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This thesis presents the RTL implementation and evaluation of a non-blocking L2 victim

cache for the open-source HammerBlade manycore architecture. The primary objective

of this research is to address the inefficiencies associated with blocking caches, which

often result in network congestion and reduced performance. By transitioning to a

non-blocking cache design, we aim to improve memory system efficiency, increase

concurrency, and reduce delays. The proposed non-blocking cache incorporates features

such as Miss Status Holding Registers (MSHR), Read Miss Queue, and advanced Direct

Memory Access (DMA) system. Verification and performance evaluation are conducted

using a suite of ten Single Program, Multiple Data (SPMD) benchmark programs. The

results demonstrate significant performance improvements, highlighting the effectiveness

of the non-blocking cache in enhancing the overall efficiency and throughput of the

HammerBlade architecture.
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1 Introduction

Recent advancements in computer architecture have increasingly focused on low-power

designs and the development of specialized accelerators to maximize energy efficiency.

With growing demands for reduced power consumption, the strategic and efficient use of

limited, yet speedy, local SRAM caches has become more crucial than ever.

Another significant trend is the open-source hardware movement. Over the past few

decades, open-source software projects like Linux and GCC have revolutionized the

software industry, providing free and open tools that are indispensable in today's

technology landscape. Despite the lack of a fully open-source pathway for ASIC

development due to the reliance on proprietary EDA tools, efforts like BaseJump STL by

University of Washington aim to simplify and accelerate the design process by providing

a library of reusable SystemVerilog modules.

The research focus has also shifted towards manycore processors recently due to the

performance limitations of single-core systems. [82] In the rapidly evolving landscape of

computing, manycore architectures have emerged as a cornerstone for high-performance

computing. Among these, the HammerBlade architecture from the University of

Washington, an open-source platform designed for efficient computation on

general-purpose workloads, stands out with its unique composition and capabilities.

While the manycore architecture like HammerBlade offers significant performance

advantages [83] , it also presents distinct challenges and opportunities, particularly in the

realm of cache management and network efficiency.

This thesis builds on previous work of the blocking cache system in HammerBlade by

Dai Cheol Jung [37] , focusing on transforming the L2 victim caches from blocking to

non-blocking arrays on RTL level. The goal of this transformation is to address the

inherent inefficiencies of blocking caches, particularly their tendency to cause network

congestion. By introducing a non-blocking cache design, this work aims to improve

memory system efficiency, increase concurrency, and reduce delays, ultimately

enhancing the overall performance of the HammerBlade architecture.
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The non-blocking cache design proposed in this thesis incorporates several features to

manage cache misses more efficiently. These include the use of a Miss Status Holding

Register (MSHR) queue, Read Miss Queue, multiple Miss Handling Units (MHUs), and

an advanced Direct Memory Access (DMA) system. By ensuring that primary and

secondary cache misses are handled smoothly, the new design maintains continuous

network operations, thereby mitigating congestion issues.

Verification and evaluation of the new non-blocking cache system are critical

components of this research. This thesis employs a combination of isolated unit tests,

hand-written regression tests, and constrained random testing to ensure the correctness

and robustness of the cache design. Performance improvements are demonstrated using

ten "Single Program, Multiple Data" (SPMD) benchmark programs, showcasing

significant gains in both efficiency and resource utilization.

The transition from blocking to non-blocking cache arrays in HammerBlade marks a

significant step towards optimizing manycore architectures for high-performance

computing. By addressing the challenges of network congestion and enhancing cache

efficiency, this work contributes to the broader goal of advancing manycore processor

design and research within the open-source and RISC-V community.
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2 Background

2.1 BaseJump STL

BaseJump STL [28] is an open-source standard template library written in

SystemVerilog, designed to provide a comprehensive collection of reusable hardware

building blocks for ASIC design. The library aims to drastically reduce RTL development

and verification time by offering highly composable and parameterizable modules. These

modules follow a consistent coding style guideline, ensuring portability and synthesis

across various EDA tools. BaseJump STL includes components for memory, dataflow,

asynchronous operations, network-on-chip implementations, and more, facilitating rapid

design-space exploration and enhancing design efficiency. These modules are designed to

be highly composable and parameterizable, significantly reducing the time required for

hardware development and verification. By leveraging BaseJump STL, developers can

quickly assemble and customize hardware components, ensuring consistency and

efficiency across different projects.BaseJump STL modules are used heavily in this work,

and many new modules are created as part of this work.

https://github.com/bespoke-silicon-group/basejump_stl

2.2 HammerBlade

The HammerBlade manycore architecture, developed by BSG group at the University of

Washington, is an open-source, scalable manycore processor designed for

high-performance and energy-efficient computing. HammerBlade is a tiled manycore

processor. Tile architecture first originated from MIT Raw project [62] . The architecture

features a 2D mesh network that interconnects a large array of tiles, each tile containing a

RISC-V core, local memory, and a router. Processors can send packets to remote

locations to access other tiles’ data memory or shared DRAM. Network Physical Address

(NPA), which consists of a (x,y) coordinate and an endpoint physical address (EPA),
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maps the entire address space that can be reached on the network. Between the network

and the shared DRAM, there is a row of the L2 caches. These caches are connected to the

router at the bottom of each column. This design supports efficient execution of parallel

workloads, with a focus on minimizing memory latency and maximizing throughput.

