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Abstract— A critical challenge in RTL verification is to generate effec-
tive test inputs. Recently, RFUZZ proposed to use an automated software
testing technique, namely Graybox Fuzzing, to effectively generate test
inputs to maximize the coverage of the whole hardware design. For a
scenario where a tiny fraction of a large hardware design needs to be
tested, the RFUZZ approach is extremely time consuming. In this work,
we present DirectFuzz, a directed test generation mechanism. DirectFuzz
uses Directed Graybox Fuzzing to generate test inputs targeted towards a
module instance, which enables targeted testing. Our experimental results
show that DirectFuzz covers the target sites up to 17.5× faster (2.23×
on average) than RFUZZ on a variety of RTL designs.

Index Terms—Graybox fuzzing, RTL verification, coverage directed
test generation, RISC-V

I. INTRODUCTION

A critical challenge in the RTL verification process is to generate
test inputs that can cover all parts of the RTL design, and identify
discrepancies between the RTL design of a hardware system and
its functional specifications. Although several commercial tools and
studies based on formal verification techniques [7], [9], [19] have
shown promising results in the verification of RTL designs, test gen-
eration using formal methods usually suffers from a state explosion
problem as the size of the design increases [8], [10]. Therefore,
researchers have proposed several dynamic verification techniques
that rely on RTL simulators [2]. In an ideal scenario, a dynamic
verification technique should generate inputs that cover every single
circuit component in the design.

Unfortunately, it is challenging and time-consuming to achieve
high coverage with manually crafted inputs, especially for large
designs with millions of gates. Therefore, researchers proposed
several Coverage Guided test Generation (CDG) mechanisms [12],
[21], [25]. These mechanisms obtain coverage feedback from the
Design Under Test (DUT) to automatically fine-tune the biases of test
generators, for example tuning the parameters of a Bayesian network
used for test generation [12]. However, these mechanisms are usually
either DUT-specific or require in-depth design knowledge for the
initial setup. To increase the general applicability of a test generation
mechanism, a recent work named RFUZZ [16] leveraged Graybox
Fuzzing (GF), which is widely used for testing software applications.
GF is an automated input generation technique at its core, and
so it could also be used to test hardware designs. In Figure 1,
we summarize how GF is utilized as a hardware test generation
mechanism. The GF-based test generation mechanism records the
achieved coverage for each test input obtained from an input queue
using RTL simulations. It generates new inputs from ‘interesting’
inputs (i.e., the inputs that increase coverage) by employing a variety
of mutations. GF requires very limited domain knowledge and manual
effort for constructing the testing environment.

While RFUZZ is promising, it is not completely suitable for
hardware design. Hardware design is an incremental process, where
new components are gradually added instead of designing the entire
system in one step. After adding a new hardware component, not
all of the older verified components of the DUT need to undergo
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Fig. 1. A simplified overview of a graybox fuzzer.
a thorough testing. Consider a scenario where an existing processor
design is extended with a new feature such as a floating point unit
or a scenario where we replace the existing branch predictor in the
processor with a better branch predictor. For these scenarios, the
test-time budget needs to be allocated for the verification of the
new/modified components and their interactions with the rest of the
DUT. Unfortunately, RFUZZ is agnostic of such scenarios and it
focuses on verifying the whole processor design. As a result, it spends
unnecessary effort to maximize coverage of the whole design rather
than a specific part of the hardware design.

In this work, we present DirectFuzz, which generates test inputs to
maximize the coverage of a specific part of the hardware design. At
a high-level, DirectFuzz spends most of its time budget on reaching
specific target sites instead of covering the whole design. Here,
target sites refer to module instances that need to be tested. Di-
rectFuzz achieves this goal by leveraging Directed Graybox Fuzzing
(DGF) [6], an approach used by the software community for patch
testing, and identifying special types of bugs (e.g., use-after-free).
DirectFuzz differs from RFUZZ in two ways. First, RFUZZ selects
the test inputs from the input queue in the order they are inserted. This
increases the total time for reaching target sites when an effective test
input (the one that increases the target site coverage) resides close
to the rear of a long queue. DirectFuzz prioritizes those inputs that
cover at least part of the target sites when choosing the next input
for the DUT in order to quickly reach target sites. Second, RFUZZ
and DirectFuzz differ in the number of mutations that they apply to
an input. For each test input, RFUZZ applies the same number of
mutations while DirectFuzz adjusts the number of mutations based
on how close the input is to the target sites. The closeness of the test
input to the target site is determined by a distance metric that accounts
for the module instance hierarchy. DirectFuzz also generates more
inputs from a test input if it achieves high coverage in the module
instances that are close to the target module instance.

