
Kismet:
Parallel Speedup Estimates
for Serial Programs	

Donghwan Jeon, Saturnino Garcia, Chris Louie, and Michael Bedford Taylor

Computer Science and Engineering
University of California, San Diego

1	

Questions in Parallel Software Engineering	

2	

I heard about these new-fangled multicore chips.
How much faster will PowerPoint be with 128 cores?	

We wasted 3 months for 0.5% parallel speedup.
Can’t we get parallel performance estimates earlier?	

How can I set the parallel performance goals
for my intern, Asok?	

Dilbert asked me to achieve 128X speedup.
How can I convince him it is impossible
without changing the algorithm?	

Kismet Helps Answer These Questions	

3	

$> make CC=kismet-cc

$> $(PROGRAM) $(INPUT)

$> kismet –opteron -openmp
Cores 1 2 4 8 16 32
Speedup 1 2 3.8 3.8 3.8 3.8
(est.)	

1. Produce instrumented binary
with kismet-cc

2. Perform parallelism profiling
with a sample input

3. Estimate speedup
under given constraints

Kismet automatically provides
the estimated parallel speedup upperbound
from serial source code.

Kismet’s easy-to-use usage model	

Kismet Overview

4	

Serial
Source
Code

Parallelization
Planner	

Kismet	

Sample
Input	

Parallelization
Constraints	

Speedup
Estimates	

Parallelism
Profile	

Hierarchical
Critical Path

Analysis	

Kismet extends critical path analysis to incorporate
the constraints that affect real-world speedup.

Find the best
parallelization
for the
target machine

Measure
parallelism	

Outline

  Introduction
  Background: Critical Path Analysis
  How Kismet Works
  Experimental Results
  Conclusion

5	

The Promise of Critical Path Analysis (CPA)

  Definition: program analysis that computes the
longest dependence chain in the dynamic
execution of a serial program

  Typical Use: approximate the upperbound on
parallel speedup without parallelizing the code

  Assumes: an ideal execution environment
–  All parallelism exploitable
–  Unlimited cores
–  Zero parallelization overhead

6	

How Does CPA Compute Critical Path?

la $2, $ADDR	

load $3, $2(0)	

addi $4, $2, #4	

7	

store $4, $2(4)	

store $3, $2(8)	

1	

4	

node: dynamic instruction with latency	

How Does CPA Compute Critical Path?

1	

la $2, $ADDR	

load $3, $2(0)	

addi $4, $2, #4	

8	

store $4, $2(4)	

1	store $3, $2(8)	 1	

1	

4	

node: dynamic instruction with latency	

edge: dependence between instructions	

How Does CPA Compute Critical Path?

1	

la $2, $ADDR	

load $3, $2(0)	

addi $4, $2, #4	

9	

store $4, $2(4)	

1	store $3, $2(8)	 1	

1	

4	

work = 8

node: dynamic instruction with latency	

edge: dependence between instructions	

work: serial execution time,
 total sum of node weights	

How Does CPA Compute Critical Path?

1	

la $2, $ADDR	

load $3, $2(0)	

addi $4, $2, #4	

10	

store $4, $2(4)	

1	store $3, $2(8)	 1	

1	

4	

work = 8

node: dynamic instruction with latency	

edge: dependence between instructions	

critical path length (cp):
 minimum parallel execution time	

work: serial execution time,
 total sum of node weights	

cp = 6

How Does CPA Compute Critical Path?

1	

la $2, $ADDR	

load $3, $2(0)	

addi $4, $2, #4	

11	

store $4, $2(4)	

1	store $3, $2(8)	 1	

1	

4	

work = 8

node: dynamic instruction with latency	

edge: dependence between instructions	

critical path length (cp):
 minimum parallel execution time	

work: serial execution time,
 total sum of node weights	

Total-Parallelism =	
work	

critical path length	

cp = 6

How Does CPA Compute Critical Path?