The HammerBlade manycore utilizes several key components from the BaseJump STL

library, such as memory controllers, network interfaces, and dataflow elements, to

optimize its performance.

https://github.com/bespoke-silicon-group/bsg_manycore
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3 Vanilla Core

HammerBlade is built using interconnected pods. Each pod is like a mini-computer made

up of a grid of tiles. There are two kinds of tiles: compute tiles and vcache tiles. Compute

tiles are the workhorses, containing processors and network connections. Vcache tiles, on

the other hand, are all about data access. They act as a special kind of memory cache,

helping the processors quickly retrieve information from the off-chip DRAM.

Figure 1: Organization of The HammerBlade Manycore Architecture [84]

The compute tiles each have a V5 core, which is like the brain of the tile. This brain has

two important parts: a small 4KB instruction cache (1024 instructions) and a local

workspace (4KB data memory). The V5 core is efficient – it can grab instructions and

data while it's working on other non-dependent instructions to overlap the memory

latency, thanks to non-blocking loads and stores. When the V5 core needs something that

is not present in its tile, it sends requests over a special grid-like network (2-D mesh) to
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find the information it needs, whether it's in another tile's cache, local memory, or the

main system memory (DRAM).

Figure 2: Interconnection of The Components [84]

The Vanilla-5 core, as the workhorse of HammerBlade Manycore, is a light-weight

5-stage pipelined RISC-V processor implementing RV32IMA ISA. Vanilla Core

programs execute in SPMD (Single Program Multiple Data) mode in a 32-bit virtual

address space, called Endpoint Virtual Address (EVA). Each thread in a core has its own

EVA space. EVA provides a mapping to the remote and local data memory and the L2

caches.
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Vanilla-cores are clever when it comes to executing non-blocking remote loads. Even

though sending a request and getting a response can take hundreds of cycles, the core can

keep working on other things. This is possible because the core maintains a scoreboard of

dependencies and continues the execution of the program if the subsequent instructions

do not depend on the remote-load (no WAW or WAR hazards).

To communicate with the L2 Cache / DRAM, the address of each core is translated into a

network packet sent to the south edge of the network. Here, there's a row of L2 caches,

each handling specific memory areas (virtual banks) within the off-chip DRAM. The L2

cache's horizontal position (x-coordinate) combined with the virtual bank address tells us

the exact location of the data in the DRAM.

4 On-Chip-Network

The BaseJump network uses a memory model similar to PGAS (Partitioned Global

Address Space). In this model, all the processing units (nodes) in the network share one

big pool of memory. Each memory location is identified by a unique combination of two

parts: the XY coordinates of the node "holding" that memory and a local address within

that node: [85]

<X cord, Y cord, local address>
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Figure 3: Global Coordinates of Nodes [85]

Each processing unit (node) in this architecture can access memory, registers, or other

features based on its own local addressing system. These nodes can be various types, like

RISC-V cores, special processors for signals (DSPs), programmable logic blocks

(eFPGAs), specialized accelerators, or even memory buffers. Each node also has its own

dedicated memory space (memory region) [85] . This allows nodes to perform load, store,

and comparison operations on data located in other nodes across the network.

Features like fetching data (remote load) and comparing and swapping data

(compare-and-swap) were added to this model, which allows for more complex

operations like gather operations and mutual exclusion.

4.1 Mesh Network

Figure 4 shows the mesh architecture. Each tile contains a router and an accelerator, and

each accelerator contains an endpoint and a core. Messages on the network are a single

wide word that includes header information and payload.
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The mesh network uses separate paths for sending requests (source to destination) and

receiving replies (destination to source). Requests travel in X then Y directions, while

replies follow the reverse path. For smooth operation, accelerators must immediately

process incoming messages from the network without waiting to send new ones.

Figure 4: Mesh Network Structure [7]

4.2 Network Congestion

Network congestion is a significant performance bottleneck in the HammerBlade

manycore architecture, which arises when the data traffic within the network exceeds its

capacity, leading to increased latency and reduced throughput. This congestion impedes

the efficiency and performance of parallel computing tasks, as it delays data

communication between cores.
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In manycore architectures like HammerBlade, network congestion can be caused by

several factors as below:

1. High Communication Traffic: Manycore architectures necessitate frequent data

exchanges between cores, especially in parallel applications, which can

overwhelm the network.

2. Inefficient Routing: Suboptimal routing algorithms can direct excessive traffic

through certain network areas, creating bottlenecks.

3. Contention for Shared Resources: When multiple cores attempt to access the

same network resources simultaneously, contention occurs, causing delays and

congestion.

4. Cache Misses: Frequent cache misses in L1 or L2 caches increase network traffic

as cores fetch data from remote memory, further contributing to congestion.

The Flat arrangement of the conventional HammerBlade is largely motivated by the ease

of physical design. However, the network capacity ultimately limits the scalability. In

N×N mesh, each tile can only inject packets at the average rate of 2/N per cycle before

the network channels on the edge become completely saturated [86] . In manycore

architectures like HammerBlade, managing the challenges of network congestion is

crucial for optimal performance, especially when the number of cores that can fit on a

full-reticle chip will keep increasing and reach about 100K+ range in the next few years.
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Cellular Manycore architecture, recently developed by BSG group, with its replicated

macro units or 'Cells' comprising core arrays and cache bank strips, marks a significant

step towards addressing network congestion challenges in manycore systems. This

architecture, through its partitioned global address space and flat cache hierarchy,

enhances physical locality and facilitates efficient data sharing, which is crucial in

manycore environments. [87]

Figure 5: Overview of Cellular Manycore Architecture [87]

However, while Cellular Manycore effectively addresses high-level architectural

concerns, there remains ample room for improvement at the memory system level,

particularly from the standpoint of vcache arrays.