Overall, the main contributions of this work are as follows:

• To the best of our knowledge, we are the first to apply the notion
of DGF to hardware test generation for effectively and efficiently
verifying specific target sites in hardware designs.

• For generating new test inputs, we propose to use a distance
metric that accounts for the instance hierarchy of a hardware
design. The distance metric determines the importance of each
test input.

• We demonstrate the efficacy and utility of DirectFuzz on several
real-world RTL designs. DirectFuzz covers the same set of target
sites up to 17.5× (on average 2.23×) faster than RFUZZ under
the same time budget. In the spirit of open science, we will
make DirectFuzz publicly available.978-1-6654-3274-0/21/$31.00 ©2021 IEEE



II. BACKGROUND

In this section, we provide the basics of GF and explain how
RFUZZ applies GF to the test input generation problem for hardware.

A. Graybox Fuzzing
Fuzzing is the process of executing a Program Under Test (PUT)

repeatedly with generated inputs (seeds) to trigger software bugs.
Due to its simplicity, practicality, and capability of discovering
bugs, fuzzing has become very popular in the last decade in the
software community. Several software companies such as Google
and Microsoft have created their own fuzzing platforms [5], [18]
and identified a plethora of bugs in popular programs. Most modern
fuzzers primarily focus on GF, which relies on dynamic information
about the execution of the PUT, such as code coverage feedback.
A graybox fuzzer consists of the following stages as detailed in
Algorithm 1: (S1) Provide the fuzzer with an initial seed corpus
and total fuzzing duration; (S2) Pick a seed from the seed corpus;
(S3) Assign an energy level to the current seed to determine how
many new seeds should be generated from that particular seed; (S4)
Mutate the seed to generate N new seeds, where N is determined
by the seed energy; (S5) Execute the PUT with the seed to produce
an observation; and (S6) Analyze this observation to determine if
the seed is “interesting” enough (i.e., increases coverage) for further
mutation or causes a crash.

B. RFUZZ
DirectFuzz is closely related to RFUZZ [16]. In this subsection,

we explain how RFUZZ adopts GF into a test generation mechanism
for hardware designs. RFUZZ consists of two components: a fuzzing
logic, and an instrumentation suite:
The fuzzing logic requires an initial seed corpus that consists of a
set of test inputs (S1). An RTL design requires a rigid test input
size determined by the RTL’s input port widths as opposed to a
software program that usually accepts an arbitrary-sized test inputs.
RFUZZ generates a bit vector of size N , where N is determined
by the input port widths and total number of test cycles. Next, the
fuzzing logic chooses a test input from a queue in FIFO order (S2)
and assigns an energy level (S3) which determines the number of
mutations that need to be applied in (S4). Note that RFUZZ uses the
same energy level for each test input, thereby performing the same
number of mutations. Similar to graybox fuzzers targeting software
programs, RFUZZ implements several deterministic (e.g., a single
bit flip at a constant offset) and non-deterministic mutations (e.g.,
random byte overwrite). Finally, the fuzzing logic retains any test
input that increases the coverage of the RTL design (S5-S6).

Algorithm 1: Graybox Fuzzing
(S1) Input : Initial Seed Corpus S, timelimit

Output: Crashing Inputs C
C ← ∅;
while timeelapsed < timelimit do

/* Our modifications are highlighted */
(S2) s← ChooseNext(S);
(S3) e← AssignEnergy(s);
for i = 1 to e do

(S4) m′ = MutateInput(s);
(S5) o = ExecuteDUT(m′);
(S6) if o == IS CRASHING then

add m′ to C;
else if o == IS INTERESTING then

add m′ to S;
end

end
return C

The instrumentation suite is in charge of collecting coverage
feedback when the current input exercises the DUT. In software
testing, graybox fuzzers mostly rely on covered branch instructions
(e.g., jump). The branches (like if-then-else control structure or
switch control structure) written in a Hardware Description Language
(HDL) for an RTL design are mapped to multiplexers in the circuit.
Also, there are usually multiple activated multiplexers during any
cycle in hardware as opposed to a sequential software program that
can only trigger one branch instruction at a time. RFUZZ takes
into account these two fundamental differences in its definition of
coverage metric. Specifically, RFUZZ uses mux control coverage
metric which considers the select signal of each 2:1 multiplexer as a
coverage point1. It instruments the DUT with additional bookkeeping
logic for each multiplexer to observe the value of the selection signal
when exercising the DUT with an input. The coverage feedback
includes the multiplexers whose selection bits are toggled. RFUZZ
defines the achieved coverage in a design as the ratio of the number
of multiplexers with selection bits toggled over total number of
multiplexer selection signals in the RTL.