1	

la $2, $ADDR	

load $3, $2(0)	

addi $4, $2, #4	

12	

store $4, $2(4)	

1	store $3, $2(8)	 1	

Total-Parallelism
 = 1.33	

13	

All the work
on the critical path	

Most work
off the critical path	

Total-Parallelism	Min 1.0	

Totally
Serial	

……	……	

Total-Parallelism Metric:
Captures the Ideal Speedup of a Program

Highly Parallel	

Why CPA is a Good Thing

  Works on original, unmodified serial programs

  Provides an approximate upperbound in speedup,
after applying typical parallelization transformations
–  e.g. loop interchange, loop fusion, index-set splitting, …

  Output is invariant of serial expression of program
–  Reordering of two independent statements does not

change parallelism

14	

A Brief History of CPA

  Employed to Characterize Parallelism in Research
–  COMET [Kumar ‘88]: Fortran statement level
–  Paragraph [Austin ‘92]: Instruction level
–  Limit studies for ILP-exploiting processors

[Wall, Lam ‘92]

  Not widely used in programmer-facing
parallelization tools

15	

Why isn’t CPA commonly used in
programmer-facing tools?	

16	

Benchmark

ep	
life	
is	
sp	

unstruct	
sha	

Measured
Speedup
(16 cores)	

15.0	
12.6	
4.4	
4.0	
3.1	
2.1	

Optimism
Ratio

648	
9228	

295503	
47482	

1112	
2.3	

Optimism
Ratio	

CPA estimated speedups do not
correlate with real-world speedups.

CPA
Estimated
Speedup	

9722	
116278	

1300216	
189928	

3447	
4.8	

CPA Problem #1:
Data-flow Style Execution Model Is Unrealistic

void outer()
{
 ….
 middle();
}

void middle()
{
 ….
 inner();
}

void inner()
{
 ….
 parallel doall for-loop
 reduction
}

Difficult to map this onto
von Neumann machine and imperative programming language

Time

Invoke middle Invoke inner

18	

Overhead	

Exploitability	 What type of parallelism is supported by the target platform?
 e.g. Thread Level (TLP), Data Level (DLP), Instruction Level (ILP)	

How many cores are available for parallelization? Resource
Constraints	

Do overheads eclipse the benefit of the parallelism?
 e.g. scheduling, communication, synchronization	

CPA Problem #2:
Key Parallelization Constraints Are Ignored

Outline

  Introduction
  Background: Critical Path Analysis
  How Kismet Works
  Experimental Results
  Conclusion

19	

Kismet Extends CPA
to Provide Practical Speedup Estimates

20	

Parallelization
Planner	

Kismet	

Hierarchical
Critical Path
Analysis	

CPA	

Measure parallelism
with a hierarchical
region model

Find the best
parallelization
strategy with target
constraints

Revisiting CPA Problem #1:
Data-flow Style Execution Model Is Unrealistic

void top()
{
 ….
 middle();
}

void middle()
{
 ….
 inner();
}

void inner()
{
 ….
 parallel doall for-loop
 reduction
}

Time

Hierarchical Critical Path Analysis (HCPA)	

  Step 1. Model a program execution with hierarchical regions

  Step 2. Recursively apply CPA to each nested region
  Step 3. Quantify self-parallelism

loop i

loop j loop k

foo() bar1()	 bar2()

for (j=0 to 32)

for (i=0 to 4)

for (k=0 to 2)

foo ();

bar1();

bar2();

22	
HCPA Step 1. Hierarchical Region Modeling

HCPA Step 2: Recursively Apply CPA

Total-Parallelism from
inner()
= ~7X

Total-Parallelism from
middle() and inner()
= ~6X

Total-Parallelism from
outer(), middle(), and inner()
= ~5X

What is a region’s parallelism
excluding the parallelism from its nested regions?