A significant contributor to network congestion in HammerBlade is the use of blocking

L2 caches. Blocking caches stall the entire pipeline during a cache miss, waiting for data

retrieval from memory or another cache. This stalling has several adverse effects on

network performance:
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1. Increased Traffic Bursts: Cache misses in blocking L2 caches generate bursts of

network traffic as they fetch the missing data, which can overwhelm the network

and cause congestion.

2. Pipeline Stalling: Blocking caches cause processor pipelines to stall while

waiting for cache misses to resolve, reducing effective throughput and

underutilizing computational resources.

3. Reduced Concurrency: Blocking caches handle only one cache miss at a time,

limiting the concurrency of memory operations and leading to inefficient network

use.

4. Propagation of Delays: Delays from cache misses and pipeline stalls can

propagate through the network, causing additional delays and increasing overall

congestion.

To alleviate network congestion, transitioning from blocking L2 caches to non-blocking

ones is essential. Non-blocking caches allow multiple outstanding cache misses to be

handled concurrently, significantly reducing traffic bursts and improving overall network

efficiency. By enabling the processor to continue executing other instructions while

waiting for data, non-blocking caches help maintain high throughput and reduce the

negative impact of cache misses on network performance.
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5 L2 Victim Cache

5.1 Blocking L2 Vcache

The original L2 blocking victim cache used in current HammerBlade was inspired by the

data cache in Raw [5] , and implemented by Dai Cheol Jung. It is two-stage pipelined.

There are tag-lookup and tag-verify stages. A stage before the tag-lookup stage, we refer

to it as an input stage. This pipeline has throughput of one load or store every cycle with

an absence of miss [37] .

Figure 6: Blocking L2 Cache High Level Schematic [37]

In the tag-lookup stage of the blocking L2 cache, the tag memory, addressed by the index

portion of the input address, determines cache hits or misses. Each tag entry includes a

valid bit, lock bit, and tag. The data memory is read for load instructions. Cache size is

influenced by data width, address width, block size, and number of sets. For instance, a

32 KB cache with 32-bit address/data, 8-word blocks, and 512 sets uses a 9-bit index and

an 18-bit tag, requiring a 40 × 512-bit tag memory. The cache also features status

memory with dirty and LRU bits.
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Figure 7: Blocking L2 Cache SRAM Layout [37]

The L2 cache uses a ready-valid handshaking system for both incoming and outgoing

data, ensuring smooth communication and handling different data sizes. Software can

manage the cache using instructions like TAGST for updating tags, TAGLA/TAGLV for

checking tags and validity, and AINV, AFL, and AFLINV for flushing or invalidating

specific cache lines.

When the L2 cache misses a requested data piece (store miss), it retrieves the entire block

containing that piece. Even if only part of the block is being updated, the whole block is

loaded. The cache keeps track of dirty blocks (modified data) and clears the dirty bit

when a new block is requested. Once the new block arrives and the update is complete,

the dirty bit is set again.
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Based on the infrastructure of the original blocking L2 victim cache, I developed the

non-blocking one which shares the same basic workflow, but with the capability of

holding outstanding misses and going on with the following cache requests, without

stalling the pipeline in most cases.

5.2 Non-Blocking Cache Design Overview

In HammerBlade manycore structure, the vcache array plays a key role, and the current

HammerBlade uses blocking caches for the vcache arrays on the north and south side.

Traditional blocking caches, which stall their pipeline upon encountering a miss, can

cause a pause in the functioning of node routers, leading to network congestion as new

packets cannot be injected into the network. This situation highlights a critical need for a

more efficient cache system. Thus, developing a non-blocking cache becomes imperative.

Such a cache design would not only handle misses more efficiently but also maintain

continuous network operations, significantly alleviating network congestion issues. The

goal of the development of our non-blocking cache design is to improve memory system

efficiency, increase concurrency, reduce delay and mitigate network congestion,

particularly within the context of the HammerBlade Manycore architecture.
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Figure 8: Overview of Non-Blocking Vcache Organization

Figure 8 shows the overall structure of a non-blocking vcache tile in HammerBlade.

Central to the cache is an advanced Miss Status Holding Register (MSHR) queue, paired

with a read miss queue, multiple Miss Handling Units (MHUs) linked to each

corresponding MSHR entry, an efficient Direct Memory Access (DMA) system, and a

data transmitter used for eviction/refilling data to go smoothly between DMA and Data

Memory. DRAM Requests and data are sent through Mesh / Ruche Network in the form

of wormhole packets by wormhole routers. Cache Hit and Miss send the data responses

to the right compute tiles by NoC Router. The configuration uniquely addresses the

limitations of traditional cache systems by effectively managing both cache hits and

misses, and the new design provides enough buffer to ensure that primary and secondary

misses are drained from the network so that the hit requests can proceed.
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Each vcache tile acts like a device on the network, identified by a special address (NPA).

This address has a built-in flag: a 0 in the most significant bit (MSB) means you're

talking to the DRAM memory itself. If the MSB is a 1, you're actually interacting with

the vcache's tag memory. This allows the main system (host) to clear tags during setup or

even examine them for debugging purposes using TAGST and TAGLA instructions.