DirectFuzz modifies the second and third stages of Algorithm 1 to
convert a graybox fuzzer into a DGF. DirectFuzz implements an input
selection scheme that gives priority to inputs that are likely to increase
coverage of the target sites (S2). Moreover, DirectFuzz implements a
power scheduling algorithm that assigns different energy levels to the
inputs (S3), which leads to different number of employed mutations
on each input. These modifications enable DirectFuzz to generate test
inputs tailored for specific targets in the hardware design. We provide
the details of our modifications in Section IV-C.

III. RELATED WORK

Coverage Directed test Generation (CDG) is a widely-used tech-
nique for the verification of RTL designs. In this technique, the
constraints of a test generator are automatically driven by the cov-
erage feedback so that the test input generated in the next round
can increase the overall coverage. For instance, MicroGP [21] aims
to verify the whole microprocessor design by generating test inputs
using an instruction template based on genetic programming. The
fitness value that drives the searching of an instruction sequence is
determined by the statement coverage. Fine et al. [12] propose a CDG
mechanism based on Bayesian networks. Unfortunately, setting up the
network is not a straightforward task and requires in-depth expertise
in the design specifications of the RTL design. Wagner et al. [25]
present a CDG framework that uses a Markov chain model. The
weights of the model are fine-tuned based on the collected coverage.
This framework relies on the abstract form of the DUT that needs
to be crafted manually in the form a custom template. Therefore, it
requires deep domain knowledge. Overall, CDG mechanisms aim to
find a balance between the amount of domain knowledge applied to
the framework and general applicability of the mechanism [13].

Fuzzing-based approaches like RFUZZ [16] and DirectFuzz mini-
mize the amount of domain knowledge for their testing mechanisms.
For some RTL designs, this design choice may lead to lower
coverage compared to a fine-tuned CDG tool designed with expert
feedback [12], [21], [25]. However, the fuzzing-based approaches
provide a more generic framework that can be used for a variety
of RTL designs without requiring additional integration effort.

Several works utilize formal methods to generate test inputs for
hardware designs [7], [9], [19]. Formal methods that rely on symbolic
execution have a well-known state explosion problem due to the

1RFUZZ converts any other multiplexer type such as a 4:1 multiplexer into
a set of 2:1 multiplexers.



exponentially growing execution paths in the RTL designs [8], [10].
To mitigate this problem, researchers in the hardware community
leveraged a software testing technique, called concolic testing, which
interleaves concrete execution with symbolic execution. QUEBS [3]
uses heuristics to efficiently select the execution path, collects the
path constraints, and provides an SMT solver with these constraints
to generate a test input. While QUEBS aims to maximize overall
branch coverage, a follow-up work by the same authors [4] proposed
a directed test generation mechanism tailored for a single target in
the RTL design. Lyu et al. [17] extended this work to support the test
generation for multiple targets to minimize the number of overlapping
searches. These three approaches are computationally less expensive
than their symbolic execution based counterparts.

Concolic test mechanisms rely on constraint solvers (as opposed to
graybox fuzzers) to generate a test input, which hinder the scalability
of the techniques [15]. At the same time, graybox fuzzers may spend
enormous time to find inputs for some of the branches in the RTL,
which can be trivially found by a concolic tester. Recent works
in software testing [22], [26] propose hybrid systems where they
use fuzzing and concolic testing alternating during program testing.
Similar hybrid systems could potentially be utilized for implementing
effective hardware test input generation mechanisms but are out of
scope for our work.

IV. DIRECTED TEST GENERATION FOR HARDWARE
In this section, we present DirectFuzz, our proposed DGF tech-

nique for hardware verification.