HCPA: Introducing Self-Parallelism	

24	

a[i] = a[i] + 1;
b[i] = b[i] -1;	

for (i=0 to 100) {

}

for (i=0 to 100) {

}

a[i] = a[i] + 1;
b[i] = b[i] -1;	 2X	 100X	200X	

Total-Parallelism
(from CPA)	

Self-Parallelism
(from HCPA)	

  Represents a region’s ideal speedup
  Differentiates a parent’s parallelism from its

children’s
  Analogous to self-time in serial profilers

HCPA Step 3: Quantifying Self-Parallelism	

25	

for (i=0 to 100) {

}

a[i] = a[i] + 1;
b[i] = b[i] -1;	

for (i=0 to 100) {

}

a[i] = a[i] + 1;
b[i] = b[i] -1;	

a[i] = a[i] + 1;
b[i] = b[i] -1;	

for (i=0 to 100) {

}

Self-Parallelism(Parent)	 Total-Parallelism(Parent) 	 Total-Parallelism(Children)	

Generalized Self-Parallelism Equation

Self-Parallelism:
Localizing Parallelism to a Region

Self-P (inner) = ~7.0 X

Self-P (middle) = ~1.0 X

Self-P (outer) = ~1.0 X

Classifying Parallelism Type

27	

Leaf Region?	

ILP	

Loop Region?	

P Bit == 1?	

TLP	

DOACROSS	

DOALL	

yes	

no	

no	

yes	

yes	

no	

See our paper for details…

Why HCPA is an Even Better Thing

  HCPA:

– Keeps all the desirable properties of CPA

– Localizes parallelism to a region via the
self-parallelism metric and hierarchical region
modeling

– Facilitates the classification of parallelism

– Enables more realistic modeling of parallel
execution (see next slides) 28	

Outline

  Introduction
  Background: Critical Path Analysis
  How Kismet Works

  HCPA
  Parallelization Planner

  Experimental Results
  Conclusion

29	

30	

Overhead	

Exploitability	 What type of parallelism is supported by the target platform?
 e.g. Thread Level (TLP), Data Level (DLP), Instruction Level (ILP)	

How many cores are available for parallelization? Resource
Constraints	

Do overheads eclipse the benefit of the parallelism?
 e.g. scheduling, communication, synchronization	

Revisiting CPA Problem #2:
Key Parallelization Constraints Are Ignored

Parallelization Planner Overview

31	

core count
exploitability

overhead
…

Parallel
Execution Time

Model

Planning
Algorithm

Parallel
Speedup

Upperbound	

Goal: Find the speedup upperbound based on
 the HCPA results and parallelization constraints.

Target-dependent
parallelization planner

region structure
self-parallelism

HCPA profile

Constraints

A sample core allocation process

Planning Algorithm:
Allocates Cores with Key Constraints	

for (j=0 to 32)

for (i=0 to 4)

for (k=0 to 2)

foo ();

bar1();

bar2();

32	

loop i
self-p=4.0	

loop j
self-p=32.0	

loop k
self-p=1.5	

foo()
self-p=1.5	

bar1()
self-p=2.0	

bar2()
self-p=5.0	

loop j	

Exploitability	

Core Count	

Self-Parallelism	 The allocated core count should not exceed ceil [self-p].

If a region’s parallelism is not exploitable,
do not parallelize the region.

The product of allocated cores from the root to a leaf
should not exceed the total available core count.

Planning Algorithm:
Finding the Best Core Allocation

core: 4X	

core: 8X	 core: 1X	

Plan A Plan B Plan C

core: 2X	

core: 4X	 core: 4X	

core: 2X	

core: 16X	 core: 16X	

Highest Speedup	

33	

Core allocation plans for 32 cores	

How can we evaluate the execution time
for a specific core allocation?

Estimate the execution time for each plan and
pick the one with the highest speedup.

Parallel Execution Time Model:
A Bottom-up Approach	

loop i
speedup=4.0	

R is a non-leaf region	

R is a leaf region	

  Bottom-up evaluation with each region’s estimated speedup
and parallelization overhead O(R)

loop j
speedup=4.0	

loop k
speedup=1.0	

foo()
speedup=1.0	

bar1()
speedup=1.0	

bar2()
speedup=1.0	

ptime
(loop j)

ptime
(loop k)

ptime(loop i)

More Details in the Paper
  How do we reduce the log file size of HCPA

by orders of magnitude?

