
Your Agile Open Source HW Stinks
(Because It Is Not a System)

Michael Bedford Taylor
University of Washington
prof.taylor@gmail.com

Abstract
Exciting times in hardware design are upon us. Spear-
headed by the RISC-V ISA, and the recent DARPA
POSH/IDEAprogramwhich focuses on both open source
IP and open source CAD, a large number of open source
HW projects are underway. Academics are increasingly
releasing their code online. Many agile open source
HW projects envision a hypothetical user that may not
actually exist. To acquire real users, we must be prag-
matic about what kinds of systems our HWwill go into
and focus on the roadblocks unique to those systems.

Keywords Open Source HW
ACM Reference Format:
Michael Bedford Taylor. 2020. Your Agile Open Source HW
Stinks (Because It Is Not a System). In IEEE/ACM International
Conference on Computer-Aided Design (ICCAD ’20), November
2–5, 2020, Virtual Event, USA. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3400302.3415791

1 Introduction
Through the efforts of leaders like Krste Asanovic and
Andreas Olofsson, and lesser known but equally val-
orous ones across the planet, a foundation for open
source HW is materializing beneath our feet.
Spearheaded by the RISC-V ISA, and the recent DARPA

POSH and IDEA programs which focus on both open

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.
ICCAD ’20, November 2–5, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8026-3/20/11. . . $15.00
https://doi.org/10.1145/3400302.3415791

source IP and open source CAD, a large number of open
source HW projects are underway. Academics are in-
creasingly releasing their code online. The potential
impact seems limitless; we can imagine that the avail-
ability of these tools and designs will allow designers
to rapidly create systems with minimal NRE, heralding
a new golden age of semiconductor innovation [15].
In the next sections we will highlight some recent

developments in the open source HW ecosystem, then
talk about some opportunities and eco-system prob-
lems, and then conclude with some observations.

1.1 RISC-V.
First, we have the RISC-V ISA [28], which provides a
license-free lingua franca for general purpose compu-
tation, but also for customization features that provide
a foundation for specialization.
RISC-V Cores.Moreover, we have Linux-capable im-
plementations of RISC-V processors like BlackParrot [22],
ETH Zurich Ariane [29], and Berkeley Rocket [11], as
well as GP-GPU-style compute throughput fabrics like
HammerBlade Manycore [8] (descended from Celer-
ity [9, 14, 23]), microcontrollers like Western Digital’s
SweRV [3], and scalable multicore server processors
like the RISC-V incarnation of PrincetonOpenPiton [12].
RISC-V unlocking research and education. With
these newly available cores, users now have the abil-
ity to experiment, use, and share processors without
seeking licenses from ARM or Intel. Licensing prob-
lems were not solely an issue of money. These licenses
in many cases were impossible to obtain, or at least
onerous (mandating special rooms that served as data
diodes), and even if they could be obtained, US export
control restrictions on processor IP prevent a broad
class of graduate students from using them. For sure,
all of these cores will unlock many research usages that
were otherwise impossible. In the near future, both
CAD and architecture can work on real models and
move away from synthetic benchmarks or simulations,

https://doi.org/10.1145/3400302.3415791
https://doi.org/10.1145/3400302.3415791
MT
Invited Talk

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Michael Bedford Taylor

respectively. Already, both commercial CAD companies
and universities are making extensive use of these in-
frastructures, largely on commercial CAD tools. Classes
are increasingly making use of RISC-V processor de-
signs, and indeed Patterson and Hennessy have new
versions of their computer architecture textbooks that
employ RISC-V.
Challenges of Commercial Use. The picture for use
of these cores in commercial chips is currently murky.
Certainly, ARMhas better support for their designs than
any of the open source efforts. Indeed, SiFive, which is
founded with many of the original RISC-V developers,
charges money for the use of their closed source deriva-
tives of the open source Rocket core. Moreover, the
total budget of typical advanced chip designs greatly
exceeds the price of an ARM core, so the expected value
calculation of using an untrusted, open source, RISC-V
core may indeed be negative (e.g., 5% chance of failure
× 30 million + $1M saved = -$0.5M.) (Perhaps the logical
step would be to tape out with both a RISC-V and ARM
core, and then use the ARM as a backup, and phase it
out in future generations...)
Anecdotally, ARM offers large discounts to startups