A. Overview
In Figure 2, we provide the overview of DirectFuzz, which consists

of two components, (1) The Static Analysis Unit and (2) the Fuzzing
Logic. The Static Analysis Unit takes the Intermediate Representation
(IR) of the RTL design [14] as an input and applies several IR passes
to extract information that the Fuzzing Logic will use to generate
the test inputs. Specifically, the Static Analysis Unit has three main
tasks: 1) Identify the coverage points in the target module instance;
2) Generate an instance connectivity graph to calculate the relative
distance of each module instance with respect to the target module
instance; 3) Create an instrumented DUT that includes the necessary
bookkeeping logic to record coverage for each test input.

The Fuzzing Logic is in charge of choosing the next test input, as-
signing an energy value to the test input based on a power scheduling
function, and performing input mutations. The instrumented DUT
and the Fuzzing Logic communicate via a shared memory region
allocated by the operating system to exchange generated inputs and
the achieved coverage information per input.

B. Static Analysis Unit
1) Target Module Instance Selection: DirectFuzz aims to generate

test inputs towards maximizing the coverage of specific target sites
in an RTL design. More specifically, the target sites refer to the
multiplexer selection signals that reside in a specific module instance
chosen by a verification engineer. Note that DirectFuzz accepts a
module instance as a target point rather than a module. When there
are multiple module instances produced by the same module, the
verification engineer needs to account for the position of each module
instance with respect to the DUT to determine the target module
instance.

The verification engineer can determine the target module instance
with a manual or an automated process. For the former, she can
choose the name of the module instance if she is directly aware of
a change in the RTL code of a specific module instance. For the
latter, she can determine the target module instance with software
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Fig. 2. Overview of DirectFuzz. The gray boxes represent the components
of DirectFuzz. The red boxes correspond to the components that DirectFuzz
leverages from RFUZZ.

tools (e.g., git-diff and svn diff) and extract the modified instances
between two versions of an RTL code.

2) Target Sites Identifier: As detailed in Section II-B, the coverage
points for DirectFuzz are multiplexer selection signals. To effectively
generate test-cases for the target module instance, it is necessary
to identify which multiplexer selection signals are covered by the
current test input. First, the Target Sites Identifier (TSI) analyzes the
provided RTL IR code and extracts all multiplexer selection signals
in the whole RTL design. Next, TSI labels any multiplexer selection
signal as ‘target’ if the multiplexer selection signal is part of the
provided target module instance. The identified multiplexer selection
signals are provided to the fuzzing logic.

3) Module Instance Connectivity Graph Generation: An important
part of the directed test generation is to calculate the distance of
each module instance in the RTL design with respect to the target
module instance. In fact, if the target module instance constitutes a
small portion of the RTL design, test inputs might mostly cover the
non-target multiplexer selection signals during fuzzing. Therefore, a
module instance hierarchy is essential to realize which parts of the
DUT are covered by the current test input and how close the covered
sites are to the target sites.

The graph generator creates a module instance hierarchy of the
RTL design in the form of a directed module instance connectivity
graph by using the RTL IR code. In this graph, the nodes represent
module instances in the RTL design while the edges represent the
module instance connections. Two module instances are considered
as connected if either instance is a subinstance (‘child’ instance) of
the other instance or they are subinstances with the same ‘parent’
instance. The generated graph is a directed graph for two reasons: 1)
it presents the hierarchical view of the overall hardware design with
parent instances and child instance(s); and 2) it presents the com-
munication direction between two module instances. For example, if
instance A provides data to the input ports of instance B but not vice
versa, the direction of the edge should be only from A to B.

To understand the process of graph generation, we use an ex-
ample 1-Stage processor (Sodor [1]) with its corresponding module
instance connectivity graph (see Figure 3). The processor consists of
seven module instances – proc, mem, core, c, d, async_data,
csr, one instance of each of the Sodor1Stage, Memory, Core,
CtlPath, DatPath, AsyncReadMem, CSRFile modules, re-
spectively. As shown in Figure 3 (on the right), any connection
between a child instance and its parent instance is represented with
a one-way edge (e.g., from proc to mem and from proc to core).
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Fig. 3. RTL design (on the left) and the corresponding module instance
connectivity graph (on the right) of Sodor 1-Stage processor.

We use directed edges to represent the connections between the child
instances (for example, c and d).

4) Directedness Computation: DirectFuzz calculates the instance
level distance of the RTL design to determine if a test input covers
multiplexer selection signals that are closer to the target sites. Our
intuition is that mutating an input that covers multiplexer selection
signals from the instances that directly interact with the target instance
is likely to increase coverage in the target instance. For example,
if the target site is the csr instance in Figure 3, an input that
covers multiplexer selection signals in d is more likely to result in
an increase in the multiplexer selection signal coverage of our target
csr given that d and csr are directly connected to each other.