The non-blocking L2 victim cache retains the two-stage pipeline and most of the basic

flow as the old blocking cache. It checkers TAG MEM for the existence of a cache line in

the tag look up stage and, in the tag verify stage if the cache line exists, it works in the

same way as the original blocking cache; however, if there is a cache miss, it takes 3

cycles to determine which way to evict, update the new tag in advance, record the miss

information into Miss Handling Unit(MHU), MSHR and Read Miss Queue(for read

misses). The non-blocking cache will then keep on executing the next request, without

stalling the pipeline and waiting for the missed cache line to return. The MHU will wait

behind the scene till its turn to turn activated, and then it will use the miss information

inside to do eviction/refilling properly.

5.3 Non-Blocking Cache Walkthrough

When a compute core sends a remote request through the 2D network and arrives at the

destination vcache tile, the NoC router in that vcache tile will unpackage that request into

a cache request which the cache can understand.

22



As shown in Figure 8, the cache will look up the cache line address of this request in the

tag look up stage. If it doesn’t find any match in the TAG MEM, it means that it is a

primary cache miss. In this case, STAT MEM will be read to get the LRU and dirty bits,

in order to determine which way to evict. At the same time, new tag data will be directly

updated in the TAG MEM in advance, even though this miss hasn’t been processed, and

the cache line hasn’t returned from DRAM yet. This will lead any following cache

request to the evicted line to be a cache miss. Also, some information about this cache

miss will be stored in an allocated Miss Handling Unit. The cache line address will also

be recorded in an allocated MSHR entry, so by checking the MSHR CAM, any future

cache request will be taken as a secondary miss, if it finds the same cache line has already

been in the MSHR CAM, even if it finds a match in the TAG MEM in the tag look up

stage. For a write miss, the data it wants to write will be recorded in the data field of the

MSHR entry; for a read miss, the information about this read request will be stored in an

allocated Read Miss Queue entry. The details will be discussed later in the following

sections.

When a MHU waits until its turn to be activated, it will then start the eviction and

refilling process. It will first communicate with the DMA to let it send DRAM read and

write requests respectively. The DRAM read request will be packaged as a wormhole

packet in the DMA_to_Wormhole module and injected into the wormhole network. The

DRAM write request will be kept in the DMA_to_Wormhole module until all the evicted

data arrives, and then be packaged as wormhole packets together and sent to the DRAM

controller. The MHU will coordinate with the Transmitter to read the evicted data from
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DATA MEM. The Transmitter will reorder the words into correct order and transfer them

to the DMA. The DMA will wait for all the words in the evicted cache line to arrive and

send them to the DMA_to_Wormhole module.

When the data is read from DRAM and arrives at the DMA_to_Wormhole module in the

form of wormhole packets, it will parse the wormhole packets into cache line words and

send them to the DMA. The MSHR ID is sent along with DRAM read packet and returns

with the cache line data, so the cache will know which MSHR the data arrives at the

DMA belongs to. The DMA will first combine the returned data with the most up-to-date

data in the MSHR CAM, reorder the combined data, and transfer them to the Transmitter.

The Transmitter will write these words into DATA MEM and the MHU will be notified

everything is done. At the same time the DMA will use the combined data to serve all the

read misses under this cache line in the Read Miss Queue. When the cache finishes both

writing the data into DATA MEM, and serving all the read misses, a cache miss handling

process is finished. All these steps except serving the Read Miss Queue are being

executed in parallel behind the scene, without stalling the cache pipeline to wait for this

miss to be done.

For a cache hit, there could be multiple possible cases. The simplest situation is that the

cache finds a match in the tag look up stage and doesn’t find a match in MSHR CAM,

which means this is a legit cache hit. So it can directly output the corresponding data for a

read hit, or load the write data and mask into the store buffer for a write hit.
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The second case is that it finds a match in the TAG MEM but also finds a match in the

MSHR. This means this is a secondary miss. For a write request, since we can simply

write the data into the data field in the proper MSHR entry, it can just be taken as a

normal cache hit. For a read request, if all the bytes it wants to read are written in the

MSHR entry by previous write misses, it can directly output the data in the MSHR,

which can also be taken as a cache hit.

Another case is that when a read request comes, it finds that the cache line is in the DMA

right now, which means this is a secondary miss and the cache line has already returned

from DRAM and arrived at the DMA. In this case, it can take advantage of the combined

data in the DMA to grab the data it wants. This can also be taken as a hit case.

5.4 MSHR

In non-blocking caches, Miss Status Holding Registers (MSHRs) play a crucial role in

managing cache misses efficiently. When a cache miss occurs, an MSHR is allocated to

track the status of the outstanding memory request. Each MSHR holds information about

the pending miss, including the address, the type of request (read or write), and any

additional data necessary for handling the request once the data is fetched from the lower

memory hierarchy.

MSHRs enable the cache to continue servicing other requests while waiting for the data

associated with the miss to arrive. By allowing multiple misses to be tracked

simultaneously, MSHRs significantly enhance the throughput and performance of the
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cache. This non-blocking behavior reduces the stall time for the processor, as it does not

need to wait idly for a single miss to be resolved before processing subsequent memory

requests.

The MSHR Queue in the non-blocking cache is essentially implemented as a Content

Addressable Memory (CAM). It uses the cache line address offset as the tag to look up

matched entries, and has two separate SRAMs inside to store the data byte(s) from

primary or secondary store misses, and update the corresponding valid bits for each byte

respectively.