on their cores, eliminating incentives for startups to
adopt RISC-V. From a startup perspective, taking a risk
to save money would not make sense since they would
prefer to focus their resources on their value add – e.g.,
AI core or whatever.
Short Term: Trusting Your Open Source RISC-V
Core by Hiding It. A potentially bright spot for adop-
tion of open source RISC-V cores lies where the RISC-V
core is hidden; i.e. the end user does not program the
RISC-V core, but rather uses a system that employs the
core. For example, NVidia announced that they use a
RISC-V core for a control processor on their GPUs [1].
When the RISC-V core is a hidden component of the
product, then there is a much greater tolerance for bugs.
Workarounds can be deployed in the compiler, library
or firmware; and security attack surface is minimized
by restricting access to the code that is running. For
similar reasons, open source RISC-V cores are especially
suited for research prototypes, where workarounds are
easy.
Short Term: Trusting That Open Source RISC-V
Core by Using It Only The Way It Was Tested. A
similar corollary is, you can expect a core to behave the
way it behaved in simulation. So if a user has a very
static use case; i.e. booting the GPU, then it can rely on

that to work (mostly) the way it did in simulation, given
sufficiently accurate modeling of the environment.
Long Term: Massive, massive open source regres-
sion suites for RISC-V cores. If these open source
cores are constantly evolving in an “agile manner” –
how will we ever be able to move beyond the “hidden
core” phase? By building a massive open source regres-
sion suite for RISC-V, the kind that has never been seen
before. Effectively, this is the shared task that all of the
open source RISC-V core implementers will have to
contribute to in order to be mutually successful, even
as they compete.

1.2 Open Source IP.
The DARPA POSH program has funded a variety of
open source IP blocks, including the BlackParrot RISC-V
processor, and two open source FPGA efforts, one from
Princeton [20] and one fromUtah [25]. The SystemVerilog-
based BlackParrot processor is intended to be the first
community-maintained RISC-V core, i.e., the “Linux
of RISC-V”. The FPGA fabrics, in addition to provid-
ing able research substrates for future FPGA and CAD
research, potentially provide the opportunity to add
flexibility to open source tapeouts, perhaps so they can
more easily find their niches after fabrication.
There is also a POSH-funded 10-100G Ethernet Mac

core from LeWiz Communications [5], which could
potentially be useful but in many cases would be best
paired with an open-source TCP/IP offload engine, for
which ASIC versions do not yet appear to exist1.
The PyMTL3 [16] environment seeks to enhance

productivity in HW design, offering seamless Python-
driven RTL development and simulation, and advanced
verification features.
The BaseJump STL Library for SystemVerilog [26]

provides a set of uniform interfaces for all of the com-
monly designed hardware primitives, elevating the level
of abstraction for hardware design. It is used as a foun-
dation for both BlackParrot and theHammerBladeMany-
core systems. Such standardization across the open
source HW community can reduce bug densities and
increase testing leverage, enabling unparalleled levels
of productivity.

1High performance FPGA versions, many of them HLS-based, do
exist, however, e.g. [24].

Your Agile Open Source HW Stinks
(Because It Is Not a System) ICCAD ’20, November 2–5, 2020, Virtual Event, USA

Tech 250nm 180nm 130nm 90nm 65nm 40nm 28nm 16nm
Mask cost ($) 65K 105K 290K 560K 700K 1.25M 2.25M 5.70M
Cost per wafer ($) 720 790 2,950 3,200 3,300 4,850 7,600 11,100
Wafer diameter (mm) 200 200 300 300 300 300 300 300

Table 1. Cost of using old nodes (from 2017). Data from [19].