Based on this intuition, we define a metric called instance level
distance dil for multiplexer selection signal m with respect to target
instance It as

dil(m, It) =

{
undefined if S(It, Im) = ∅
S(It, Im) otherwise

(1)

where Im is the module instance in which m resides and S(It, Im)
is the number of edges along the shortest path between Im and It in
the instance connectivity graph. Note that all the multiplexer selection
signals that reside in the same module instance are assigned the same
instance level distance. The instance level distance of a multiplexer
selection signal is undefined if its corresponding module instance
cannot reach the target instance. The multiplexer selection signals in
the target instance are assigned to zero instance level distance. The
instance level distances are used by the Fuzzing Logic to calculate
the energy of a test input. We provide the details in Section IV-C2.

C. Fuzzing Logic

The Fuzzing Logic is in charge of selecting the current input,
assigning energy to the selected input, and performing mutations
on the selected input to generate new test inputs. As explained
in Section IV-A, we use the same test input mutation mechanism
implemented by RFUZZ. However, we modify the input selection
mechanism and add an energy assignment mechanism in the Fuzzing
Logic (see Figure 2) to adapt the notion of DGF to the hardware test
generation problem. We provide the details of our changes below.

1) Input Prioritization: RFUZZ strictly chooses the next input
from the input queue, which has a FIFO ordering. Unfortunately, this
is not ideal when targeting a specific instance in the RTL design. Not
all inputs should have the same priority because only a subset of the
generated inputs increase the coverage in the target module instance.
Moreover, if an input leads to a new coverage point in the target
instance, it is likely that the mutated inputs from that specific input
will lead to new coverage points in the target instance. Therefore, the
inputs should be stored in a priority queue to assign higher priorities
to the inputs that have higher chance of increasing coverage in the

target instance. DirectFuzz implements an additional priority queue
to separately store the test inputs that covered at least one multiplexer
selection signal in the target module instance. Inputs in this priority
queue are always picked (in FIFO order) before picking any inputs
from the regular queue. If the priority queue is empty, DirectFuzz
uses an input from the regular queue in FIFO order.

2) Power Scheduling: Power scheduling determines the number
of mutations that need to be applied to the current input. During
the test input generation, we apply power scheduling on a selected
input based on a dynamically-computed input distance, which is the
distance of an input i to the target instance It. The intuition is
that if the current input covers multiplexer selection signals closer
to the target site, more mutations on this input should help in
increasing coverage in the target instance. Below we present the
formal definition of the input distance metric, and a power scheduling
function that relies on the input distance.

The input distance d(i, It) is computed as

d(i, It) =

∑
m∈C(i) dil(m, It)

|C(i)|
(2)

where C(i) is the set of all multiplexer selection signals that the input
i covered in the RTL design. Note that dil(m, It) is defined for all
m ∈ C(i). The range of d(i, It) is [0, dmax], where dmax represents
the distance between the It and the instance with the largest ‘shortest
path’ to It. If the input covers only the multiplexer selection signals
in the instance farthest from It, the input distance will be dmax. If
the input covers multiplexer selection signals only from the It, the
input distance will be assigned zero.

The power scheduling function is defined as

p(i, It) = maxE −
(
(maxE −minE) ·

d(i, It)

dmax

)
(3)

where It represents the target instance. minE and maxE are the
constant lower and upper energy limits. When d(i, It) is zero and
dmax, the assigned energy will be maxE and minE, respectively.
Overall, the power scheduling function favors the inputs with lower
distances, thereby performing more input mutations on those inputs.

DirectFuzz assigns a power coefficient to each input i based
on the power scheduling function. We calculate the input energy
by multiplying the power coefficient of an input with the default
mutation number provided by RFUZZ. The input energy determines
the total mutation number for the input (e in Algorithm 1). In essence,
DirectFuzz adjusts the total number of mutations employed by each
mutator in RFUZZ based on the computed power coefficient of each
input. For example, if the current mutator performs N random bit flips
in RFUZZ, the same mutator performs N × p flips in DirectFuzz.
By adjusting the power coefficient of inputs, DirectFuzz can prevent
excessive mutations that do not increase the coverage in the target.