Traditionally, MSHRs have limitations in handling multiple cache misses efficiently.

They allocate a new entry for each cache miss, with certain bits indicating whether the

miss is a secondary miss related to a primary one. This approach, however, leads to a

storage issue: a large number of secondary misses consume many MSHR entries. With

limited MSHR resources, the system quickly becomes saturated, stalling the pipeline and

resulting in network congestion. To overcome these challenges, by dividing MSHRs into

MSHR Queue and Read Miss Queue, and implementing a data field in MSHR entries,

ensured that primary or secondary store misses could directly store their data [88] ,

reducing the need for allocating new MSHR entries. Meanwhile, this approach can

firstly transform some secondary load misses into hits and for others, it allows more

space for each MSHR entry to allocate the load miss, since the Read Miss Queue is

essentially an 1RW SRAM and will have much less area overhead when the number of

entries increases.
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Figure 9: MSHR Queue Schematic

5.5 Read Miss Queue

The Read Miss Queue is a separate SRAM aside from the MSHR Queue. Everytime there

is a primary or secondary read miss, a new entry is allocated in the Read Miss Queue.

The space of Read Miss Queue is evenly distributed to each MSHR entry so each MSHR

entry will have the same count of Read Miss Queue entries for allocation. When a read

miss occurs but the corresponding space in the Read Miss Queue is full, the pipeline has

to be stalled, and wait until the refill data comes back to DMA.
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When the data of a cache line returns from DRAM, the Read Miss Queue will

immediately be served until all the read misses linked to that cache line are issued, during

which period if there’s a read going in the tag verify stage, it has to be stalled.

Figure 10: Read Miss Queue Schematic

Each Read Miss Queue entry is made up of four parts: MSHR data, MSHR mask, LD

information, and SRC ID.

● MSHR data and mask - When a secondary read miss occurs, it is possible that a

previous write primary/secondary miss has written some bytes of the data that this

secondary read miss wants to access, to the MSHR data field, so these bytes are

the most up-to-date data to be output, even when the cache line returns. This

means we have to store these data as part of the information in the Read Miss
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Queue entry, since any following secondary write miss could potentially write

newer data to some of these bytes again.

● LD information - This could consist of information such as, whether this read

request is a read byte, half or double, whether it has sign extension or not,

whether it is a read mask and if so, what the mask bits are…

● SRC ID - This is the destination coordinates that comes along with each cache

request. With this ID, the cache can know where the response data should route

to, when the cache line returns and the read misses are served.

5.6 Evict/Refill Transmitter

The Evict / Refill Transmitter connects the DMA and data memory in the cache, and

works for delivering the evict / refill data between data memory and DMA. This process

can be done behind the scenes so the pipeline doesn’t necessarily need to be stalled

anymore.

We added this transmitter because of an interesting modification made to the data

memory, compared with the original blocking cache. We partitioned the data memory

(DMEM) into two banks, which store even and odd words in cache lines respectively.

Due to SRAM’s area limitations, each cache line is split into bursts to store in the

DMEM, thus resulting in a long stall for the incoming requests when the cache conducts

eviction/refilling. By partitioning the DMEM into even and odd banks, it allows

eviction/refilling and incoming requests to access different banks concurrently without

stalling, by letting the data transmitter read or write data from the other bank after
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knowing the bank that the incoming request is going to access, thus significantly

mitigating network jams in HammerBlade. The challenge of potential resource contention

and data re-order due to partitioning is addressed by implementing a two-tier pipeline

with one FIFO tied to each bank in the transmitter, and arbitrarily setting priorities for

different operations, ensuring both efficient data flow and minimal area overhead.

5.7 Word Tracking Strategy

The word tracking strategy utilizes a separate SRAM, known as track memory(TRACK

MEM), to keep track of the validity of each word within a cache line. This approach

allows store misses, where a whole word is stored, to be treated as hits. The information

about the cache line to be evicted is recorded in the miss handling unit. The store data is

recorded in the MSHR (Miss Status Holding Register), and the track memory is updated

by setting all bits in the corresponding way to zero except for the bit corresponding to the

stored word, which is set to one.

When the data for the evicted cache line is read from the data memory, the data stored in

the MSHR will then be written into the data memory. If there is a subsequent read request

for the data in this word, it is treated as a read hit. If there is a subsequent store request

for this word, or similarly a store word request for other words, it is treated as a store hit

and the corresponding bit in the track memory is updated in the same manner.

This strategy continues until a read request is made for a word whose corresponding bit

in the track memory is not set to one, or a store miss occurs where less than a whole word
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is stored. By leveraging this word tracking strategy, a significant amount of unnecessary

memory traffic can be avoided, enhancing the performance of write-intensive programs

like memcpy. This optimization can lead to substantial time savings, particularly for

operations that frequently update specific words within cache lines.

The word tracking strategy also introduces some new situations and corresponding

solutions, among which one case that we will most frequently encounter is called track

miss. Track miss means in the tag look-up stage, the cache finds the cache line has

already been in the cache, but after checking the valid bits in TRACK MEM, it finds that

not all the words that this request wants to access are valid. In this case, some words in

this cache line were already written by previous store word requests, and these words are

more up-to-date, compared to those in the off-chip DRAM. So after we fetch the cache

line from DRAM, we should keep these words in the DATA MEM, instead of updating

them. Same, if the way we are going to evict only has some parts of its words valid, we

should only update these words in the DRAM, instead of the whole cache line. To do so,

we will have to store the valid bits somewhere for later use. In this design, we load them

into the Miss Handling Unit when a cache miss is detected and allocated in the tag verify

stage.