1.3 Open Source CAD Tools.
Another bright spot in recent open source develop-
ments are the tools. Much as the GNU GCC compiler
paved the way for GNU/Linux by providing a uniformC
interface to diverse hardware, having open source RTL-
to-GDS tools could pave the way for a healthy open
source ecosystem by providing widespread compatibil-
ity (something missing across current-day commercial
CAD tools!) across many process nodes.
Simulation. The Verilator SystemVerilog simulator
has been proven very stable and widely compatible
with industry-standard VCS, with the exception of test-
bench support, which generally must be rewritten with
considerable labor costs. Verilator enables cost-effective
scaleout of many simulations across the cloud (perfect
for executing the “long term RISC-V regression suite”),
but does not replace the signoff functionality of com-
mercial tools (i.e. simulation with parasitics.)
Synthesis. The Yosys synthesis tool has found wide
use in academia and the open source community, al-
though it does not support SystemVerilog and its output
PPA may fall significantly short. Its key benefit is its
open sourceness, which enables it to be modified for
interesting new flows that cannot be easily modeled
with out of the box commerical tools. Yosys also has
support for formal verification including SMT solvers
and SAT solvers. SystemVerilog synthesis remains a key
weakness that hopefully will be addressed in the near
term, as many parsers are under development and being
evaluated by the Symbiflow sv-tests framework [7].
Automatic Place and Route. The DARPA IDEA pro-
gramhas fundedOpenROAD [10], a powerful no-human-
in-the-loop place and route flow that targets Global-
Foundries 12nm technology. Several external users have
mapped it to other technologies, including the UW
OpenROADFreePDK45 flow [13] that targets the epony-
mous freely available synthetic 45nm PDK, and the

OpenLANE flow [6], which targets the real-life Google-
sponsored Skywater 130nmflow. SinceAutomatic Place-
ment and Routing is easily the most expensive CAD
flow component, and verification of the output is rela-
tively easy to do using existing methodologies, Open-
ROAD is really the centerpiece of open source CAD,
and strong PPA results by the end of the project would
“show the light at the end of the tunnel” and buttress
the open source design world such that the other pieces
would likely follow very quickly afterwards. PPA-strong
OpenROAD will unlock research in ML-driven CAD
and allow massive exploration of design spaces via cost-
effective cloud-scaleout.
Parasitic Extraction.Missing from these flows is open
source parasitic extraction, simulation with parasitics,
and formal equivalency checking. It’s a little crazy to
envision a tapeout without at least some of these.

2 Opportunities and
Eco-System Challenges.

With the current slow motion, live-action enactment of
the end of CMOS scaling and Moore’s Law, the research
community has increasingly looked towards designing
ASIC-based accelerators that exploit specialization in
order to surpass power- and energy- limited general-
purpose devices like CPUs and GPUs. ASIC accelerators
are able to attain order-of-magnitude improvements in
energy-efficiency (W per op/s) and cost-performance ($
per op/s) over general-purpose substrates, which helps
in optimizing total cost of ownership (TCO) in the data-
center [18, 19, 21, 27] and also in attaining new features
for mobile devices as shown in this brilliant analysis [2]
of exponentially growing numbers of accelerator blocks
on Apple iPhone chips.
Acceptance of a future of accelerators brings some

promise that perhaps open source can help drive the
design of these accelerators by reducing startup costs.
In particular, accelerators could leverage older nodes,
reducing mask and IP costs to a point where open

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Michael Bedford Taylor

0.8 1 2 3 4 5 6 7 8 9 10 20

1

2

5

10

20

50

100

200

M
as

k
C

os
t

R
el

at
iv

e
to

25
0n

m

1.7
2.8

1.9

1.3 1.8

1.7
2.6

16nm
28nm
40nm
65nm
90nm
130nm
180nm
250nm

0.8 1 2 3 4 5 6 7 8 9 10 20

0.01

0.02

0.05

0.1

0.2

0.5

1.0

2.0

E
ne

rg
y/

O
P

R
el

at
iv

e
to

25
0n

m

2.68

3.12

2.08

1.38
2.01

1.43
2.21

250nm
180nm
130nm
90nm
65nm
40nm
28nm
16nm

0.8 1 2 3 4 5 6 7 8 9 10 20
0.01

0.02

0.05

0.1

0.2

0.5

1.0

2.0

C
os

t(
$)

pe
rO

P
/s

R
el

at
iv

e
to

25
0n

m

2.45

1.60
2.76

1.36
1.36

0.91

1.51

0.8 1 2 3 4 5 6 7 8 9 10 20

1B

5B
10B

50B
100B

500B
1T

#T
ra

ns
is

to
rs

pe
rD

ie

1.93
1.91

2.09
1.92

2.64

2.06
3.20

16nm
28nm
40nm
65nm
90nm
130nm
180nm
250nm

0.8 1 2 3 4 5 6 7 8 9 10 20
Relative Feature Size (250nm/X)