3) Random Input Scheduling: Our power scheduling function
always favors the inputs with lower distances. Unfortunately, this
greedy approach may get stuck in a local minimum instead of reach-
ing a global minimum, thereby not covering the target multiplexer
selection signals. For example, when the target is csr for the RTL
design in Figure 3, DirectFuzz can favor the inputs that increase
coverage in c by considering multiplexer selection signals in c as
global minimum. To prevent DirectFuzz from getting stuck at local
minimums, we randomly pick an input with low energy value after
an interval and schedule this input with its default energy value (i.e.,
p is set to 1). The interval of random input scheduling is determined
by the coverage progress in the target instance. DirectFuzz runs the
random input scheduling mechanism if there is no coverage increase
in the target module instance for the scheduled last ten inputs.



TABLE I
THE EXPERIMENTAL RESULTS OF RFUZZ AND DIRECTFUZZ ON 12 MODULE INSTANCES FROM 8 RTL DESIGNS.

Benchmark Total # of
Instances

Target
Instance

Total # of Mux
Selection Signals

Target Instance
Cell Percentage

RFUZZ DirectFuzz SpeedupCoverage Time(s) Coverage Time(s)

UART 7 Tx 6 5.1% 100% 7.35 100% 0.42 17.5
Rx 9 6.9% 88.89% 4.95 88.89% 1.71 2.89

SPI 7 SPIFIFO 5 34.4% 100% 55.84 100% 31.75 1.76
PWM 3 PWM 14 26.9% 100% 12.79 100% 100% 5.87
FFT 3 DirectFFT 107 87% 13% 0.075 13% 0.073 1.03
I2C 2 TLI2C 65 31% 98% 13.73 98% 8.49 1.61

Sodor1Stage 8 CSR 93 16.6% 96.77% 500.56 96.77% 463.63 1.08
CtlPath 68 0.3% 100% 694.42 100% 526.53 1.32

Sodor3Stage 10 CSR 90 16.4% 98.89% 568.05 98.89% 446.29 1.27
CtlPath 66 0.3% 100% 1283.4 100% 1034.86 1.24

Sodor5Stage 7 CSR 93 3.1% 96.77% 817.58 96.77% 322.19 2.54
CtlPath 70 0.1% 100% 1227.35 100% 393.15 3.12

Geo. Mean 5 - 37 5.43% 82.87% 152 82.87% 29 2.23

V. EVALUATION

We implemented DirectFuzz by extending the open-source RFUZZ
repository [11]. For a fair head-to-head comparison between RFUZZ
and DirectFuzz, we used all the RTL designs evaluated by RFUZZ
[16]. These RTL designs include several peripheral IPs (e.g., SPI [20],
I2C [20], UART [20]), a DSP block (FFT) [24], a Pulse Width
Modulator (PWM) [20], and three (1-stage, 3-stage, 5-stage) in-
order 32-bit RISC-V processors [1]. We used FIRRTL [14] as the
intermediate representation for the RTL designs. Both RFUZZ and
DirectFuzz are compatible with any design expressed in FIRRTL
form. We applied several FIRRTL passes to the RTL IR code in
order to identify target sites, generate instance connectivity graph,
and perform directedness computation. In order to collect coverage
feedback, we used the FIRRTL passes provided by RFUZZ [11].

We conducted the experiments using Verilator [2] on an Intel®

Core™ i7-9700 3 GHz machine. We ran each experiment for 24
hours. If all multiplexer selection signals in the target were covered
in less than 24 hours, we terminated those experiments early. Due
to the probabilistic nature of fuzzing, we repeated each experiment
ten times and report the geometric mean for each design in Table I.
To demonstrate the variation across ten runs, we provide the box
(25%ile) and whisker (75%ile) plot for each design in Figure 4.

A. Evaluation Dataset and Target Module Instance Selection
We determined the target module instances from small designs

(UART, SPI, PWM, I2C, and FFT) based on the number of multi-
plexer selection signals. For these designs, we determine the module
instances with the highest number of multiplexer selection signals as
targets since any change in these RTL designs will likely modify these
module instances. To determine the target module instances for RISC-
V processors (i.e., Sodor1Stage, Sodor3Stage, and Sodor5Stage), we
extracted the area of each module instance in three processor designs.
We picked two module instances from the processor cores – one
with the smallest area, CtlPath, and one with largest area, CSR, as
targets to show the impact of the target instance size on the perfor-
mance of DirectFuzz. We report the cell percentage of CtlPath and
CSR instances under the ‘Target Instance Cell Percentage’ column
in Table I. For our area estimation, we synthesized the benchmark
circuits using Synopsys Design Compiler [23] for GlobalFoundries
22nm process at 1 GHz clock frequency.