5.8 Miss Handling FSM Logic

1. MHU_START : Each free miss handling unit waits in MHU_START state, until there

is a cache miss detected in the tag-verify stage, and allocated to that miss handling

unit. Some information about this miss, such as the cache line address, whether it
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is a track miss or not, and the track bits of the way which is chosen to be evicted,

will be loaded into this MHU. The MHU will then keep waiting in this state till its

turn to be activated. There’s a FIFO keeping record of the order of each cache

miss, and the earlier cache miss will be processed first. When it gets to its turn,

the MHU will be activated. It will jump onto sending refill address(MHU SEND

REFILL ADDR) if it is a normal miss, or jump over store tag miss branch if it is a

primary full word store miss(MHU STORE TAG MISS).

2. MHU_SEND_REFILL_ADDR :When the cache needs a block of data that's not available

(DMA read request), it picks an unused slot (invalid way) or the least recently

used block (LRU) to replace. If the LRU block has dirty data (modified), the

cache sends an eviction message (MHU SEND EVICT ADDR) to prepare for

writing it back to memory. Otherwise, the cache moves on to fetching the new

data (MHU WRITE FILL DATA). This way, the cache can kick off evicting the

old block while the new data is on its way from DRAM, hiding some of the delay.

Finally, the cache updates the tags and dirty bits to reflect the new data.

3. MHU_WAIT_SNOOP_DONE : In some cases, there are still some words waiting to write

into the chosen evicting cache line in the store buffer, when everything is all set

for the eviction process in the MHU. This state ensures that all these kinds of

words are written into that cache line before we evict it, so the data written into

DRAM would be correct.

4. MHU_SEND_EVICT_ADDR : As soon as the DMA write request is sent out, it shifts to

MHU SEND EVICT DATA. In some rare cases, when the miss in a MHU is a

store tag miss, and before it starts the eviction process, another secondary partial
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store / load to one of the other words happens, we should directly transition it to a

normal miss and send DMA read request to get the whole cache line(MHU SEND

REFILL ADDRESS).

5. MHU_SEND_EVICT_DATA : During this state, the transmitter will read from one data

bank at a time until all the odd and even words in a cache line are gotten, and at

the same time it will reorder these words in the correct order and transfer them to

DMA. The DMA will wait and accumulate all the words in a cache line before it

sends them out.

6. MHU_WRITE_FILL_DATA : Similarly, in this state, the DMA reorders the words in the

returned cache line in correct order and transfers them to the transmitter. The

transmitter will also access one data bank at a time in order to avoid congestion.

While the cache line is being written to the data memory, it saves the entire cache

line and combines it with the most up-to-date data in the MSHR CAM, and then

uses the combined cache line to serve the read misses in the Read Miss Queue.

For a store tag miss, there is no need to fetch the cache line from DRAM. In that

case, it will directly transfer the word(s) and mask(s) into the transmitter, and the

transmitter can write the word(s) into data memory. When all the data is written

into data memory, it jumps back to the initial state and waits for the next cache

miss(MHU START).

7. MHU_STORE_TAG_MISS : Typically for a primary store full word miss, it will jump onto

sending evict address if there is a cache line needed to be evicted. In the same rare

cases as mentioned in MHU_SEND_EVICT_ADDR, it will directly transition to

a normal miss and send DMA read request( MHU SEND REFILL ADDR).
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8. MHU_STORE_TAG_MISS_FILL_HOLD : This is used for some corner cases where the MHU

should wait for some time due to special needs, before it starts evicting data, for a

primary store full word case.

Figure 11: MHU FSM Diagram

5.9 Cache Line Locking

The cache line locking mechanism is implemented in the similar way as the original

blocking cache. The locking mechanism is designed for two main purposes. First, if a

cache line is invalid and locked, it prevents new data from being placed in that line. This

is particularly useful in the rare case of a defective SRAM cell, rendering a specific cache
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line unusable. Second, if a cache line is valid and locked, it cannot be selected for

eviction. This can be advantageous when we know in advance that a specific address will

be accessed frequently, allowing us to lock the cache line and prevent it from being

evicted. It is assumed that the user cannot lock both ways within a set [37] .

5.10 Replacement Policy

The non-blocking cache succeeds the Least-Recently-Used(LRU) replacement policy to

determine which way to evict, when a new cache miss occurs and needs to be allocated.

This cache replacement trick uses a tree structure with n-1 bits (for an n-way cache) to

identify the least recently used (LRU) block. Each bit acts like a direction sign: 0 for left,

1 for right. By following this path through the tree, you can find the LRU block with

simple logic (see the table for details). When you access a specific block, the tree is

"flipped" to point away from that block, updating the LRU information. [89] This update

only requires modifying a few bits, three for an 8-way cache. The beauty of this approach

is that you can update the LRU information without even needing to read the existing bits

first.