0.7

1

2

3
4
5
7

10

20

Fr
eq

ue
nc

y
R

el
at

iv
e

to
25

0n
m

1.39
1.38

1.44

1.38
1.62

1.43

1.75

16nm
28nm
40nm
65nm
90nm
130nm
180nm
250nm

Figure 1. Node Technology trade-offs, normalized
to 250nm. #’s show multiplicative benefits as node
advance. Data from [19].

source IP and CAD tools can attain sufficiently high

savings relative to other costs that they start to make
sense. Because of the end of Dennard Scaling, post-
90nm nodes have a smaller marginal benefit compared
to older nodes, as shown in the change of slope in the
PPA metrics graphed in Figure 1, although it is still
exponential. So the PPA hit of being in the older node
is potentially amortizable with the specialization that
the accelerator will bring.
Does Optimizing Mask Costs Make Sense? In Ta-
ble 1, we show 2017 pricing for full-reticle manufactur-
ing of silicon chips. 2020 pricing could be approximated
by shifting over the prices to the left by one slot. Al-
though using an older node to save mask costs seems
desirable, it must always be put in context of the cost of
engineering. In Silicon Valley, a ten person engineering
team working for a year might easily cost the same
as today’s 16nm fab costs. So if shooting for an older
node means that they spend another year optimizing
to make up for it, it doesn’t make sense economically.
However in other parts of the world, labor could be
significantly less, and older nodes could make more
sense. Or alternatively, if open source tools and IP pro-
vide sufficiently high leverage that one person can do
a tapeout on their own, then older nodes would also
become very compelling, even in Silicon Valley.
The Physical IP Problem. In Table 2, we find the
price of IP blocks. Most digital chips will require at
least the DRAM Controller and DRAM PHY, so the
implied $275K-$875K is not insignificant. Open source
DRAM controllers can be realized in pure Verilog; es-
pecially since the DFI standard defines the interface to
the DRAM PHY. The DRAM PHY is much more prob-
lematic, since they typically require analog circuits that
prevent free exchange because of NDAs related to de-
sign rules. Interestingly, LPDDR can be implemented
without analog circuit implementations and uses off-
the-shelf LVCMOS I/Os. A prototype LPDDR DRAM
controller and PHY can be found as part of U. Wash-
ington’s BaseJump STL2. LPDDR at 400 mbps per pin
is about 5× off in bandwidth from more modern DDR;
but the latency is close, maybe 1.3× off; so for proces-
sor cores (like the RISC-V processors described earlier),
which are latency-bound, it is reasonable, for acceler-
ators, which are often bandwidth-bound it is less so.
Typical server accelerator chips will need PCI-E, which

2https://github.com/bespoke-silicon-
group/basejump_stl/tree/master/bsg_dmc

Your Agile Open Source HW Stinks
(Because It Is Not a System) ICCAD ’20, November 2–5, 2020, Virtual Event, USA

Tech Node (nm) 250 180 130 90 65 40 28 16
DRAM Ctlr NA NA 125 125 125 125 125 125
DRAM PHY NA NA 150 165 175 280 390 750
PCI-E Ctlr NA NA 90 90 125 125 125 125
PCI-E PHY NA NA 160 180 325 375 510 775
PLL 15 15 15 20 30 50 35 50
LVDS IO 7.5 7.5 0 150 90 36 40 200
Standard
Cells, SRAM 0 0 0 0 0 100 100 100

Table 2. IP Licensing Costs increase with advancing Technology Nodes. Commonly used IP licensing costs
across tech nodes, in late 2016, thousands of USD. Costs generally rise with node, but there are some irregularities.
Data from [19].

has a similarly scary price tag. Like the DRAM PHY,
the PCI-E PHYs required advanced analog design and
are not likely to appear in open source form.
Chiplets to the rescue? The DARPA CHIPS program
has envisioned the possibility of libraries of chiplets
that host expensive IPs, and that can allow rapid compo-
sition. Intel has standardized their AIB standard for the
purpose of communicating between chiplets [4]. For
example, we could imagine chiplets for optical commu-
nication, PCI-E or DRAM PHYs. There are two sticking
points; first the PHY itself for chiplets is rapidly becom-
ing more advanced itself and soon will surpass PCI-E,
making it once again necessary to have some source of
this PHY block, and second, the fabrication technology
for the interposers is often restricted to the foundry’s
most lucrative customers. Hopefully these two issues
will be resolved and the open source PHY problem will
be solved, perhaps by foundries providing this as a stan-
dard IP.