  What is the impact of exploitability
in speedup estimation?

  How do we predict superlinear speedup?

  And many others…

35	

Outline

  Introduction
  Background: Critical Path Analysis
  How Kismet Works
  Experimental Results
  Conclusion

36	

Platform	

Processor	 8 * Quad Core
AMD Opteron 8380 16-core MIT Raw	

Parallelization
Method	 OpenMP (Manual)	 RawCC (Automatic)	

Exploitable
Parallelism	

Loop-Level Parallelism
(LLP)	

Instruction-Level Parallelism
(ILP)	

Synchronization
Overhead	

High
(> 10,000 cycles)	

Low
(< 100 cycles)	

Methodology	
  Compare estimated and measured speedup
  To show Kismet’s wide applicability,

we targeted two very different platforms

Raw	Multicore	

37	

Speedup Upperbound Predictions:
NAS Parallel Benchmarks	

38	

Speedup Upperbound Predictions:
NAS Parallel Benchmarks	

39	

Predicting Superlinear Speedup

Without Cache Model With Cache Model

Speedup Upperbound Predictions:
Low-Parallelism SpecInt Benchmarks

40	

Conclusion	

41	

Kismet provides parallel speedup upperbound
from serial source code.

HCPA profiles self-parallelism using a hierarchical
region model and the parallelization planner finds
the best parallelization strategy.

Kismet will be available for public download
in the first quarter of 2012.	

We demonstrated Kismet’s ability to accurately
estimate parallel speedup on two different platforms.	

42	

Self-Parallelism for
Three Common Loop Types	

DOACROSS DOALL

CP

CP

CP

…

CP

CP

CP

…

(N/2) * CP CP

Self-
Parallelism

Loop Type

Loop’s
Critical Path
Length
(cp)

N * CP

(N/2) * CP
= 2.0

N * CP

CP
= N

43	

Work N * CP N * CP

CP CP CP …

Serial

N * CP

N * CP

N * CP
= 1.0

N * CP

Raw Platform:
Target Instruction-Level Parallelism

  Exploits ILP in each basic block
by executing instructions on multiple cores

  Leverages a low-latency inter-core network
to enable fine-grained parallelization

  Employs loop unrolling to increase ILP in a basic block

44	

RawCC

Adapting Kismet to Raw	

  Constraints to filter unprofitable patterns
–  Target only leaf regions as they capture ILP
–  Like RawCC, Kismet performs loop unrolling to

increase ILP, possibly bringing superlinear
speedup

  Greedy Planning Algorithm
–  Greedy algorithm works well as leaf regions

will run independent of each other
–  Parallelization overhead limits the optimal

core count for each region

45	

ILP	
Non-ILP	

A

B C

D E	 F

Speedup Upperbound Predictions:
Raw Benchmarks

46	

Multicore Platform:
Target Loop-Level Parallelism	

  Models OpenMP parallelization
focusing on loop-level parallelism

  Disallows nested parallelization
due to excessive synchronization
overhead via shared memory

  Models cache effect to incorporate
increased cache size from multiple
cores

47	

Adapting Kismet to Multicore

48	Solution (A) = {A:32} or {C:8, D:32}	

Parallelize Descendants	Parallelize the Parent	

  Constraints to filter unprofitable OpenMP usage
–  Target only loop-level parallelism
–  Disallow nested parallelization

  Bottom-up Dynamic Programming
–  Parallelize either parent region or a set of descendants
–  Save the best parallelization for a region R in Solution(R)

A

B C

D E	 F

A

B C

D E	 F

Parallelize	
 Don’t Parallelize	

Impact of Memory System 	

  Gather cache miss ratios for different cache sizes
  Log load / store counts for each region
  Integrate memory access time in time model

49	

50	