Table 1: Tree pseudo-LRU encoding. ’z’ means ”don’t care”. ’-’ means unmodified. [84]
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Figure 12: Tree Pseudo-LRU Algorithm [84]

5.11 Interface Converters

5.11.1 Attaching to Manycore Link

Every vcache tile can be reached on the network using a special address (NPA). This

address has a built-in code: a 0 in the most important bit (MSB) tells the system you're

talking to the DRAM memory itself. But if the MSB is a 1, you're actually interacting

with the vcache's special memory for tags. This lets the main system (host) wipe clean all

the tags during startup or even examine them for troubleshooting purposes using TAGST

and TAGLA instructions [37].

5.11.2 Attaching to DRAM Controller

The non-blocking cache interacts with the external world through its DMA. The DMA

will send the read/write requests and evicted data to a module called

DMA_to_Wormhole, which connects the DMA with the wormhole network. The requests
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and data from DMA will then be packed into the form of wormhole packets to go through

the network, arriving at the DRAM controller.

The DRAM controller will schedule and dispatch all the DRAM requests and at the same

time, buffer and reorder the returned data from DRAM, and pack the data into wormhole

packets to send back to the corresponding vcache’s DMA.

A round-robin module takes vcaches’ DMA requests, and sends commands to the DRAM

controller. There are two submodules called RX and TX. RX routes data received from

the DRAM controller to the correct cache. The read data is expected to return out of order

so the RX will have to buffer the data and reorder them to be in the correct order before

sending them back to the corresponding vcache. TX routes the evicted data from L2

vcache to the DRAM controller. This separation of RX and TX logic is a very convenient

abstraction, because usually read and write channel operations are independent from each

other.

Figure 13: L2 DMA Interface Converter [37]
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6 Verification Strategy

6.1 Isolated Unit Test

To verify the functionality of the cache itself, before integrating the non-blocking cache

into the current HammerBlade, I first conducted isolated unit testing on it. By using a

non-synthesizable fake DMA model to simulate the function of a real DRAM, we

generated test traces for different cases, and compared the theoretical results and the

actual outputs to verify the correctness.

6.2 Hand-written Regression Test

In order to test the new non-blocking cache design, we created a testbench designed to

dispatch requests and monitor the corresponding responses. This setup facilitates various

checks including tag clearing, writing data of different sizes (such as bytes, halves, and

words), and executing flush or invalidate commands. It assesses if the write buffer

properly bypasses or if the miss handler accurately replaces the LRU cache line. This

verification process involves examining the tags through TAGLA and TAGLV following

a cache line replacement. Additionally, when new bugs were identified during the

integration process with the manycore array, specific tests replicating them were

developed and added to the regression testing suite to ensure comprehensive coverage

and validation.
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6.3 Constrained Random Test

To make the verification process easier and comprehensive enough(i.e. cover all the

possible cases), we utilized a coverage-based verification method called constrained

random testing.

The idea is, instead of thinking about how to set up a test to get the design into a bunch of

weird corner cases to get rid of bugs, we can make use of randomized input generators;

and then use coverage metrics to measure whether those randomized generators have

sufficiently covered the hardware. We can tweak the tests until we get where we need to

be. So, assuming that writing coverage scripts is easier than trying to write weird corner

case tests, using a coverage methodology actually allows us to converge faster on fully

coverage hardware.

After setting up a bunch of coverpoints, covergroups and illegal/ignore bins, we ran the

simulation with VCS. By using DVE to view the functional coverage results, we found

out that it achieved 100% coverage and at the same time all test cases passed, so we can

say the non-blocking cache design is tested sufficiently and proven to be functionally

correct.
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7 Benchmarking

7.1 Non-Blocking Cache Profiler

Based on the original blocking cache profile, a non-blocking one is developed to

accommodate different cache utilization situations. There are mainly five different cases

for the non-blocking cache:

1. Utilized - read,write,atomic

2. Idle - no cache hit, and no cache miss in progress

3. Miss - no cache hit, and there is at least one cache miss in progress, but no request

is stalled in TV, because there is space in MSHR.

4. MSHR full - no cache hit, and there is at least one cache miss in progress, but

there is a request is stalled in TV, because not enough space in MSHR

5. Stall rsp - cache hit, but output FIFO is full.

The cache profiler tracks and stores all the related periodic data and this data will later be

thrown into profiling scripts and tools for a comprehensively statistical and visualized

analysis.

7.2 Benchmark Programs

The hypothesis was that, with the transition from blocking vcache arrays to non-blocking

ones, HammerBlade will gain great benefits on most of the SPMD benchmark programs,

in respect of total runtime speedup, DRAM utilization increase and network stall

reduction. It will benefit most from those programs which are memory-intensive, and

least from those which are compute-intensive with very limited memory requests.

Moreover, the benefit should increase almost linearly as the number of MSHRs increases,
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because when the number doubles, the cache's ability to handle concurrent memory data

requests also approximately doubles. Table I summarizes the ten parallel benchmarks

used to evaluate HammerBlade with optimizations. These benchmarks generally fall into

one of three groups:

1. Compute-intensive, Low-communication: AES, BS, and SW have high operational

intensity and require very little memory access. Utilizing the local scratchpad is

crucial for frequently accessed data. AES tiles store S-boxes locally, BS heavily

utilizes the FP divider and square-root unit, and SW's high branch-miss rate

necessitates scratchpad usage.

2. Compute-intensive, Sequential-access: SGEMM, FFT, and Jacobi are

characterized by different phases of the program, where all tiles initially load

large, sequential blocks of data, compute for a long time, and then dump out the

results.