B. Results
In this subsection, we show the efficiency of DirectFuzz over

RFUZZ where the goal is to reduce the total testing time for
generating test inputs that cover a specific set of multiplexer selection
signals in a target module instance. We present the experimental
results in Table I. The first column lists the design name, while the

second column shows the total number of module instances in that
design. We provide the name of the target instance(s) within the
design in the third column with their corresponding total number of
multiplexer selection signals listed in the fourth column. The achieved
coverage ratio in each target instance for RFUZZ and DirectFuzz
are presented in sixth and eighth column, respectively. The total
time required for achieving each coverage ratio is provided under
seventh and ninth columns for RFUZZ and DirectFuzz, respectively.
On average, DirectFuzz covers the multiplexer selection points 2.23×
faster than RFUZZ for the target instances in Table I thanks to its
directed test generation mechanism.

DirectFuzz achieves the highest performance improvement (17.5×)
in UART when the target is Tx. DirectFuzz achieves the lowest
performance improvement (1.08×) in Sodor1Stage RISC-V processor
when the target is CSR. Here, the difference in the total number of
multiplexer selection signals is the key reason behind the speedup
difference. It is intuitive that covering a low number of target sites in
a small design (e.g., UART) is easier than covering a high number of
target sites in a relatively more complex design (e.g., a processor like
Sodor5Stage). However, even a small speedup in a complex design
could save a lot of testing time. For example, DirectFuzz saves 834
seconds of testing time to cover all the target points in Sodor5Stage
(CtlPath). Intuitively, DirectFuzz could reduce the hardware testing
time even more for complex SoCs. We provide our hypothesis related
to testing DirectFuzz on a complex SoC in Section VI.

To assess the effectiveness of DirectFuzz on different sizes of target
instances, we pick two target module instances with varying target
instance cell percentages for each one of the three RISC-V processors.
Overall, we did not observe a direct correlation between the target
module instance cell percentage and the speedup to cover the same
set of target points. On the one hand, DirectFuzz covers all targets
in CtlPath faster than RFUZZ (up to 3.12×) for all three RISC-V
processors even though this instance occupies a small area (0.1%) of
the overall processor design. On the other hand, DirectFuzz achieves
1.27× speedup to cover the same set of target points on CSR target of
Sodor3Stage, which has relatively high cell percentage (e.g., 16.4%).

Fig. 4. Whisker plots of DirectFuzz and RFUZZ for various RTL designs.
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Fig. 5. Coverage progress of RFUZZ and DirectFuzz over time.

We report the coverage progress of RFUZZ and DirectFuzz over
time for all the designs in Figure 5. The coverage progress is
averaged over ten runs. The target instance for each design is provided
inside the parenthesis of figure titles. For several benchmarks (such
as UART, PWM, and Sodor5Stage for CSR target), the benefit of
DirectFuzz over RFUZZ is clear based on the coverage progress.
For example, DirectFuzz reaches the peak coverage more rapidly
than RFUZZ for the UART benchmark (for both Tx and Rx target
instances). RFUZZ’s coverage gradually increases and reaches the
peak coverage later than DirectFuzz. For some benchmarks (such
as Sodor1Stage, Sodor3Stage, and Sodor5Stage for CtlPath), we
observe that both RFUZZ and DirectFuzz follow a similar pace.

VI. FUTURE WORK & CONCLUSION

This work presents DirectFuzz, a mechanism that generates test
inputs for accelerating the testing of specific module instances in
an RTL design. As opposed to prior work (RFUZZ) that aims to
maximize the coverage of the RTL design, DirectFuzz aims to cover
a set of target sites in a specific module instance in the RTL design. A
head-to-head comparison with RFUZZ using a variety of benchmarks
demonstrates that DirectFuzz achieves the same coverage on specific
target sites, on average, 2.23× faster than RFUZZ.

As part of our future work, we plan to enhance DirectFuzz by pro-
viding the capability to perform domain-aware but microarchitecture-
agnostic mutations of inputs in the Fuzzing Logic. For example, in
case of processors, one can use Instruction Set Architecture (ISA)
encoding to generate instruction input sequences that would stress-test
different parts of the processor pipeline. We expect this enhancement
to result in faster coverage than our current implementation.
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