jointly specialize server and ASIC to optimize TCO.
 Thermal optimization based on RCA properties:

ASIC placement (DUCT layout), heat sink optimization (#
fins, width, materials and depth), die size

(For time constraints, we highlight just a q ,
few items in the talk.. See the paper!) ( Votage Sealing )
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Complete Thermal Analysis using CFD A flow that converts ASIC properties
(Ansys ICEpak) to Server properties and TCO




Design Space Exploration

Observation: Voltage scaling is a o #E‘:;D%??S.:
first-class optimization for TCO. ; 3DRAMS :
Core voltage increases from left v g e |
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Deathmatch

* ASIC Servers greatly outperform the best non-ASIC alternative
in terms of TCO per op/s.
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@ GPU Cloud
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CPU Cloud vs. GPU Cloud vs. 28nm ASIC Cloud Deathmatch.



When do we go ASIC Cloud?

 TCO improvement vs. TCO/NRE

— TCO improvement: determined by accelerator
improvements versus best alternative

— TCO: determined by scale of computation (higher is better)
— NRE: determined by ASIC development and deployment

costs (lower is better)

¢ “Two-for-two” rule: *|
Moderate speed-up il S SO S
with low NRE £ s i e
beats high speed-up | -
at high NRE Z::

TCO/NRE ratio

10



Building a model for NRE

Mask cost
IP licensing cost

Labor cost (Frontend, Backend and system
NRE)

Tools cost (Frontend and Backend)
Package NRE



NRE: Mask and Packaging

e Mask costs rise exponentially (total 89x range)
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* Package NRE is fixed among process technologies.
— Flip-chip BGA package NRE is $105K
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NRE: Backend Labor Cost

e Cost of pushing Verilog netlist through

backend flow is fairly steady among nodes

— But increases dramatically in double-patterned
technologies like 16nm.

Tech
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NRE: Labor and Tool Costs

e Backend labor time is calculated based on
backend labor cost per gate model

Frontend Labor Salary [19] | $/yr 115K
Frontend CAD Licenses $/Mm 4K
Backend Labor Salary [19] $/yr 905K
Backend CAD Licenses $/month | 20K
Overhead on Salary 65%

Values are for San Diego, 2016



NRE: App dependent components

Application Bit- | Lite- | Video Tr- | Deep L-

coin | coin | anscode | earning
RCA gate count 323K | 96.7K 3.56M| 1.51IM
FE CAD-months 8 12 23 26
FE Mm 9.5 15 24 30
FPGA job distr. code, Mm 1 1 3 2
FPGA “BIOS” code, Mm 1 1 1
Cloud Software, Mm 2 2 7 6
PCB Design cost ($) 37K | 37K S0K 37K

PCB design costs are for late 2016

System NRE Cost Breakdown ($)
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MNRE Cost Breakdown (§)

NRE breakdown for Benchmarks
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Marginal Cost: Wafer and Package cost

* Wafer costs rise exponentially after 65nm; jump on transition

to bigger wafers
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e Wafer Diameter is 200 mm until 180nm and 300 mm
afterwards



Process Node as a Knob

* ASIC process technology nodes from 250 nm
to 16 nm give us a range of:

— 256x in maximum accelerator size
— 15.5x in max transistor frequency
— 152x in energy per op

— 28x in cost per op/s

— 89x in mask costs



Process Node as a Knob (cont’d)
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Pareto Frontiers across technology nodes
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Video Transcode Pareto frontiers improve in both
energy and cost efficiency for newer technologies.



Two-for-Two rule in Practice

 Post-40nm has dramatic increase in NRE vs.
Marginal Benefit
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Picking the Optimal Node

* Bitcoin example:
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Picking the Optimal Node (cont’d)
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Apps with modest TCO improvement

* Each set of lines 16nm
represent an app 200
. . 00
with baseline TCO 2enm /50
equal to that ASIC sonm /20
node 10
O % B5nm 5
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Summary

ASIC Clouds are a promising direction for deploying
new kinds of accelerators targeting large, chronic
workloads.

We present a model for computing NRE.

We present a model for modeling TCO across nodes,
and show that old nodes can have optimal NRE+TCO.

We show an end-to-end methodology for selecting
NRE+TCO-optimal ASIC Clouds across technology
nodes.
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