3 Thinking about the System.
Hopefully by this point in the paper, we have convinced
you that Open Source HW is an exciting and vibrant
area. But it is also clear that there is a huge amount of
uncertainty. Here are some key questions:
Who will use your open source HW? Given this
constrained world, who will use your open source HW
design? Are you abstractly assuming a kind of user
that doesn’t actually exist? Currently, the best clarity
I have is on this issue is: People whose systems have
the flexibility to work around the issues that it will have.
Students in classes, researchers, and chip companies that

can “hide your hardware” or plan on using it “exactly as
in simulation.”
Beyond the RTL, what is the system around your
Open Source HW? Thinking about who will use it,
what kind of system will they need built around it?
Students will be building homework assignments and
need clear docs and infrastructure. Researchers will be
running benchmarks and need good scripts and pre-
ported benchmarks. Chip companies will be running
software on top of your RTL and will want a software
SDK. For an accelerator, people will want to tools for
performance analysis and to have libraries that do the
hard work for them. They will want programming lan-
guages and compilers to program an ML accelerator.
We must build out these components and make them

super easy to use. Recent examples include the FireSim
system [17] by Berkeley which is a system built on
top of their Berkeley Rocket SoC for academic architec-
tural datacenter simulations. The HammerBlade RISC-V
ML/Graphs system reaches toward the end user by im-
plementing the CUDA-lite language, and by supporting
PyTorch. The BlackParrot [22] system has a ready-built
SDK, and accelerator integration guide that allows for
fast accelerator/SoC composition.
Howwill youdiscoverwhat systemsmight be built
with your agile HW? For this, you must talk to lots
of different people and be .. dare I say? .. agile in rec-
ognizing realistic use cases. But, even then, in the end,
after all of that searching, you may find it is easier to
become the user you are looking for!

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Michael Bedford Taylor

This material is based on research sponsored by Air Force Re-
search Laboratory (AFRL) and Defense Advanced Research Projects
Agency (DARPA) under agreement number FA8650-18-2-7856 and
FA8650-18-2-7852. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed
or implied, of Air Force Research Laboratory (AFRL) and Defense
Advanced Research Projects Agency (DARPA) or the U.S. Govern-
ment.

References
[1] RISC-V in NVidia. Sixth RISC-V workshop, 2017. URL

https://riscv.org/wp-content/uploads/2017/05/Tue1345pm-
NVIDIA-Sijstermans.pdf.

[2] Apple iPhone Accelerator Die Photo Analysis, 2019. URL
http://vlsiarch.eecs.harvard.edu/research/accelerators/die-
photo-analysis/.

[3] Western Digital Open Source SWERV core, 2019. URL https:
//github.com/chipsalliance/Cores-SweRV.

[4] AIB PHY Repo, 2020. URL https://github.com/chipsalliance/aib-
phy-hardware.

[5] LeWiz Ethernet MAC Core. website, 2020. URL https://github.
com/taylor-bsg/LMAC_CORE2.

[6] OpenLANE RTL to GDSII Flow, 2020. URL https://github.com/
efabless/openlane.

[7] Symbiflow sv-tests. website, 2020. URL https://symbiflow.
github.io/sv-tests/.

[8] Michael Taylor et al. The HammerBlade RISC-V Many-
core: A programmable, scalable RISC-V fabric. FOSDEM,
2020. URL https://fosdem.org/2020/schedule/event/riscv_
hammerblade/.

[9] A. Rovinski et al. A 1.4 GHz 695 Giga Risc-V Inst/s 496-Core
Manycore Processor With Mesh On-Chip Network and an All-
Digital Synthesized PLL in 16nm CMOS. In 2019 Symposium
on VLSI Circuits, pages C30–C31, 2019.

