
Kremlin: Rethinking and Rebooting gprof for!
 the Multicore Era

Saturnino Garcia, Donghwan Jeon, Chris Louie, Michael B. Taylor

Computer Science & Engineering Department
University of California, San Diego

Motivating a “gprof for parallelization”

• How effective are programmers at picking the right parts of a
program to parallelize?
‣ User study* we performed at UC San Diego (UCSD IRB #100056)
‣ First and second year CS graduate students

‣ Users parallelize their programs and submit to job queue for timing
‣  32-core AMD machine, Cilk++, access to gprof

‣ Students were graded based on effectiveness of their parallel speedup;
students told serial optimization would not help their grade

*Disclaimer: No graduate students were

User Study: Results

• Examined student’s activities to determine result of efforts

• Significant fraction of fruitless effort because of three basic problems
1. Low Parallelism: Region was not parallel enough

2. Low Coverage: Region’s execution time was too small

3. Poor Planning: Speedup negated by subsequent parallelization

User 143

User 249

User 371

time

Fruitless Parallelization Effort

gprof answers the question:

“What parts of this program should I
spend time optimizing?”

Kremlin answers the question:

“What parts of this program should I
spend time parallelizing?”

Kremlin’s Usage Model

$> make CC=kremlin-cc

$> ./tracking lolcats

$> kremlin tracking --personality=openmp

 File (lines) Self-P Cov (%)
1 imageBlur.c (49-58) 145.3 9.7
2 imageBlur.c (37-45) 145.3 8.7
3 getInterpPatch.c (26-35) 25.3 8.9
4 calcSobel_dX.c (59-68) 126.2 8.1
5 calcSobel_dX.c (46-55) 126.2 8.1

• Usage model inspired by gprof 1. Compile instrumented binary

2. Profile with sample input

3. Run analysis tool to create plan

Kremlin’s Key Components

• Hierarchical Critical Path Analysis (HCPA)

‣ Quantifies self-parallelism in each program region

• Self-Parallelism

‣ Estimates ideal parallel speedup of a specific region

Serial
Src

Code

Parallelization

Parallelism Discovery
“What’s the potential parallel speedup of

each part of this program?”

• Planning Personalities

‣  Incorporates target specific constraints in parallelization
Parallelism Planning

“What regions must I parallelize to get
the maximum benefit on this system?”

Developing an Approach for Parallelism Discovery
• Existing Technique: 1980’s-era Critical Path Analysis (CPA)

‣ Finds critical path through the dynamic execution of a program

‣ Mainly used in research studies to quantify limits of parallelism

critical path (cp)

instruction
data or control dependence

parallelism = work
critical path length

work ~= # of instrs

Benefits of CPA as a Basis for a Parallelism Discovery

• Evaluates program’s potential for parallelization under relatively
optimistic assumptions
‣  Closer approximation to what human experts can achieve
‣  Versus pessimistic static analysis in automatic parallelizing compilers

• Result is predictive of parallelism after typical parallelization
transformations
‣  e.g., Loop interchange, loop fission, locality enhancement

Improving CPA with Hierarchical CPA (HCPA)

• CPA is typically run on an entire program
‣ Not helpful for identifying specific regions to parallelize
‣ Doesn’t help evaluate execution time of a program if only a subset of

the program is parallelized

• Hierarchical CPA is a region-based analysis
‣ Self-Parallelism (sp) identifies parallelism in specific regions

‣ Provides basis for estimating parallel speedup of individual regions

for(i=1..100) {
 for(j=1..100) {

a[i][j] = a[i][j-1]+3;
b[i][j] = b[i][j-1]+5;

 }
}

sp=2 sp=1 sp=100

HCPA Step 1: Hierarchically Apply CPA
• Goal: Introduce localization through region-based analysis

• Shadow-memory based implementation

‣ Performs CPA analysis on every program region

‣ Single pass: Concurrently analyzes multiple nested regions

for(i=1..100) {
 for(j=1..100) {

a[i][j] = a[i][j-1]+3;
b[i][j] = b[i][j-1]+5;

for(i)

(work, cp length) = (100000,500)

...
for(j)

(1000,500)
for(j)

(1000,500)

...
100

(10,5)
1

(10,5)for(i): p = 100000
500 = 200W

CP = ✗

HCPA Step 2: Calculate Self-Parallelism
• Goal: Eliminate effect of nested parallelism in parallelism calculation

• Approximate self-parallelism using only HCPA output

‣  “Subtracts” nested parallelism from overall parallelism

for(i)

(W, CP) = (100000,500)

for(j)

(1000,500)
for(j)

(1000,500)

...

work(for_i) = 100 * work(for_j)