3. Memory-intensive, Irregular-access: SpGEMM, PR, BFS, and BH operate on

sparse and irregular data structures that are difficult to partition. Cells copy data

structures (full or partial) to local DRAM for faster access. The multi-iteration

algorithm requires synchronization between Cells at the end of each round to

exchange results for the next iteration. [87]
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Table 2: Ten parallel benchmarks used to demonstrate the parallel programmability [87]

In the evaluation, We incrementally improve each of these parameters (router, cache,

density opt), then add the architectural features in the following order: Non-blocking

loads, Ruche Network, Write-validate policy, Load Packet Compression, Regional

IPOLY, and finally Non-blocking cache. Here we focus on the Non-blocking Cache

feature. We can evaluate the benefit from Non-blocking cache by comparing the

performance of the design of Non-blocking cache, with the one previously with Regional

IPOLY only.

7.3 Results and Evaluation

The evaluation of the new design showcased notable improvements in the performance.

The 10 parallel benchmarks run on the HammerBlade system revealed that even with just

2 MSHR entries, the non-blocking cache achieved approximately a 1.5X speedup in

single-cell performance compared to the highest-performing baseline, for programs with
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moderate memory requests. Importantly, it shows that about 70% of the benchmarks

showed almost no network stall contributions to the core utilization, with the highest

being under 20% in the remaining benchmarks. This performance boost is a direct result

of the optimized memory access and reduced network congestion enabled by our cache

design.

Figure 14: Speedup Over Baseline [87]

Figure 15: BH Core Utilization
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The performance impact of switching to a non-blocking L2 cache varies across different

benchmark categories due to a combination of factors, including data access patterns,

synchronization requirements, and algorithm sensitivity.

Memory-intensive, irregular-access benchmarks often deal with sparse and irregular data

structures, making it challenging to predict data access patterns and efficiently utilize the

cache. The non-blocking L2 cache's ability to overlap memory accesses and reduce

synchronization overhead can be particularly beneficial for these benchmarks, as it can

mitigate the impact of unpredictable data access patterns and improve overall

performance.

BH, in particular, exhibits a high degree of synchronization between cores, as it

frequently requires data exchange for its computations. The non-blocking L2 cache's

ability to hide synchronization latency can significantly improve performance for BH by

reducing the time cores spend waiting for data or synchronization operations.

The algorithms used in other benchmarks within the memory-intensive, irregular-access

category might not be as sensitive to the specific characteristics of the non-blocking L2

cache. Their data access patterns might not align as well with the cache's structure, or

their synchronization requirements might not be as demanding. As a result, the

performance gains from switching to a non-blocking L2 cache might be less pronounced

for these benchmarks compared to BH.
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Factors Contributing to BH's Superior Performance Improvement could be:

● Intensive Synchronization: BH's algorithm relies heavily on synchronization

between cores, making it more susceptible to the performance benefits of the

non-blocking L2 cache's reduced synchronization overhead.

● Data Access Locality: BH's data access patterns exhibit better locality compared

to other benchmarks in this category, meaning the data it needs to access is more

likely to be located within the cache or within a short distance, making the

non-blocking L2 cache's ability to overlap memory accesses more beneficial.

● Algorithm-Cache Fit: BH's algorithm characteristics align well with the strengths

of the non-blocking L2 cache, such as its ability to handle irregular data access

patterns and reduce synchronization latency.

Focusing on the BH program which benefited most from the integration of non-blocking

vcache arrays, switching from blocking to non-blocking vcache shows a clear trend:

DRAM utilization increases significantly. This rise becomes even more apparent with

more MSHR entries, indicating the system's improved ability to handle concurrent

memory operations. Additionally, the BH program's runtime steadily decreases with both

the switch to non-blocking vcache and the increase in MSHR entries. This suggests a

more streamlined operation with less wait time for memory accesses and reduced

network congestion. Furthermore, larger datasets naturally lead to more significant

performance gains in both DRAM utilization and runtime reduction.
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Figure 16: BH Runtime and DRAM Utilization

To take a closer look at the BH benchmark programs with body size of 16KB, we see a

significant reduction in vcache load stalls, indicating the non-blocking vcache's efficiency

in handling memory requests. The network stall reduction was less dramatic, likely

because the 16KB data size still fits comfortably within the blocking cache. However,

Figure 16 clearly illustrates the substantial benefits for the FWD network with

non-blocking vcache. The figure shows a significant decrease in FWD network stalls,

suggesting that non-blocking vcache effectively avoids many of these delays.
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Figure 16: BH Network FWD Over Blocking Cache

8 Conclusion

The transition from blocking to non-blocking cache arrays in the HammerBlade

manycore marks a significant step towards optimizing manycore architectures for

high-performance computing. By addressing the challenges of network congestion and

enhancing cache efficiency, this work contributes to the broader goal of advancing

manycore processor design and research within the open-source and RISC-V community.

The non-blocking cache design developed and evaluated in this thesis demonstrates great

improvements in memory system efficiency and overall performance, particularly in

memory-intensive applications. The introduction of features such as MSHR, Read Miss

Queue, and an advanced DMA system allows the HammerBlade architecture to handle

multiple cache misses concurrently, reducing delays and improving throughput.

Verification and benchmarking results confirm the effectiveness of the non-blocking

cache in mitigating network congestion and enhancing the overall efficiency of the

manycore system. The insights gained from this research can inform future developments

in manycore architectures, contributing to the ongoing evolution of high-performance

computing systems.
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