[10] T. Ajayi, V. A. Chhabria, M. Fogaça, S. Hashemi, A. Hosny, A. B.
Kahng, M. Kim, J. Lee, U. Mallappa, M. Neseem, G. Pradipta,
S. Reda, M. Saligane, S. S. Sapatnekar, C. Sechen, M. Sha-
lan, W. Swartz, L. Wang, Z. Wang, M. Woo, and B. Xu. To-
ward an open-source digital flow: First learnings from the
openroad project. In Proceedings of the 56th Annual De-
sign Automation Conference 2019, DAC ’19, New York, NY,
USA, 2019. Association for Computing Machinery. ISBN
9781450367257. doi: 10.1145/3316781.3326334. URL https:
//doi.org/10.1145/3316781.3326334.

[11] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, D. Bian-
colin, C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz,
S. Karandikar, B. Keller, D. Kim, J. Koenig, Y. Lee, E. Love,
M. Maas, A. Magyar, H. Mao, M. Moreto, A. Ou, D. A. Patter-
son, B. Richards, C. Schmidt, S. Twigg, H. Vo, and A.Waterman.
The Rocket ChipGenerator. Technical Report UCB/EECS-2016-
17, EECS Department, University of California, Berkeley, Apr
2016. URL http://www2.eecs.berkeley.edu/Pubs/TechRpts/
2016/EECS-2016-17.html.

[12] J. Balkind, T.-J. Chang, P. Jackson, G. Tziantzoulis, A. Li, F. Gao,
A. Lavrov, G. Chirkov, J. Tu, M. Shahrad, and D. Wentzlaff.
OpenPiton at 5: A Nexus for Open and Agile Hardware Design.
IEEE Micro, 40:22–31, 2020.

[13] S. Davidson and M. B. Taylor. University of Washington
OpenRoad FreePDK 45, 2019. URL https://github.com/bsg-
idea/uw_openroad_free45.

[14] S. Davidson, S. Xie, C. Torng, K. Al-Hawai, A. Rovinski,
T. Ajayi, L. Vega, C. Zhao, R. Zhao, S. Dai, A. Amarnath,
B. Veluri, P. Gao, A. Rao, G. Liu, R. K. Gupta, Z. Zhang, R. Dres-
linski, C. Batten, and M. B. Taylor. The Celerity Open-Source
511-Core RISC-V Tiered Accelerator Fabric: Fast Architectures
and Design Methodologies for Fast Chips. IEEE Micro, 38(2):
30–41, 2018.

[15] J. L. Hennessy and D. A. Patterson. A New Golden Age for
Computer Architecture. Commun. ACM, 62(2):48–60, Jan. 2019.
ISSN 0001-0782. doi: 10.1145/3282307. URL https://doi.org/10.
1145/3282307.

[16] S. Jiang, P. Pan, Y. Ou, and C. Batten. PyMTL3: A Python
Framework for Open-Source Hardware Modeling, Generation,
Simulation, and Verification. IEEE Micro, 40(4):58–66, 2020.

[17] S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D. Lee,
N. Pemberton, E. Amaro, C. Schmidt, A. Chopra, Q. Huang,
K. Kovacs, B. Nikolic, R. Katz, J. Bachrach, and K. Asanović.
Firesim: FPGA-Accelerated Cycle-Exact Scale-out System Sim-
ulation in the Public Cloud. In Proceedings of the 45th An-
nual International Symposium on Computer Architecture, ISCA
’18, page 29–42. IEEE Press, 2018. ISBN 9781538659847. doi:
10.1109/ISCA.2018.00014. URL https://doi.org/10.1109/ISCA.
2018.00014.

[18] M. Khazraee, L. Vega, I. Magaki, and M. Taylor. Specializing a
Planet’s Computation: ASIC Clouds. IEEE Micro, May 2017.

[19] M. Khazraee, L. Zhang, L. Vega, and M. B. Taylor. Moon-
walk: NRE Optimization in ASIC Clouds. In Proceedings of
the Twenty-Second International Conference on Architectural
Support for Programming Languages and Operating Systems,
New York, NY, USA, 2017. Association for Computing Machin-
ery. ISBN 9781450344654. doi: 10.1145/3037697.3037749. URL
https://doi.org/10.1145/3037697.3037749.

[20] A. Li and D. Wentzlaff. PRGA: An Open-source Framework
for Building and Using Custom FPGAs. 2019 Workshop on
Open Source Design Automation (OSDA ’19), 2019.

[21] I. Magaki, M. Khazraee, L. Vega, and M. Taylor. ASIC Clouds:
Specializing the Datacenter. In International Symposium on
Computer Architecture (ISCA), 2016.