500 500
CP other

500 500
CP other

500 500
CP other

500
CP

500
CP

500
CP...

work’(for_i) = 100 * CP(for_j)

adjust work

...W(forj) W(forj) W(forj)

contributes to
parallelism in

both inner and
outer regions

for(i): p = 100000
500 = 200W

CP =

for(i): self-p = 100*500= 100W’ =
✔

HCPA Step 3: Compute Static Region Data
• Goal: Convert dynamic region data to static region output

• Merge dynamic nodes associated with same static region

‣ Work: Sum of work across dynamic instances

‣ Self-Parallelism: Weighted Average across dynamic instances

for(i)

(work, sp) = (100000,100)

...
for(j)

(1000,1)
for(j)

(1000,1)

...
100

(10,2)
1

for(i)

for(j)

body

(work, avg. sp)

(100000,100)

(100000,1)

(100000,2)

merge
dynamic
regions

Further Details on Discovery in Our Paper

• Kremlin handles much more complex structures than just nested
for loops: finds parallelism in arbitrary code including recursion

• Self-parallelism metric is defined and discussed in detail in the
paper

• Compression technique used to reduce size of HCPA output

Creating a Parallelization Plan
• Goal: Use HCPA output to select best regions for target system

• Planning personalities allow user to incorporate system constraints

‣ Software constraints: What types of parallelism can I specify?

‣ Hardware constraints: Synchronization overhead, etc.

‣ Planning algorithm can change based on constraints

An OpenMP Planner
• Based on OpenMP 2.0 specification

‣ Focused on loop-level parallelism

‣ Disallows nested parallelism because of overhead

‣ Planning algorithm based on dynamic programming

A

C B

D E F

Region Work SP
A 100k 2
B 50k 2
C 50k 10
D 50k 10
E 25k 5

parallelized time reduction = W - (W/SP)PTR = 50k

45k

20k20k

25k

45k

✔
✔

Evaluation
• Methodology:

‣ Ran Kremlin on serial versions; targeting OpenMP

‣ Parallelized according to Kremlin’s plan

‣ Gathered performance results on 8 socket AMD 8380 Quad-core

‣ Compared against third-party parallelized versions (3rd Party)

• Benchmarks: NAS OpenMP and SpecOMP

‣ Have both serial and parallel versions

‣ Wide range of parallel speedup (min: 1.85x, max: 25.89x) on 32 cores

How much effort is saved using Kremlin?
of Regions Parallelized

Suite Benchmark 3rd Party Kremlin Reduction

SpecOMP
art 3 4 0.75x

ampp 6 3 2.00x
equake 10 6 1.67x

NPB

ep 1 1 1.00x
is 1 1 1.00x
ft 6 6 1.00x

mg 10 8 1.25x
cg 22 9 2.44x
lu 28 11 2.55x
bt 54 27 2.00x
sp 70 58 1.21x

Overall 211 134 1.57x

1.89x average improvement

How good is Kremlin-guided performance?

Significantly better results
on two benchmarks

• Compared performance against expert, third-party version

Required 65 fewer regions to get
within 4% of performance on
others (1.87X improvement)

Does Kremlin pick the best regions first?

Fraction of Kremlin Plan Applied

First 25%
of regions

Second 25%
of regions

Third 25%
of regions

Last 25%
regions

Marginal
benefit (%

max speedup)
(avg)

56.2% 30.2% 9.2% 4.4%

86.4% in first half + decreasing marginal benefit

• Determined what % of speedup comes from first {25,50,75,100}%
of recommended regions

Conclusion
• Kremlin helps a programmer determine:�

 “What parts of this program should I spend time parallelizing?”

• Three key techniques introduced by Kremlin

‣ Hierarchical CPA: How much total parallelism is in each region?

‣ Self-Parallelism: How much parallelism is only in this region?

‣ Planning Personalities: What regions are best for my target system?

• Compelling results

‣  1.57x average reduction in number of regions parallelized

‣ Greatly improved performance on 2 of 11 benchmarks; very close on�
others

Self-Parallelism for Three Common Loop Types

DOACROSSDOALL

CP

Parallelism

Loop Type

Critical Path
Length (CP)

Work (ET’) N * CP

Serial

= NN * CP
CP

…

CP
CP

CP

(N/2) * CP

N * CP

= 2.0N * CP
(N/2) * CP

…

CP
CP

CP

N * CP

N * CP

= 1.0N * CP
N * CP

CP CP CP…

Kremlin System Architecture

Interpreting the Parallelism Metric

...

Totally Serial

...

Highly Parallel

All work is
on critical

path
(ET == CP)

Most work is
off critical

path
(ET >> CP)

Parallelism is a result of execution time

100.0 10000.0