[22] D. Petrisko, F. Gilani, M. Wyse, D. C. Jung, S. Davidson, P. Gao,
C. Zhao, Z. Azad, S. Canakci, B. Veluri, T. Guarino, A. Joshi,
M. Oskin, and M. B. Taylor. BlackParrot: An Agile Open-
Source RISC-V Multicore for Accelerator SoCs. IEEE Micro, 40
(4):93–102, 2020.

[23] A. Rovinski, C. Zhao, K. Al-Hawaj, P. Gao, S. Xie, C. Torng,
S. Davidson, A. Amarnath, L. Vega, B. Veluri, A. Rao, T. Ajayi,
J. Puscar, S. Dai, R. Zhao, D. Richmond, Z. Zhang, I. Galton,
C. Batten, M. B. Taylor, and R. G. Dreslinski. Evaluating
Celerity: A 16-nm 695 Giga-RISC-V Instructions/s Manycore
Processor With Synthesizable PLL. IEEE Solid-State Circuits
Letters, 2(12):289–292, 2019.

[24] M. Ruiz, D. Sidler, G. Sutter, G. Alonso, and S. López-Buedo.
Limago: an FPGA-based Open-source 100 GbE TCP/IP Stack.
In 2019 29th International Conference on Field Programmable
Logic and Applications (FPL), pages 286–292. IEEE, Sep 2019.
doi: 10.1109/FPL.2019.00053.

[25] X. Tang, E. Giacomin, A. Alacchi, B. Chauviere, and P. Gail-
lardon. Openfpga: An opensource framework enabling rapid
prototyping of customizable fpgas. In 2019 29th International
Conference on Field Programmable Logic and Applications (FPL),
pages 367–374, 2019.

[26] M. B. Taylor. BaseJump STL: SystemVerilog needs a Standard
Template Library for Hardware Design. In Design Automation
Conference, June 2018.

[27] M. B. Taylor, L. Vega, M. Khazraee, I. Magaki, S. Davidson, and
D. Richmond. ASIC Clouds: Specializing the Datacenter for
Planet-Scale Applications. CACM, pages 103–109, 2020.

[28] A. Waterman. Design of the RISC-V Instruction Set Architec-
ture. PhD thesis, EECS Department, University of California,
Berkeley, Jan 2016. URL http://www2.eecs.berkeley.edu/Pubs/
TechRpts/2016/EECS-2016-1.html.

[29] F. Zaruba and L. Benini. The Cost of Application-Class Pro-
cessing: Energy and Performance Analysis of a Linux-Ready
1.7-GHz 64-Bit RISC-V Core in 22-nm FDSOI Technology. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 27
(11):2629–2640, 2019.

https://riscv.org/wp-content/uploads/2017/05/Tue1345pm-NVIDIA-Sijstermans.pdf
https://riscv.org/wp-content/uploads/2017/05/Tue1345pm-NVIDIA-Sijstermans.pdf
http://vlsiarch.eecs.harvard.edu/research/accelerators/die-photo-analysis/
http://vlsiarch.eecs.harvard.edu/research/accelerators/die-photo-analysis/
https://github.com/chipsalliance/Cores-SweRV
https://github.com/chipsalliance/Cores-SweRV
https://github.com/chipsalliance/aib-phy-hardware
https://github.com/chipsalliance/aib-phy-hardware
https://github.com/taylor-bsg/LMAC_CORE2
https://github.com/taylor-bsg/LMAC_CORE2
https://github.com/efabless/openlane
https://github.com/efabless/openlane
https://symbiflow.github.io/sv-tests/
https://symbiflow.github.io/sv-tests/
https://fosdem.org/2020/schedule/event/riscv_hammerblade/
https://fosdem.org/2020/schedule/event/riscv_hammerblade/
https://doi.org/10.1145/3316781.3326334
https://doi.org/10.1145/3316781.3326334
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://github.com/bsg-idea/uw_openroad_free45
https://github.com/bsg-idea/uw_openroad_free45
https://doi.org/10.1145/3282307
https://doi.org/10.1145/3282307
https://doi.org/10.1109/ISCA.2018.00014
https://doi.org/10.1109/ISCA.2018.00014
https://doi.org/10.1145/3037697.3037749
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-1.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-1.html

